ABSTRACT
Impaired motivational drive is a key feature of depression. Chronic stress is a known antecedent to the development of depression in humans and depressive-like states in animals. Whilst there is a clear relationship between stress and motivational drive, the mechanisms underpinning this association remain unclear. One hypothesis is that the endocrine system, via corticotropin-releasing hormone (CRH) in the paraventricular nucleus of the hypothalamus (PVN; PVNCRH), initiates a hormonal cascade resulting in glucocorticoid release, and that excessive glucocorticoids change brain circuit function to produce depression-related symptoms. Another mostly unexplored hypothesis is that the direct activity of PVNCRH neurons and their input to other stress- and reward-related brain regions drives these behaviors. To further understand the direct involvement of PVNCRH neurons in motivation, we used optogenetic stimulation to activate these neurons 1 h/day for 5 consecutive days and showed increased acute stress-related behaviors and long-lasting deficits in the motivational drive for sucrose. This was associated with increased Fos-protein expression in the lateral hypothalamus (LH). Direct stimulation of the PVNCRH inputs in the LH produced a similar pattern of effects on sucrose motivation. Together, these data suggest that PVNCRH neuronal activity may be directly responsible for changes in motivational drive and that these behavioral changes may, in part, be driven by PVNCRH synaptic projections to the LH.
Subject(s)
Adrenocorticotropic Hormone , Corticotropin-Releasing Hormone , Animals , Humans , Motivation , Pituitary Hormone-Releasing Hormones , Optogenetics , Hypothalamus , Glucocorticoids , Neurons , SucroseABSTRACT
Dopamine-dependent long-term plasticity is believed to be a cellular mechanism underlying reinforcement learning. In response to reward and reward-predicting cues, phasic dopamine activity potentiates the efficacy of corticostriatal synapses on spiny projection neurons (SPNs). Since phasic dopamine activity also encodes other behavioural variables, it is unclear how postsynaptic neurons identify which dopamine event is to induce long-term plasticity. Additionally, it is unknown how phasic dopamine released from arborised axons can potentiate targeted striatal synapses through volume transmission. To examine these questions we manipulated striatal cholinergic interneurons (ChIs) and dopamine neurons independently in two distinct in vivo paradigms. We report that long-term potentiation (LTP) at corticostriatal synapses with SPNs is dependent on the coincidence of pauses in ChIs and phasic dopamine activation, critically accompanied by SPN depolarisation. Thus, the ChI pause defines the time window for phasic dopamine to induce plasticity, while depolarisation of SPNs constrains the synapses eligible for plasticity.
Subject(s)
Corpus Striatum , Dopamine , Cholinergic Agents , Cholinergic Neurons/physiology , Corpus Striatum/physiology , Dopamine/physiology , Dopaminergic Neurons , Interneurons/physiology , Neuronal Plasticity/physiology , Synapses/physiologyABSTRACT
In mammalian species, the capacity for goal-directed action relies on a process of cognitive-emotional integration, which melds the causal and incentive learning processes that link action-goal associations with the current value of the goal [1]. Recent evidence suggests that such integration depends on a cortical-limbic-striatal circuit centered on the posterior dorsomedial striatum (pDMS) [2]. Learning-related plasticity has been described at both classes of principal neuron in the pDMS, the direct (dSPNs) and indirect (iSPNs) pathway spiny projection neurons [3-5], and is thought to depend on inputs from prelimbic cortex (PL) [6] and the basolateral amygdala (BLA) [7]. Nevertheless, the relative contribution of these structures to the cellular changes associated with goal-directed learning has not been assessed, nor is it known whether any plasticity specific to the PL and BLA inputs to the pDMS is localized to dSPNs, iSPNs, or both cell types. Here, by combining instrumental conditioning with circuit-specific manipulations and ex vivo optogenetics in mice, we discovered that the PL and not the BLA input to pDMS is pivotal for goal-directed learning and that plasticity in the PL-pDMS pathway was bilateral and specific to dSPNs in the pDMS. Subsequent experiments revealed the BLA is critically but indirectly involved in striatal plasticity via its input to the PL; inactivation of the BLA projection to PL blocked goal-directed learning and prevented learning-related plasticity at dSPNs in pDMS.
Subject(s)
Basolateral Nuclear Complex/physiology , Corpus Striatum/physiology , Learning/physiology , Prefrontal Cortex/physiology , Animals , Basolateral Nuclear Complex/cytology , Conditioning, Operant , Corpus Striatum/cytology , Female , Goals , Male , Mice , Models, Animal , Neural Pathways/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Optogenetics , Prefrontal Cortex/cytologyABSTRACT
Plasticity at synapses between the cortex and striatum is considered critical for learning novel actions. However, investigations of spike-timing-dependent plasticity (STDP) at these synapses have been performed largely in brain slice preparations, without consideration of physiological reinforcement signals. This has led to conflicting findings, and hampered the ability to relate neural plasticity to behavior. Using intracellular striatal recordings in intact rats, we show here that pairing presynaptic and postsynaptic activity induces robust Hebbian bidirectional plasticity, dependent on dopamine and adenosine signaling. Such plasticity, however, requires the arrival of a reward-conditioned sensory reinforcement signal within 2 s of the STDP pairing, thus revealing a timing-dependent eligibility trace on which reinforcement operates. These observations are validated with both computational modeling and behavioral testing. Our results indicate that Hebbian corticostriatal plasticity can be induced by classical reinforcement learning mechanisms, and might be central to the acquisition of novel actions.Spike timing dependent plasticity (STDP) has been studied extensively in slices but whether such pairings can induce plasticity in vivo is not known. Here the authors report an experimental paradigm that achieves bidirectional corticostriatal STDP in vivo through modulation by behaviourally relevant reinforcement signals, mediated by dopamine and adenosine signaling.
Subject(s)
Cerebral Cortex/physiology , Corpus Striatum/physiology , Neuronal Plasticity/physiology , Reinforcement, Psychology , Action Potentials/drug effects , Action Potentials/physiology , Animals , Dopamine/pharmacology , Male , Models, Neurological , Neurons/drug effects , Neurons/physiology , Rats, Long-Evans , Signal Transduction/physiology , Synapses/physiology , Time FactorsABSTRACT
Anatomical investigations have revealed connections between the intralaminar thalamic nuclei and areas such as the superior colliculus (SC) that receive short latency input from visual and auditory primary sensory areas. The intralaminar nuclei in turn project to the major input nucleus of the basal ganglia, the striatum, providing this nucleus with a source of subcortical excitatory input. Together with a converging input from the cerebral cortex, and a neuromodulatory dopaminergic input from the midbrain, the components previously found necessary for reinforcement learning in the basal ganglia are present. With this intralaminar sensory input, the basal ganglia are thought to play a primary role in determining what aspect of an organism's own behavior has caused salient environmental changes. Additionally, subcortical loops through thalamic and basal ganglia nuclei are proposed to play a critical role in action selection. In this mini review we will consider the anatomical and physiological evidence underlying the existence of these circuits. We will propose how the circuits interact to modulate basal ganglia output and solve common behavioral learning problems of agency determination and action selection.
ABSTRACT
Action discovery and selection are critical cognitive processes that are understudied at the cellular and systems neuroscience levels. Presented here is a new rodent joystick task suitable to test these processes due to the range of action possibilities that can be learnt while performing the task. Rats learned to manipulate a joystick while progressing through task milestones that required increasing degrees of movement accuracy. In a switching phase designed to measure action discovery, rats were repeatedly required to discover new target positions to meet changing task demands. Behavior was compared using both food and electrical brain stimulation reward (BSR) of the substantia nigra as reinforcement. Rats reinforced with food and those with BSR performed similarly overall, although BSR-treated rats exhibited greater vigor in responding. In the switching phase, rats learnt new actions to adapt to changing task demands, reflecting action discovery processes. Because subjects are required to learn different goal-directed actions, this task could be employed in further investigations of the cellular mechanisms of action discovery and selection. Additionally, this task could be used to assess the behavioral flexibility impairments seen in conditions such as Parkinson's disease and obsessive-compulsive disorder. The versatility of the task will enable cross-species investigations of these impairments.