Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Eur Heart J ; 45(17): 1553-1567, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38486376

ABSTRACT

BACKGROUND AND AIMS: The ecto-nucleoside triphosphate diphosphohydrolases of the CD39 family degrade ATP and ADP into AMP, which is converted into adenosine by the extracellular CD73/ecto-5-nucleotidase. This pathway has been explored in antithrombotic treatments but little in myocardial protection. We have investigated whether the administration of solCD39L3 (AZD3366) confers additional cardioprotection to that of ticagrelor alone in a pre-clinical model of myocardial infarction (MI). METHODS: Ticagrelor-treated pigs underwent balloon-induced MI (90 min) and, before reperfusion, received intravenously either vehicle, 1 mg/kg AZD3366 or 3 mg/kg AZD3366. All animals received ticagrelor twice daily for 42 days. A non-treated MI group was run as a control. Serial cardiac magnetic resonance (baseline, Day 3 and Day 42 post-MI), light transmittance aggregometry, bleeding time, and histological and molecular analyses were performed. RESULTS: Ticagrelor reduced oedema formation and infarct size at Day 3 post-MI vs. controls. A 3 mg/kg AZD3366 provided an additional 45% reduction in oedema and infarct size compared with ticagrelor and a 70% reduction vs. controls (P < .05). At Day 42, infarct size declined in all ticagrelor-administered pigs, particularly in 3 mg/kg AZD3366-treated pigs (P < .05). Left ventricular ejection fraction was diminished at Day 3 in placebo pigs and worsened at Day 42, whereas it remained unaltered in ticagrelor ± AZD3366-administered animals. Pigs administered with 3 mg/kg AZD3366 displayed higher left ventricular ejection fraction upon dobutamine stress at Day 3 and minimal dysfunctional segmental contraction at Day 42 (χ2P < .05 vs. all). Cardiac and systemic molecular readouts supported these benefits. Interestingly, AZD3366 abolished ADP-induced light transmittance aggregometry without affecting bleeding time. CONCLUSIONS: Infusion of AZD3366 on top of ticagrelor leads to enhanced cardioprotection compared with ticagrelor alone.


Subject(s)
Adenosine Triphosphatases , Apyrase , Myocardial Infarction , Ticagrelor , Animals , Humans , Male , Adenosine/analogs & derivatives , Adenosine/pharmacology , Antigens, CD , Apyrase/metabolism , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Disease Models, Animal , Myocardial Infarction/drug therapy , Platelet Aggregation/drug effects , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Swine , Ticagrelor/pharmacology , Ticagrelor/therapeutic use , Adenosine Triphosphatases/pharmacology , Adenosine Triphosphatases/therapeutic use
2.
Liver Int ; 43(10): 2210-2219, 2023 10.
Article in English | MEDLINE | ID: mdl-37470077

ABSTRACT

BACKGROUND & AIMS: PNPLA3 rs738409 has been associated with an increased risk of liver-related events in patients with non-alcoholic fatty liver disease (NAFLD). In this study, we investigated the epidemiology of NAFLD and the impact of PNPLA3 on prognosis in Japan. METHODS: A longitudinal multicentre cohort study, the JAGUAR study, includes 1550 patients with biopsy-proven NAFLD in Japan. We performed genetic testing and evaluated outcomes from this cohort. Liver-related events were defined as hepatocellular carcinoma (HCC) and decompensated liver cirrhosis events. RESULTS: During follow-up (median [range], 7.1 [1.0-24.0] years), 80 patients developed HCC, 104 developed liver-related events, and 59 died of any cause. The 5-year rate of liver-related events for each single-nucleotide polymorphism was 0.5% for CC, 3.8% for CG, and 5.8% for GG. Liver-related deaths were the most common (n = 28); only three deaths were due to cardiovascular disease. Multivariate analysis identified carriage of PNPLA3 CG/GG (hazard ratio [HR] 16.04, p = .006) and FIB-4 index >2.67 (HR 10.70, p < .01) as predictors of liver-related event development. No HCC or liver-related death was found among patients with PNPLA3 CC. There was a significantly increased risk of HCC, liver-related events, and mortality for CG/GG versus CC, but no difference between the CG and GG genotypes. CONCLUSIONS: In Japanese individuals, the main cause of death from NAFLD is liver-related death. The greater risk of liver-related events incurred by PNPLA3 G allele was shown in Japan. Risk stratification for NAFLD in Japan is best accomplished by integrating PNPLA3 with the FIB-4 index.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/genetics , Cohort Studies , East Asian People , Genetic Predisposition to Disease , Genotype , Liver Neoplasms/epidemiology , Liver Neoplasms/etiology , Liver Neoplasms/genetics , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Polymorphism, Single Nucleotide , Prognosis , Japan/epidemiology , Follow-Up Studies , Risk Assessment , Liver Cirrhosis/epidemiology , Liver Cirrhosis/etiology , Liver Cirrhosis/genetics
3.
Cardiovasc Drugs Ther ; 37(4): 625-646, 2023 08.
Article in English | MEDLINE | ID: mdl-35192075

ABSTRACT

PURPOSE: Recombinant apyrase (AZD3366) increases adenosine production and ticagrelor inhibits adenosine reuptake. We investigated whether intravenous AZD3366 before reperfusion reduces myocardial infarct size (IS) and whether AZD3366 and ticagrelor have additive effects. METHODS: Sprague-Dawley rats underwent 30 min ischemia. At 25 min of ischemia, animals received intravenous AZD3366 or vehicle. Additional animals received intravenous CGS15943 (an adenosine receptor blocker) or intraperitoneal ticagrelor. At 24 h reperfusion, IS was assessed by triphenyltetrazolium chloride. Other rats were subjected to 30 min ischemia followed by 1 h or 24 h reperfusion. Myocardial samples were assessed for adenosine levels, RT-PCR, and immunoblotting. RESULTS: AZD3366 and ticagrelor reduced IS. The protective effect was blocked by CGS15943. The effect of AZD3366 + ticagrelor was significantly greater than AZD3366. One hour after infarction, myocardial adenosine levels significantly increased with AZD3366, but not with ticagrelor. In contrast, 24 h after infarction, adenosine levels were equally increased by AZD3366 and ticagrelor, and levels were higher in the AZD3366 + ticagrelor group. One hour after reperfusion, AZD3366 and ticagrelor equally attenuated the increase in interleukin-15 (an early inflammatory marker after ischemic cell death) levels, and their combined effects were additive. AZD3366, but not ticagrelor, significantly attenuated the increase in RIP1, RIP3, and P-MLKL (markers of necroptosis) 1 h after reperfusion. AZD3366, but not ticagrelor, significantly attenuated the increase in IL-6 and GSDMD-N (markers of pyroptosis) 1 h after reperfusion. At 24 h of reperfusion, both agents equally attenuated the increase in these markers, and their effects were additive. CONCLUSIONS: AZD3366 attenuated inflammation, necrosis, necroptosis, and pyroptosis and limited IS. The effects of AZD3366 and ticagrelor were additive.


Subject(s)
Myocardial Reperfusion Injury , Rats , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Apyrase , Rats, Sprague-Dawley , Ticagrelor/pharmacology , Adenosine/pharmacology
4.
J Biol Chem ; 295(15): 5136-5151, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32132173

ABSTRACT

Increased plasma concentrations of lipoprotein(a) (Lp(a)) are associated with an increased risk for cardiovascular disease. Lp(a) is composed of apolipoprotein(a) (apo(a)) covalently bound to apolipoprotein B of low-density lipoprotein (LDL). Many of apo(a)'s potential pathological properties, such as inhibition of plasmin generation, have been attributed to its main structural domains, the kringles, and have been proposed to be mediated by their lysine-binding sites. However, available small-molecule inhibitors, such as lysine analogs, bind unselectively to kringle domains and are therefore unsuitable for functional characterization of specific kringle domains. Here, we discovered small molecules that specifically bind to the apo(a) kringle domains KIV-7, KIV-10, and KV. Chemical synthesis yielded compound AZ-05, which bound to KIV-10 with a Kd of 0.8 µm and exhibited more than 100-fold selectivity for KIV-10, compared with the other kringle domains tested, including plasminogen kringle 1. To better understand and further improve ligand selectivity, we determined the crystal structures of KIV-7, KIV-10, and KV in complex with small-molecule ligands at 1.6-2.1 Å resolutions. Furthermore, we used these small molecules as chemical probes to characterize the roles of the different apo(a) kringle domains in in vitro assays. These assays revealed the assembly of Lp(a) from apo(a) and LDL, as well as potential pathophysiological mechanisms of Lp(a), including (i) binding to fibrin, (ii) stimulation of smooth-muscle cell proliferation, and (iii) stimulation of LDL uptake into differentiated monocytes. Our results indicate that a small-molecule inhibitor targeting the lysine-binding site of KIV-10 can combat the pathophysiological effects of Lp(a).


Subject(s)
Apolipoproteins A/antagonists & inhibitors , Apolipoproteins A/metabolism , Fibrin/metabolism , Kringles/drug effects , Small Molecule Libraries/pharmacology , Amino Acid Sequence , High-Throughput Screening Assays , Humans , Ligands , Models, Molecular , Protein Binding , Protein Domains , Sequence Homology
5.
Bioorg Med Chem Lett ; 30(4): 126953, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31932225

ABSTRACT

GPR81 is a novel drug target that is implicated in the control of glucose and lipid metabolism. The lack of potent GPR81 modulators suitable for in vivo studies has limited the pharmacological characterization of this lactate sensing receptor. We performed a high throughput screen (HTS) and identified a GPR81 agonist chemical series containing a central acyl urea scaffold linker. During SAR exploration two additional new series were evolved, one containing cyclic acyl urea bioisosteres and another a central amide bond. These three series provide different selectivity and physicochemical properties suitable for in-vivo studies.


Subject(s)
Receptors, G-Protein-Coupled/agonists , Urea/analogs & derivatives , Amides/chemistry , Amides/metabolism , High-Throughput Screening Assays , Humans , Molecular Conformation , Protein Binding , Receptors, G-Protein-Coupled/metabolism , Receptors, Ghrelin/agonists , Receptors, Ghrelin/metabolism , Structure-Activity Relationship , Urea/metabolism
6.
Bioorg Med Chem Lett ; 28(7): 1155-1160, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29519739

ABSTRACT

Proprotein convertase subtilisin kexin like type 9 (PCSK9) has since its discovery been a key protein target for the modulation of LDL cholesterol. The interest in PCSK9 has grown even more with the positive clinical trial outcomes in cardiovascular disease recently reported for two PCSK9 antibodies. Currently, there are no PCSK9 small molecule programs active in clinical development. However, there has been a steady increase in publications and patent applications within the PCSK9 small molecule field. This digest will provide a summary of small molecule and peptide PCSK9 modulators reported both in scientific journals and in patent applications, most of them originating from the last 3-4 years. As such, this digest will serve as an introduction to the field and assist further identification and discovery of small molecule PCSK9 modulators.


Subject(s)
PCSK9 Inhibitors , Small Molecule Libraries/pharmacology , Animals , Dose-Response Relationship, Drug , Humans , Molecular Structure , Proprotein Convertase 9/metabolism , Small Molecule Libraries/chemistry , Structure-Activity Relationship
7.
Biochemistry ; 56(3): 458-467, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28029774

ABSTRACT

N1-Acetylspermine oxidase (APAO) catalyzes the conversion of N1-acetylspermine or N1-acetylspermidine to spermidine or putrescine, respectively, with concomitant formation of N-acetyl-3-aminopropanal and hydrogen peroxide. Here we present the structure of murine APAO in its oxidized holo form and in complex with substrate. The structures provide a basis for understanding molecular details of substrate interaction in vertebrate APAO, highlighting a key role for an asparagine residue in coordinating the N1-acetyl group of the substrate. We applied computational methods to the crystal structures to rationalize previous observations with regard to the substrate charge state. The analysis suggests that APAO features an active site ideally suited for binding of charged polyamines. We also reveal the structure of APAO in complex with the irreversible inhibitor MDL72527. In addition to the covalent adduct, a second MDL72527 molecule is bound in the active site. Binding of MDL72527 is accompanied by altered conformations in the APAO backbone. On the basis of structures of APAO, we discuss the potential for development of specific inhibitors.


Subject(s)
Oxidoreductases/chemistry , Putrescine/chemistry , Spermidine/analogs & derivatives , Spermidine/chemistry , Spermine/analogs & derivatives , Aldehydes/chemistry , Aldehydes/metabolism , Animals , Catalytic Domain , Gene Expression , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Kinetics , Mice , Models, Molecular , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Propylamines/chemistry , Propylamines/metabolism , Protein Structure, Secondary , Putrescine/analogs & derivatives , Putrescine/metabolism , Spermidine/metabolism , Spermine/chemistry , Spermine/metabolism
8.
Bioorg Med Chem Lett ; 26(8): 2023-9, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26965854

ABSTRACT

A series of isoindolinone compounds have been developed showing good in vitro potency on the Kv1.5 ion channel. By modification of two side chains on the isoindolinone scaffold, metabolically stable compounds with good in vivo PK profile could be obtained leaving the core structure unsubstituted. In this way, low microsomal intrinsic clearance (CLint) could be achieved despite a relatively high logD. The compounds were synthesized using the Ugi reaction, in some cases followed by Suzuki and Diels-Alder reactions, giving a diverse set of compounds in a small number of reaction steps.


Subject(s)
Isoindoles/pharmacology , Kv1.5 Potassium Channel/antagonists & inhibitors , Potassium Channel Blockers/pharmacology , Animals , Dose-Response Relationship, Drug , Humans , Isoindoles/chemical synthesis , Isoindoles/chemistry , Mice , Models, Animal , Molecular Structure , Potassium Channel Blockers/chemical synthesis , Potassium Channel Blockers/chemistry , Structure-Activity Relationship
9.
J Biol Chem ; 288(2): 873-85, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23155046

ABSTRACT

A novel class of small molecule inhibitors for plasminogen activator inhibitor type 1 (PAI-1), represented by AZ3976, was identified in a high throughput screening campaign. AZ3976 displayed an IC(50) value of 26 µm in an enzymatic chromogenic assay. In a plasma clot lysis assay, the compound was active with an IC(50) of 16 µm. Surprisingly, AZ3976 did not bind to active PAI-1 but bound to latent PAI-1 with a K(D) of 0.29 µm at 35 °C and a binding stoichiometry of 0.94, as measured by isothermal calorimetry. Reversible binding was confirmed by surface plasmon resonance direct binding experiments. The x-ray structure of AZ3976 in complex with latent PAI-1 was determined at 2.4 Å resolution. The inhibitor was bound in the flexible joint region with the entrance to the cavity located between α-helix D and ß-strand 2A. A set of surface plasmon resonance experiments revealed that AZ3976 inhibited PAI-1 by enhancing the latency transition of active PAI-1. Because AZ3976 only had measurable affinity for latent PAI-1, we propose that its mechanism of inhibition is based on binding to a small fraction in equilibrium with active PAI-1, a latent-like prelatent form, from which latent PAI-1 is then generated more rapidly. This mode of action, with induced accelerated latency transition of active PAI-1 may, together with supporting x-ray data, provide improved opportunities for small molecule drug design in the hunt for therapeutically useful PAI-1 inhibitors.


Subject(s)
Azetidines/pharmacology , Plasminogen Activator Inhibitor 1/chemistry , Pyrimidinones/pharmacology , Animals , Azetidines/chemistry , CHO Cells , Calorimetry , Cricetinae , Cricetulus , Humans , Models, Molecular , Protein Conformation , Pyrimidinones/chemistry , Rats , Surface Plasmon Resonance , Thermodynamics
10.
J Cardiovasc Electrophysiol ; 25(5): 531-536, 2014 May.
Article in English | MEDLINE | ID: mdl-24330029

ABSTRACT

BACKGROUND: The T-type Ca(2+) channel (I(CaT)) blocker mibefradil prevents AF-promoting remodeling occurring with atrial tachycardia, an action that has been attributed to I(CaT) inhibition. However, mibefradil has other effects, including ability to inhibit L-type Ca(2+) channels, Na(+) channels and cytochromes. Thus, the relationship between I(CaT) inhibition and remodeling protection in AF is still unknown. OBJECTIVE: To assess the effects of a novel highly selective Cav3 (I(CaT)) blocker, AZ9112, on atrial remodeling induced by 1-week atrial tachypacing (AT-P) in dogs. METHODS: Mongrel dogs were subjected to AT-P at 400 bpm for 7 days, with atrioventricular-node ablation and right-ventricular demand pacing (80 bpm) to control ventricular rate. Four groups of dogs were studied in investigator-blinded fashion: (1) a sham group, instrumented but without tachypacing or drug therapy (n = 5); (2) a placebo group, tachypaced but receiving placebo (n = 6); (3) a positive control tachypacing group receiving mibefradil (n = 6); and (4) a test drug group, subjected to tachypacing during oral treatment with AZ9112 (n = 8). RESULTS: One-week AT-P decreased atrial effective refractory period (ERP) at 6 of 8 sites and diminished rate-dependent atrial ERP abbreviation. Mibefradil eliminated AT-P-induced ERP-abbreviation at 4 of these 6 sites, while AZ9112 failed to affect ERP at any. Neither drug significantly affected AF vulnerability or AF duration. CONCLUSIONS: I(CaT) blockade with the highly selective compound AZ9112 failed to prevent rate-related atrial remodeling. Thus, prevention of atrial electrophysiological remodeling by mibefradil cannot be attributed exclusively to I(CaT) blockade. These results indicate that I(CaT) inhibition is not likely to be a useful approach for AF therapy.


Subject(s)
Atrial Fibrillation/drug therapy , Atrial Remodeling/drug effects , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/drug effects , Heart Atria/drug effects , Action Potentials , Animals , Atrial Fibrillation/diagnosis , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Calcium Channel Blockers/pharmacokinetics , Calcium Channels, T-Type/metabolism , Cardiac Pacing, Artificial , Disease Models, Animal , Dogs , Electrophysiologic Techniques, Cardiac , Heart Atria/metabolism , Heart Atria/physiopathology , Mibefradil/pharmacology , Refractory Period, Electrophysiological/drug effects , Time Factors
11.
Bioorg Med Chem Lett ; 24(3): 821-7, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24418773

ABSTRACT

A design strategy was used to identify inhibitors of activated protein C with selectivity over thrombin featured by a basic and/or aromatic functionality for binding to the S2 pocket. Our strongest inhibitor showed an IC50-material value and selectivity for APC vs thrombin similar to a compound previously reported in the literature. However, in contrast to the reference compound, our compound showed a retained coagulant effect of thrombin with increasing substrate concentration in a modified Calibrated Automated Thrombogram (CAT) method. This was likely related to our compound being inactive against FVIIa, while the reference compound showed an IC50 of 8.9 µM. Thus, the higher selectivity of our compound against all relevant coagulation factors likely explained its higher therapeutic potential in comparison to the reference compound. The data indicate that at least a 100-fold selectivity over other serine proteases in the coagulation cascade will be required for an effective APC inhibitor.


Subject(s)
Drug Design , Protein C Inhibitor/chemical synthesis , Protein C Inhibitor/pharmacology , Thrombin/antagonists & inhibitors , Binding Sites , Coagulants/chemical synthesis , Coagulants/chemistry , Coagulants/pharmacology , Hemophilia A/drug therapy , Inhibitory Concentration 50 , Protein Binding/drug effects , Protein C Inhibitor/chemistry , Structure-Activity Relationship , Substrate Specificity
12.
Bioorg Med Chem Lett ; 24(5): 1269-73, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24513046

ABSTRACT

A series of lactam sulfonamides has been discovered and optimized as inhibitors of the Kv1.5 potassium ion channel for treatment of atrial fibrillation. In vitro structure-activity relationships from lead structure C to optimized structure 3y are described. Compound 3y was evaluated in a rabbit PD-model and was found to selectively prolong the atrial effective refractory period at submicromolar concentrations.


Subject(s)
Kv1.5 Potassium Channel/antagonists & inhibitors , Lactams/chemistry , Potassium Channel Blockers/chemistry , Pyrrolidinones/chemistry , Sulfonamides/chemistry , Animals , Dogs , Half-Life , Humans , Kv1.5 Potassium Channel/metabolism , Potassium Channel Blockers/chemical synthesis , Potassium Channel Blockers/pharmacokinetics , Pyrrolidinones/chemical synthesis , Pyrrolidinones/pharmacokinetics , Rabbits , Rats , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics
13.
J Am Heart Assoc ; 13(11): e033985, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38804212

ABSTRACT

BACKGROUND: ADP and ATP are importantly involved in vascular and thrombotic homeostasis, via multiple receptor pathways. Blockade of ADP P2Y12 receptors inhibits platelet aggregation and represents an effective cardiovascular disease prevention strategy. AZD3366 (APT102), a long-acting recombinant form of an optimized CD39L3 human apyrase, has effectively reduced ATP, ADP, and platelet aggregation and provided tissue protection in preclinical models, features that could be very beneficial in treating patients with cardiovascular disease. METHODS AND RESULTS: We conducted this phase 1, first-in-human study of single ascending doses of intravenous AZD3366 or placebo, including doses added to dual antiplatelet therapy with ticagrelor and acetylsalicylic acid. The primary objective was safety and tolerability; secondary and exploratory objectives included pharmacokinetics, pharmacodynamics (measured as inhibition of platelet aggregation), adenosine diphosphatase (ADPase) activity, and ATP/ADP metabolism. In total, 104 participants were randomized. AZD3366 was generally well tolerated, with no major safety concerns observed. ADPase activity increased in a dose-dependent manner with a strong correlation to AZD3366 exposure. Inhibition of ADP-stimulated platelet aggregation was immediate, substantial, and durable. In addition, there was a prompt decrease in systemic ATP concentration and an increase in adenosine monophosphate concentrations, whereas ADP concentration appeared generally unaltered. At higher doses, there was a prolongation of capillary bleeding time without detectable changes in the ex vivo thromboelastometric parameters. CONCLUSIONS: AZD3366 was well tolerated in healthy participants and demonstrated substantial and durable inhibition of platelet aggregation after single dosing. Higher doses prolonged capillary bleeding time without detectable changes in ex vivo thromboelastometric parameters. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique Identifier: NCT04588727.


Subject(s)
Apyrase , Aspirin , Platelet Aggregation Inhibitors , Platelet Aggregation , Ticagrelor , Humans , Male , Ticagrelor/pharmacokinetics , Ticagrelor/administration & dosage , Ticagrelor/adverse effects , Female , Apyrase/metabolism , Apyrase/administration & dosage , Platelet Aggregation/drug effects , Aspirin/administration & dosage , Aspirin/pharmacokinetics , Aspirin/adverse effects , Platelet Aggregation Inhibitors/pharmacokinetics , Platelet Aggregation Inhibitors/administration & dosage , Platelet Aggregation Inhibitors/adverse effects , Middle Aged , Adult , Double-Blind Method , Dual Anti-Platelet Therapy , Drug Therapy, Combination , Young Adult , Adenosine Diphosphate , Blood Platelets/drug effects , Blood Platelets/metabolism , Dose-Response Relationship, Drug , Treatment Outcome , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacokinetics , Purinergic P2Y Receptor Antagonists/pharmacokinetics , Purinergic P2Y Receptor Antagonists/administration & dosage , Purinergic P2Y Receptor Antagonists/adverse effects , Purinergic P2Y Receptor Antagonists/pharmacology
14.
J Med Chem ; 67(6): 4419-4441, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38502782

ABSTRACT

Optimization of the highly potent and selective, yet metabolically unstable and poorly soluble hRXFP1 agonist AZ7976 led to the identification of the clinical candidate, AZD5462. Assessment of RXFP1-dependent cell signaling demonstrated that AZD5462 activates a highly similar panel of downstream pathways as relaxin H2 but does not modulate relaxin H2-mediated cAMP second messenger responsiveness. The therapeutic potential of AZD5462 was assessed in a translatable cynomolgus monkey heart failure model. Following 8 weeks of treatment with AZD5462, robust improvements in functional cardiac parameters including LVEF were observed at weeks 9, 13, and 17 without changes in heart rate or mean arterial blood pressure. AZD5462 was well tolerated in both rat and cynomolgus monkey and has successfully completed phase I studies in healthy volunteers. In summary, AZD5462 is a small molecule pharmacological mimetic of relaxin H2 signaling at RXFP1 and holds promise as a potential therapeutic approach to treat heart failure patients.


Subject(s)
Heart Failure , Relaxin , Humans , Rats , Animals , Relaxin/pharmacology , Receptors, G-Protein-Coupled/metabolism , Macaca fascicularis/metabolism , Receptors, Peptide/metabolism , Heart Failure/drug therapy
15.
Hepatol Commun ; 6(10): 2689-2701, 2022 10.
Article in English | MEDLINE | ID: mdl-35833455

ABSTRACT

In nonalcoholic fatty liver disease (NAFLD) the patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 variant is a contributor. In mice, the Pnpla3 148M variant accumulates on lipid droplets and probably leads to sequestration of a lipase cofactor leading to impaired mobilization of triglycerides. To advance our understanding of the localization and abundance of PNPLA3 protein in humans, we used liver biopsies from patients with NAFLD to investigate the link to NAFLD and the PNPLA3 148M genotype. We experimentally qualified an antibody against human PNPLA3. Hepatic PNPLA3 protein fractional area and localization were determined by immunohistochemistry in biopsies from a well-characterized NAFLD cohort of 67 patients. Potential differences in hepatic PNPLA3 protein levels among patients related to degree of steatosis, lobular inflammation, ballooning, and fibrosis, and PNPLA3 I148M gene variants were assessed. Immunohistochemistry staining in biopsies from patients with NAFLD showed that hepatic PNPLA3 protein was predominantly localized to the membranes of small and large lipid droplets in hepatocytes. PNPLA3 protein levels correlated strongly with steatosis grade (p = 0.000027) and were also significantly higher in patients with lobular inflammation (p = 0.009), ballooning (p = 0.022), and significant fibrosis (stage 2-4, p = 0.014). In addition, PNPLA3 levels were higher in PNPLA3 rs738409 148M (CG, GG) risk allele carriers compared to 148I (CC) nonrisk allele carriers (p = 0.0029). Conclusion: PNPLA3 protein levels were associated with increased hepatic lipid content and disease severity in patients with NAFLD and were higher in PNPLA3 rs738409 (148M) risk allele carriers. Our hypothesis that increased hepatic levels of PNPLA3 may be part of the pathophysiological mechanism of NAFLD is supported.


Subject(s)
Non-alcoholic Fatty Liver Disease , Acyltransferases , Alleles , Animals , Fibrosis , Humans , Inflammation/genetics , Lipase/genetics , Membrane Proteins/genetics , Non-alcoholic Fatty Liver Disease/genetics , Phospholipases/genetics , Phospholipases A2, Calcium-Independent/genetics , Triglycerides
17.
Bioorg Med Chem Lett ; 18(6): 1972-6, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18289852

ABSTRACT

Guided by available X-ray crystal structure data on the serine protease thrombin, a series of pyridin-2-one derivatives were designed and synthesized having diverse functionality at the P(1) and P(3) sites. Potent in vitro activity against thrombin, with excellent selectivity over trypsin was found for selected analogues.


Subject(s)
Drug Design , Pyridones/chemical synthesis , Pyridones/pharmacology , Thrombin/antagonists & inhibitors , Amines/chemistry , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Structure , Protein Binding , Protein Structure, Tertiary , Pyridones/chemistry , Structure-Activity Relationship , Sulfonamides/chemistry , Thrombin/metabolism , Trypsin/chemistry , Trypsin/metabolism
18.
Eur J Pharm Sci ; 114: 155-165, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29180298

ABSTRACT

Mathematical models predicting in vivo pharmacodynamic effects from in vitro data can accelerate drug discovery, and reduce costs and animal use. However, data integration and modeling is non-trivial when more than one drug-target receptor is involved in the biological response. We modeled the inhibition of non-esterified fatty acid release by dual G-protein-coupled receptor 81/109A (GPR81/GPR109A) agonists in vivo in the rat, to estimate the in vivo EC50 values for 12 different compounds. We subsequently predicted those potency estimates using EC50 values obtained from concentration-response data in isolated primary adipocytes and cell systems overexpressing GPR81 or GPR109A in vitro. A simple linear regression model based on data from primary adipocytes predicted the in vivo EC50 better than simple linear regression models based on in vitro data from either of the cell systems. Three models combining the data from the overexpressing cell systems were also evaluated: two piecewise linear models defining logical OR- and AND-circuits, and a multivariate linear regression model. All three models performed better than the simple linear regression model based on data from primary adipocytes. The OR-model was favored since it is likely that activation of either GPR81 or GPR109A is sufficient to deactivate the cAMP pathway, and thereby inhibit non-esterified fatty acid release. The OR-model was also able to predict the in vivo selectivity between the two receptors. Finally, the OR-model was used to predict the in vivo potency of 1651 new compounds. This work suggests that data from the overexpressing cell systems are sufficient to predict in vivo potency of GPR81/GPR109A agonists, an approach contributing to faster and leaner drug discovery.


Subject(s)
Adipocytes/drug effects , Adipocytes/metabolism , Models, Theoretical , Receptors, G-Protein-Coupled/agonists , 3T3-L1 Cells , Animals , CHO Cells , Cricetinae , Cricetulus , Forecasting , Gene Expression , HEK293 Cells , Humans , Male , Mice , Nicotinic Agonists/chemistry , Nicotinic Agonists/pharmacology , Rats , Rats, Wistar , Receptors, G-Protein-Coupled/biosynthesis , Receptors, G-Protein-Coupled/genetics , Receptors, Nicotinic/biosynthesis , Receptors, Nicotinic/genetics
19.
JCI Insight ; 2(19)2017 10 05.
Article in English | MEDLINE | ID: mdl-28978803

ABSTRACT

GPR81 is a receptor for the metabolic intermediate lactate with an established role in regulating adipocyte lipolysis. Potentially novel GPR81 agonists were identified that suppressed fasting plasma free fatty acid levels in rodents and in addition improved insulin sensitivity in mouse models of insulin resistance and diabetes. Unexpectedly, the agonists simultaneously induced hypertension in rodents, including wild-type, but not GPR81-deficient mice. Detailed cardiovascular studies in anesthetized dogs showed that the pressor effect was associated with heterogenous effects on vascular resistance among the measured tissues: increasing in the kidney while remaining unchanged in hindlimb and heart. Studies in rats revealed that the pressor effect could be blocked, and the renal resistance effect at least partially blocked, with pharmacological antagonism of endothelin receptors. In situ hybridization localized GPR81 to the microcirculation, notably afferent arterioles of the kidney. In conclusion, these results provide evidence for a potentially novel role of GPR81 agonism in blood pressure control and regulation of renal vascular resistance including modulation of a known vasoeffector mechanism, the endothelin system. In addition, support is provided for the concept of fatty acid lowering as a means of improving insulin sensitivity.


Subject(s)
Receptors, G-Protein-Coupled/agonists , Vascular Resistance/physiology , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Arterioles/metabolism , Diabetes Mellitus, Experimental/prevention & control , Dogs , Dose-Response Relationship, Drug , Endothelins/physiology , Fatty Acids, Nonesterified/blood , Hypertension/chemically induced , Insulin Resistance , Lipolysis/drug effects , Male , Mice, Obese , Rats, Wistar , Receptors, Endothelin/physiology , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/metabolism , Renal Artery/physiopathology , Vascular Resistance/drug effects
20.
ChemMedChem ; 10(12): 2063-70, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26459194

ABSTRACT

The GPR81 and GPR109A receptors mediate antilipolytic effects and are potential drug targets for the treatment of metabolic disorders such as dyslipidemia and type 2 diabetes. There is still a need to identify potent GPR81 agonists as pharmacological tools. A high-throughput screen identified an acylurea-based GPR81 agonist lead series, with activities at the GPR109A receptor as well. To expand the chemical scope and to explore the pharmacological and pharmacokinetic consequences, a series of structurally related organosilicon compounds with a 6-sila-4,5,6,7-tetrahydrobenzo[d]thiazole skeleton was synthesized and studied for their physicochemical properties [octanol/water distribution coefficient (pH 7.4), solubility in HBSS buffer (pH 7.4)], agonistic potency at rat GPR81 and GPR109A receptors, and intrinsic clearance in human liver microsomes and rat hepatocytes. The straightforward synthesis of these organosilicon compounds offered a valuable expansion of the chemical scope in the above-mentioned GPR81 agonist lead series, provided potency and efficacy SAR, and yielded compounds with sub-micromolar GPR81 potency. This work supports the value of including silicon chemistry into the toolbox of medicinal chemistry.


Subject(s)
Organosilicon Compounds/chemistry , Receptors, G-Protein-Coupled/agonists , Animals , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Benzothiazoles/metabolism , Crystallography, X-Ray , Hepatocytes/metabolism , Humans , Microsomes, Liver/metabolism , Molecular Conformation , Organosilicon Compounds/chemical synthesis , Organosilicon Compounds/metabolism , Protein Binding , Rats , Receptors, G-Protein-Coupled/metabolism , Receptors, Nicotinic/metabolism , Solubility , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL