Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Nucleic Acids Res ; 47(18): 9696-9707, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31400115

ABSTRACT

Ubiquitous Structural Maintenance of Chromosomes (SMC) complexes use a proteinaceous ring-shaped architecture to organize and individualize chromosomes, thereby facilitating chromosome segregation. They utilize cycles of adenosine triphosphate (ATP) binding and hydrolysis to transport themselves rapidly with respect to DNA, a process requiring protein conformational changes and multiple DNA contact sites. By analysing changes in the architecture and stoichiometry of the Escherichia coli SMC complex, MukBEF, as a function of nucleotide binding to MukB and subsequent ATP hydrolysis, we demonstrate directly the formation of dimer of MukBEF dimer complexes, dependent on dimeric MukF kleisin. Using truncated and full length MukB, in combination with MukEF, we show that engagement of the MukB ATPase heads on nucleotide binding directs the formation of dimers of heads-engaged dimer complexes. Complex formation requires functional interactions between the C- and N-terminal domains of MukF with the MukB head and neck, respectively, and MukE, which organizes the complexes by stabilizing binding of MukB heads to MukF. In the absence of head engagement, a MukF dimer bound by MukE forms complexes containing only a dimer of MukB. Finally, we demonstrate that cells expressing MukBEF complexes in which MukF is monomeric are Muk-, with the complexes failing to associate with chromosomes.


Subject(s)
Chromosomal Proteins, Non-Histone/chemistry , Escherichia coli Proteins/genetics , Repressor Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomes/chemistry , Chromosomes/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Protein Binding , Repressor Proteins/chemistry
2.
Nat Commun ; 12(1): 6721, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34795302

ABSTRACT

Structural Maintenance of Chromosomes (SMC) complexes act ubiquitously to compact DNA linearly, thereby facilitating chromosome organization-segregation. SMC proteins have a conserved architecture, with a dimerization hinge and an ATPase head domain separated by a long antiparallel intramolecular coiled-coil. Dimeric SMC proteins interact with essential accessory proteins, kleisins that bridge the two subunits of an SMC dimer, and HAWK/KITE proteins that interact with kleisins. The ATPase activity of the Escherichia coli SMC protein, MukB, which is essential for its in vivo function, requires its interaction with the dimeric kleisin, MukF that in turn interacts with the KITE protein, MukE. Here we demonstrate that, in addition, MukB interacts specifically with Acyl Carrier Protein (AcpP) that has essential functions in fatty acid synthesis. We characterize the AcpP interaction at the joint of the MukB coiled-coil and show that the interaction is necessary for MukB ATPase and for MukBEF function in vivo.


Subject(s)
Acyl Carrier Protein/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , Chromosomes, Bacterial/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Repressor Proteins/metabolism , Acyl Carrier Protein/genetics , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomes, Bacterial/genetics , Enzyme Activation , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Mutation , Protein Binding , Repressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL