Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
Add more filters

Publication year range
1.
J Infect Dis ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687898

ABSTRACT

Studies have reported that prior-season influenza vaccination is associated with higher risk of clinical influenza infection among vaccinees. This effect might arise from incomplete consideration of within-season waning and recent infection. Using data from the US Flu Vaccine Effectiveness (VE) Network (2011-2012 to 2018-2019 seasons), we found that repeat vaccinees were vaccinated earlier in a season by one week. After accounting for waning VE, repeat vaccinees were still more likely to test positive for A(H3N2) (OR=1.11, 95%CI:1.02-1.21) but not for influenza B or A(H1N1). We found that clinical infection influenced individuals' decision to vaccinate in the following season while protecting against clinical infection of the same (sub)type. However, adjusting for recent clinical infections did not strongly influence the estimated effect of prior-season vaccination. In contrast, we found that adjusting for subclinical infection could theoretically attenuate this effect. Additional investigation is needed to determine the impact of subclinical infections on VE.

2.
J Infect Dis ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39179953

ABSTRACT

BACKGROUND: Viral respiratory illnesses are the most common acute illnesses experienced and generally follow a predicted pattern over time. The SARS-CoV-2 pandemic interrupted that pattern. METHODS: The HIVE (Household Influenza Vaccine Evaluation) study was established in 2010 to follow a cohort of Southeast Michigan households over time. Initially focused on influenza, surveillance was expanded to include other major respiratory pathogens, and, starting in 2015, the population was followed year-round. Symptoms of acute illness were reported, and respiratory specimens were collected and tested to identify viral infections. Based on the known population being followed, virus-specific incidence was calculated. RESULTS: From 2015 to 2022, 1755 participants were followed in HIVE for 7785 person-years with 7833 illnesses documented. Before the pandemic, rhinovirus (RV) and common cold human coronaviruses (HCoVs) were the viruses most frequently identified, and incidence decreased with increasing age. Type A influenza was next but with comparable incidence by age. Parainfluenza and respiratory syncytial viruses were less frequent overall, followed by human metapneumoviruses. Incidence was highest in young children, but infections were frequently documented in all age groups. Seasonality followed patterns established decades ago. The SARS-CoV-2 pandemic disrupted these patterns, except for RV and, to a lesser extent, HCoVs. In the first two years of the pandemic, RV incidence far exceeded that of SARS-CoV-2. CONCLUSION: Longitudinal cohort studies are important in comparing the incidence, seasonality, and characteristics of different respiratory viral infections. Studies documented the differential effect of the pandemic on the incidence of respiratory viruses in addition to SARS-CoV-2.

3.
J Infect Dis ; 230(1): 45-54, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052724

ABSTRACT

BACKGROUND: We assessed associations between binding antibody (bAb) concentration <5 days from symptom onset and testing positive for COVID-19 among patients in a test-negative study. METHODS: From October 2021 to June 2022, study sites in 7 states enrolled patients aged ≥6 months presenting with acute respiratory illness. Respiratory specimens were tested for SARS-CoV-2. In blood specimens, we measured concentrations of anti-SARS-CoV-2 antibodies against the spike protein receptor binding domain (RBD) and nucleocapsid antigens from the ancestral strain in standardized bAb units (BAU). Percentage change in odds of COVID-19 by increasing anti-RBD bAb was estimated via logistic regression as (1 - adjusted odds ratio of COVID-19) × 100, adjusting for COVID-19 mRNA vaccine doses, age, site, and high-risk exposure. RESULTS: Out of 2018 symptomatic patients, 662 (33%) tested positive for acute SARS-CoV-2 infection. Geometric mean RBD bAb levels were lower among COVID-19 cases than SARS-CoV-2 test-negative controls during the Delta-predominant period (112 vs 498 BAU/mL) and Omicron-predominant period (823 vs 1189 BAU/mL). Acute-phase ancestral spike RBD bAb levels associated with 50% lower odds of COVID-19 were 1968 BAU/mL against Delta and 3375 BAU/mL against Omicron; thresholds may differ in other laboratories. CONCLUSIONS: During acute illness, antibody concentrations against ancestral spike RBD were associated with protection against COVID-19.


Subject(s)
Antibodies, Viral , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , COVID-19/immunology , COVID-19/prevention & control , Antibodies, Viral/blood , SARS-CoV-2/immunology , Female , Male , Middle Aged , Adult , Aged , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Young Adult , Child , United States/epidemiology , Child, Preschool , COVID-19 Vaccines/immunology , Outpatients , Infant , Aged, 80 and over , Vaccine Efficacy , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage
4.
J Infect Dis ; 230(1): 141-151, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052725

ABSTRACT

BACKGROUND: The 2022-2023 United States influenza season had unusually early influenza activity with high hospitalization rates. Vaccine-matched A(H3N2) viruses predominated, with lower levels of A(H1N1)pdm09 activity also observed. METHODS: Using the test-negative design, we evaluated influenza vaccine effectiveness (VE) during the 2022-2023 season against influenza A-associated emergency department/urgent care (ED/UC) visits and hospitalizations from October 2022 to March 2023 among adults (aged ≥18 years) with acute respiratory illness (ARI). VE was estimated by comparing odds of seasonal influenza vaccination among case-patients (influenza A test positive by molecular assay) and controls (influenza test negative), applying inverse-propensity-to-be-vaccinated weights. RESULTS: The analysis included 85 389 ED/UC ARI encounters (17.0% influenza A positive; 37.8% vaccinated overall) and 19 751 hospitalizations (9.5% influenza A positive; 52.8% vaccinated overall). VE against influenza A-associated ED/UC encounters was 44% (95% confidence interval [CI], 40%-47%) overall and 45% and 41% among adults aged 18-64 and ≥65 years, respectively. VE against influenza A-associated hospitalizations was 35% (95% CI, 27%-43%) overall and 23% and 41% among adults aged 18-64 and ≥65 years, respectively. CONCLUSIONS: VE was moderate during the 2022-2023 influenza season, a season characterized with increased burden of influenza and co-circulation with other respiratory viruses. Vaccination is likely to substantially reduce morbidity, mortality, and strain on healthcare resources.


Subject(s)
Emergency Service, Hospital , Hospitalization , Influenza Vaccines , Influenza, Human , Vaccine Efficacy , Humans , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Middle Aged , Hospitalization/statistics & numerical data , Adult , Male , Female , United States/epidemiology , Emergency Service, Hospital/statistics & numerical data , Aged , Young Adult , Adolescent , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H1N1 Subtype/immunology , Ambulatory Care/statistics & numerical data , Vaccination/statistics & numerical data , Seasons
5.
Clin Infect Dis ; 78(3): 746-755, 2024 03 20.
Article in English | MEDLINE | ID: mdl-37972288

ABSTRACT

BACKGROUND: During the 2022-2023 influenza season, the United States experienced the highest influenza-associated pediatric hospitalization rate since 2010-2011. Influenza A/H3N2 infections were predominant. METHODS: We analyzed acute respiratory illness (ARI)-associated emergency department or urgent care (ED/UC) encounters or hospitalizations at 3 health systems among children and adolescents aged 6 months-17 years who had influenza molecular testing during October 2022-March 2023. We estimated influenza A vaccine effectiveness (VE) using a test-negative approach. The odds of vaccination among influenza-A-positive cases and influenza-negative controls were compared after adjusting for confounders and applying inverse-propensity-to-be-vaccinated weights. We developed overall and age-stratified VE models. RESULTS: Overall, 13 547 of 44 787 (30.2%) eligible ED/UC encounters and 263 of 1862 (14.1%) hospitalizations were influenza-A-positive cases. Among ED/UC patients, 15.2% of influenza-positive versus 27.1% of influenza-negative patients were vaccinated; VE was 48% (95% confidence interval [CI], 44-52%) overall, 53% (95% CI, 47-58%) among children aged 6 months-4 years, and 38% (95% CI, 30-45%) among those aged 9-17 years. Among hospitalizations, 17.5% of influenza-positive versus 33.4% of influenza-negative patients were vaccinated; VE was 40% (95% CI, 6-61%) overall, 56% (95% CI, 23-75%) among children ages 6 months-4 years, and 46% (95% CI, 2-70%) among those 5-17 years. CONCLUSIONS: During the 2022-2023 influenza season, vaccination reduced the risk of influenza-associated ED/UC encounters and hospitalizations by almost half (overall VE, 40-48%). Influenza vaccination is a critical tool to prevent moderate-to-severe influenza illness in children and adolescents.


Subject(s)
Influenza Vaccines , Influenza, Human , Adolescent , Child , Humans , United States/epidemiology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype , Seasons , Vaccine Efficacy , Hospitalization , Vaccination , Emergency Service, Hospital , Hospitals
6.
MMWR Morb Mortal Wkly Rep ; 73(8): 168-174, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421935

ABSTRACT

In the United States, annual influenza vaccination is recommended for all persons aged ≥6 months. Using data from four vaccine effectiveness (VE) networks during the 2023-24 influenza season, interim influenza VE was estimated among patients aged ≥6 months with acute respiratory illness-associated medical encounters using a test-negative case-control study design. Among children and adolescents aged 6 months-17 years, VE against influenza-associated outpatient visits ranged from 59% to 67% and against influenza-associated hospitalization ranged from 52% to 61%. Among adults aged ≥18 years, VE against influenza-associated outpatient visits ranged from 33% to 49% and against hospitalization from 41% to 44%. VE against influenza A ranged from 46% to 59% for children and adolescents and from 27% to 46% for adults across settings. VE against influenza B ranged from 64% to 89% for pediatric patients in outpatient settings and from 60% to 78% for all adults across settings. These findings demonstrate that the 2023-24 seasonal influenza vaccine is effective at reducing the risk for medically attended influenza virus infection. CDC recommends that all persons aged ≥6 months who have not yet been vaccinated this season get vaccinated while influenza circulates locally.


Subject(s)
Influenza Vaccines , Influenza, Human , Adolescent , Adult , Humans , Child , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Case-Control Studies , Vaccine Efficacy
7.
BMC Infect Dis ; 24(1): 300, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38454352

ABSTRACT

BACKGROUND: Symptoms of COVID-19 including fatigue and dyspnea, may persist for weeks to months after SARS-CoV-2 infection. This study compared self-reported disability among SARS-CoV-2-positive and negative persons with mild to moderate COVID-19-like illness who presented for outpatient care before widespread COVID-19 vaccination. METHODS: Unvaccinated adults with COVID-19-like illness enrolled within 10 days of illness onset at three US Flu Vaccine Effectiveness Network sites were tested for SARS-CoV-2 by molecular assay. Enrollees completed an enrollment questionnaire and two follow-up surveys (7-24 days and 2-7 months after illness onset) online or by phone to assess illness characteristics and health status. The second follow-up survey included questions measuring global health, physical function, fatigue, and dyspnea. Scores in the four domains were compared by participants' SARS-CoV-2 test results in univariate analysis and multivariable Gamma regression. RESULTS: During September 22, 2020 - February 13, 2021, 2712 eligible adults were enrolled, 1541 completed the first follow-up survey, and 650 completed the second follow-up survey. SARS-CoV-2-positive participants were more likely to report fever at acute illness but were otherwise comparable to SARS-CoV-2-negative participants. At first follow-up, SARS-CoV-2-positive participants were less likely to have reported fully or mostly recovered from their illness compared to SARS-CoV-2-negative participants. At second follow-up, no differences by SARS-CoV-2 test results were detected in the four domains in the multivariable model. CONCLUSION: Self-reported disability was similar among outpatient SARS-CoV-2-positive and -negative adults 2-7 months after illness onset.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , Outpatients , COVID-19/diagnosis , COVID-19 Testing , COVID-19 Vaccines , Dyspnea , Fatigue
8.
J Infect Dis ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041853

ABSTRACT

BACKGROUND: The 2022-2023 United States influenza season had unusually early influenza activity with high hospitalization rates. Vaccine-matched A(H3N2) viruses predominated, with lower levels of A(H1N1)pdm09 activity also observed. METHODS: Using the test-negative design, we evaluated influenza vaccine effectiveness (VE) during the 2022-2023 season against influenza-A-associated emergency department/urgent care (ED/UC) visits and hospitalizations from October 2022-March 2023 among adults (age ≥18 years) with acute respiratory illness (ARI). VE was estimated by comparing odds of seasonal influenza vaccination among case-patients (influenza A test-positive by molecular assay) and controls (influenza test-negative), applying inverse-propensity-to-be-vaccinated weights. RESULTS: The analysis included 85,389 ED/UC ARI encounters (17.0% influenza-A-positive; 37.8% vaccinated overall) and 19,751 hospitalizations (9.5% influenza-A-positive; 52.8% vaccinated overall). VE against influenza-A-associated ED/UC encounters was 44% (95% confidence interval [95%CI]: 40-47%) overall and 45% and 41% among adults aged 18-64 and ≥65 years, respectively. VE against influenza-A-associated hospitalizations was 35% (95%CI: 27-43%) overall and 23% and 41% among adults aged 18-64 and ≥65 years, respectively. CONCLUSIONS: VE was moderate during the 2022-2023 influenza season, a season characterized with increased burden of influenza and co-circulation with other respiratory viruses. Vaccination is likely to substantially reduce morbidity, mortality, and strain on healthcare resources.

9.
J Infect Dis ; 228(2): 185-195, 2023 07 14.
Article in English | MEDLINE | ID: mdl-36683410

ABSTRACT

BACKGROUND: Following historically low influenza activity during the 2020-2021 season, the United States saw an increase in influenza circulating during the 2021-2022 season. Most viruses belonged to the influenza A(H3N2) 3C.2a1b 2a.2 subclade. METHODS: We conducted a test-negative case-control analysis among adults ≥18 years of age at 3 sites within the VISION Network. Encounters included emergency department/urgent care (ED/UC) visits or hospitalizations with ≥1 acute respiratory illness (ARI) discharge diagnosis codes and molecular testing for influenza. Vaccine effectiveness (VE) was calculated by comparing the odds of influenza vaccination ≥14 days before the encounter date between influenza-positive cases (type A) and influenza-negative and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-negative controls, applying inverse probability-to-be-vaccinated weights, and adjusting for confounders. RESULTS: In total, 86 732 ED/UC ARI-associated encounters (7696 [9%] cases) and 16 805 hospitalized ARI-associated encounters (649 [4%] cases) were included. VE against influenza-associated ED/UC encounters was 25% (95% confidence interval (CI), 20%-29%) and 25% (95% CI, 11%-37%) against influenza-associated hospitalizations. VE against ED/UC encounters was lower in adults ≥65 years of age (7%; 95% CI, -5% to 17%) or with immunocompromising conditions (4%; 95% CI, -45% to 36%). CONCLUSIONS: During an influenza A(H3N2)-predominant influenza season, modest VE was observed. These findings highlight the need for improved vaccines, particularly for A(H3N2) viruses that are historically associated with lower VE.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adult , Humans , United States/epidemiology , Child, Preschool , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype , Seasons , Vaccine Efficacy , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Emergency Service, Hospital , Ambulatory Care , Hospitals , Case-Control Studies
10.
Clin Infect Dis ; 76(3): e1168-e1176, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36031405

ABSTRACT

BACKGROUND: Antibody responses to non-egg-based standard-dose cell-culture influenza vaccine (containing 15 µg hemagglutinin [HA]/component) and recombinant vaccine (containing 45 µg HA/component) during consecutive seasons have not been studied in the United States. METHODS: In a randomized trial of immunogenicity of quadrivalent influenza vaccines among healthcare personnel (HCP) aged 18-64 years over 2 consecutive seasons, HCP who received recombinant-HA influenza vaccine (RIV) or cell culture-based inactivated influenza vaccine (ccIIV) during the first season (year 1) were re-randomized the second season of 2019-2020 (year 2 [Y2]) to receive ccIIV or RIV, resulting in 4 ccIIV/RIV combinations. In Y2, hemagglutination inhibition antibody titers against reference cell-grown vaccine viruses were compared in each ccIIV/RIV group with titers among HCP randomized both seasons to receive egg-based, standard-dose inactivated influenza vaccine (IIV) using geometric mean titer (GMT) ratios of Y2 post-vaccination titers. RESULTS: Y2 data from 414 HCP were analyzed per protocol. Compared with 60 IIV/IIV recipients, 74 RIV/RIV and 106 ccIIV/RIV recipients showed significantly elevated GMT ratios (Bonferroni corrected P < .007) against all components except A(H3N2). Post-vaccination GMT ratios for ccIIV/ccIIV and RIV/ccIIV were not significantly elevated compared with IIV/IIV except for RIV/ccIIV against A(H1N1)pdm09. CONCLUSIONS: In adult HCP, receipt of RIV in 2 consecutive seasons or the second season was more immunogenic than consecutive egg-based IIV for 3 of the 4 components of quadrivalent vaccine. Immunogenicity of ccIIV/ccIIV was similar to that of IIV/IIV. Differences in HA antigen content may play a role in immunogenicity of influenza vaccination in consecutive seasons. CLINICAL TRIALS REGISTRATION: NCT03722589.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Smallpox Vaccine , Adult , Humans , Antibodies, Viral , Cell Culture Techniques , Delivery of Health Care , Hemagglutination Inhibition Tests , Influenza A Virus, H3N2 Subtype , United States , Vaccination , Vaccines, Combined , Vaccines, Inactivated , Vaccines, Synthetic
11.
Clin Infect Dis ; 76(8): 1358-1363, 2023 04 17.
Article in English | MEDLINE | ID: mdl-36504336

ABSTRACT

BACKGROUND: In the United States, influenza activity during the 2021-2022 season was modest and sufficient enough to estimate influenza vaccine effectiveness (VE) for the first time since the beginning of the coronavirus disease 2019 pandemic. We estimated influenza VE against laboratory-confirmed outpatient acute illness caused by predominant A(H3N2) viruses. METHODS: Between October 2021 and April 2022, research staff across 7 sites enrolled patients aged ≥6 months seeking outpatient care for acute respiratory illness with cough. Using a test-negative design, we assessed VE against influenza A(H3N2). Due to strong correlation between influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination, participants who tested positive for SARS-CoV-2 were excluded from VE estimations. Estimates were adjusted for site, age, month of illness, race/ethnicity, and general health status. RESULTS: Among 6260 participants, 468 (7%) tested positive for influenza only, including 440 (94%) for A(H3N2). All 206 sequenced A(H3N2) viruses were characterized as belonging to genetic group 3C.2a1b subclade 2a.2, which has antigenic differences from the 2021-2022 season A(H3N2) vaccine component that belongs to clade 3C.2a1b subclade 2a.1. After excluding 1948 SARS-CoV-2-positive patients, 4312 patients were included in analyses of influenza VE; 2463 (57%) were vaccinated against influenza. Effectiveness against A(H3N2) for all ages was 36% (95% confidence interval, 20%-49%) overall. CONCLUSIONS: Influenza vaccination in 2021-2022 provided protection against influenza A(H3N2)-related outpatient visits among young persons.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , United States/epidemiology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype , Seasons , Vaccine Efficacy , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Influenza B virus
12.
Emerg Infect Dis ; 29(12): 2442-2450, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37917142

ABSTRACT

Both SARS-CoV-2 and influenza virus can be transmitted by asymptomatic, presymptomatic, or symptomatic infected persons. We assessed effects on work attendance while ill before and during the COVID-19 pandemic in the United States by analyzing data collected prospectively from persons with acute respiratory illnesses enrolled in a multistate study during 2018-2022. Persons with previous hybrid work experience were significantly less likely to work onsite on the day before through the first 3 days of illness than those without that experience, an effect more pronounced during the COVID-19 pandemic than during prepandemic influenza seasons. Persons with influenza or COVID-19 were significantly less likely to work onsite than persons with other acute respiratory illnesses. Among persons with positive COVID-19 test results available by the second or third day of illness, few worked onsite. Hybrid and remote work policies might reduce workplace exposures and help reduce spread of respiratory viruses.


Subject(s)
COVID-19 , Influenza, Human , United States/epidemiology , Humans , COVID-19/epidemiology , SARS-CoV-2 , Influenza, Human/epidemiology , Pandemics , COVID-19 Testing
13.
Emerg Infect Dis ; 29(2): 278-285, 2023 02.
Article in English | MEDLINE | ID: mdl-36599411

ABSTRACT

Persons with COVID-19-like illnesses are advised to stay home to reduce the spread of SARS-CoV-2. We assessed relationships between telework experience and COVID-19 illness with work attendance when ill. Adults experiencing fever, cough, or loss of taste or smell who sought healthcare or COVID-19 testing in the United States during March-November 2020 were enrolled. Adults with telework experience before illness were more likely to work at all (onsite or remotely) during illness (87.8%) than those with no telework experience (49.9%) (adjusted odds ratio 5.48, 95% CI 3.40-8.83). COVID-19 case-patients were less likely to work onsite (22.1%) than were persons with other acute respiratory illnesses (37.3%) (adjusted odds ratio 0.36, 95% CI 0.24-0.53). Among COVID-19 case-patients with telework experience, only 6.5% worked onsite during illness. Telework experience before illness gave mildly ill workers the option to work and improved compliance with public health recommendations to stay home during illness.


Subject(s)
COVID-19 , Adult , Humans , United States/epidemiology , COVID-19/epidemiology , COVID-19 Testing , SARS-CoV-2 , Pandemics , Presenteeism
14.
Emerg Infect Dis ; 29(6): 1215-1219, 2023 06.
Article in English | MEDLINE | ID: mdl-37095080

ABSTRACT

During February 7─September 3, 2022, a total of 39 US states experienced outbreaks of highly pathogenic avian influenza A(H5N1) virus in birds from commercial poultry farms and backyard flocks. Among persons exposed to infected birds, highly pathogenic avian influenza A(H5) viral RNA was detected in 1 respiratory specimen from 1 person.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Influenza, Human , Animals , Humans , United States/epidemiology , Influenza in Birds/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Birds , Influenza, Human/epidemiology , Poultry , Disease Outbreaks
15.
MMWR Morb Mortal Wkly Rep ; 72(3): 49-54, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36656786

ABSTRACT

Influenza seasons typically begin in October and peak between December and February (1); however, the 2022-23 influenza season in Tennessee began in late September and was characterized by high pediatric hospitalization rates during November. This report describes a field investigation conducted in Tennessee during November 2022, following reports of increasing influenza hospitalizations. Data from surveillance networks, patient surveys, and whole genome sequencing of influenza virus specimens were analyzed to assess influenza activity and secondary illness risk. Influenza activity increased earlier than usual among all age groups, and rates of influenza-associated hospitalization among children were high in November, reaching 12.6 per 100,000 in children aged <5 years, comparable to peak levels typically seen in high-severity seasons. Circulating influenza viruses were genetically similar to vaccine components. Among persons who received testing for influenza at outpatient clinics, children were twice as likely to receive a positive influenza test result as were adults. Among household contacts exposed to someone with influenza, children were more than twice as likely to become ill compared with adults. As the influenza season continues, it is important for all persons, especially those at higher risk for severe disease, to protect themselves from influenza. To prevent influenza and severe influenza complications, all persons aged ≥6 months should get vaccinated, avoid contact with ill persons, and take influenza antivirals if recommended and prescribed.


Subject(s)
Influenza Vaccines , Influenza, Human , Adult , Child , Humans , Infant , Influenza, Human/prevention & control , Seasons , Tennessee/epidemiology , Influenza B virus/genetics , Vaccination
16.
Immun Ageing ; 20(1): 30, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37393237

ABSTRACT

BACKGROUND: Adjuvanted inactivated influenza vaccine (aIIV) and high-dose inactivated influenza vaccine (HD-IIV) are U.S.-licensed for adults aged ≥ 65 years. This study compared serum hemagglutination inhibition (HAI) antibody titers for the A(H3N2) and A(H1N1)pdm09 and B strains after trivalent aIIV3 and trivalent HD-IIV3 in an older adult population. RESULTS: The immunogenicity population included 342 participants who received aIIV3 and 338 participants who received HD-IIV3. The proportion of participants that seroconverted to A(H3N2) vaccine strains after allV3 (112 participants [32.8%]) was inferior to the proportion of participants that seroconverted after HD-IIV3 (130 participants [38.5%]) at day 29 after vaccination (difference, - 5.8%; 95%CI, - 12.9% to 1.4%). There were no significant differences between the vaccine groups in percent seroconversion to A(H1N1)pdm09 or B vaccine strains, in percent seropositivity for any of the strains, or in post-vaccination GMT for the A(H1N1)pdm09 strain. The GMTs for the post-vaccination A(H3N2) and B strains were higher after HD-IIV than after aIIV3. CONCLUSIONS: Overall immune responses were similar after aIIV3 and HD-IIV3. For the primary outcome, the aIIV3 seroconversion rate for H3N2 did not meet noninferiority criteria compared with HD-IIV3, but the HD-IIV3 seroconversion rate was not statistically superior to the aIIV3 seroconversion rate. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03183908.

17.
Clin Infect Dis ; 75(Suppl 2): S271-S284, 2022 10 03.
Article in English | MEDLINE | ID: mdl-35684961

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses continue to co-circulate, representing 2 major public health threats from respiratory infections with similar clinical presentations. SARS-CoV-2 and influenza vaccines can also now be co-administered. However, data on antibody responses to SARS-CoV-2 and influenza coinfection and vaccine co-administration remain limited. METHODS: We developed a 41-plex antibody immunity assay that can simultaneously characterize antibody landscapes to SARS-CoV-2/influenza/common human coronaviruses. We analyzed sera from 840 individuals (11-93 years), including sera from reverse transcription-polymerase chain reaction (RT-PCR)-confirmed SARS-CoV-2-positive (n = 218) and -negative (n = 120) cases, paired sera from SARS-CoV-2 vaccination (n = 29) and infection (n = 11), and paired sera from influenza vaccination (n = 56) and RT-PCR-confirmed influenza infection (n = 158) cases. Last, we analyzed sera collected from 377 individuals who exhibited acute respiratory illness (ARI) in 2020. RESULTS: This 41-plex assay has high sensitivity and specificity in detecting SARS-CoV-2 infections. It differentiated SARS-CoV-2 vaccination (antibody responses only to spike protein) from infection (antibody responses to both spike and nucleoprotein). No cross-reactive antibodies were induced to SARS-CoV-2 from influenza vaccination and infection, and vice versa, suggesting no interaction between SARS-CoV-2 and influenza antibody responses. However, cross-reactive antibodies were detected between spike proteins of SARS-CoV-2 and common human coronaviruses that were removed by serum adsorption. Among 377 individuals who exhibited ARI in 2020, 129 were influenza positive; none had serological evidence of SARS-CoV-2/influenza coinfections. CONCLUSIONS: Multiplex detection of antibody landscapes can provide in-depth analysis of the antibody protective immunity to SARS-CoV-2 in the context of other respiratory viruses, including influenza.


Subject(s)
COVID-19 , Coinfection , Influenza Vaccines , Influenza, Human , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Vaccines , Humans , Influenza, Human/diagnosis , Influenza, Human/prevention & control , Nucleoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
18.
Am J Epidemiol ; 191(3): 465-471, 2022 02 19.
Article in English | MEDLINE | ID: mdl-34274963

ABSTRACT

Intraseason timing of influenza infection among persons of different ages could reflect relative contributions to propagation of seasonal epidemics and has not been examined among ambulatory patients. Using data from the US Influenza Vaccine Effectiveness Network, we calculated risk ratios derived from comparing weekly numbers of influenza cases prepeak with those postpeak during the 2010-2011 through 2018-2019 influenza seasons. We sought to determine age-specific differences during the ascent versus descent of an influenza season by influenza virus type and subtype. We estimated 95% credible intervals around the risk ratios using Bayesian joint posterior sampling of weekly cases. Our population consisted of ambulatory patients with laboratory-confirmed influenza who enrolled in an influenza vaccine effectiveness study at 5 US sites during 9 influenza seasons after the 2009 influenza A virus subtype H1N1 (H1N1) pandemic. We observed that young children aged <5 years tended to more often be infected with H1N1 during the prepeak period, while adults aged ≥65 years tended to more often be infected with H1N1 during the postpeak period. However, for influenza A virus subtype H3N2, children aged <5 years were more often infected during the postpeak period. These results may reflect a contribution of different age groups to seasonal spread, which may differ by influenza virus type and subtype.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adult , Bayes Theorem , Child , Child, Preschool , Humans , Influenza A Virus, H3N2 Subtype , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Vaccination , Vaccine Efficacy
19.
MMWR Morb Mortal Wkly Rep ; 71(46): 1471-1478, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36395064

ABSTRACT

During the early stages of the COVID-19 pandemic, use of preventive behaviors was associated with perceived risk for contracting SARS-CoV-2 infection (1,2). Over time, perceived risk has declined along with waning COVID-19-related media coverage (3,4). The extent to which communities continue to be aware of local COVID-19 transmission levels and are implementing recommended preventive behaviors is unknown. During June 1-July 31, 2022, health departments in DuPage County, Illinois and metropolitan Detroit, Michigan surveyed a combined total of 4,934 adults who had received a positive test result for SARS-CoV-2 during the preceding 3 weeks. The association between awareness of local COVID-19 transmission and use of preventive behaviors and practices was assessed, both in response to perceived local COVID-19 transmission levels and specifically during the 2 weeks preceding SARS-CoV-2 testing. Both areas had experienced sustained high COVID-19 transmission during the study interval as categorized by CDC COVID-19 transmission levels.* Overall, 702 (14%) respondents perceived local COVID-19 transmission levels as high, 987 (20%) as substantial, 1,902 (39%) as moderate, and 581 (12%) as low; 789 (16%) reported they did not know. Adjusting for geographic area, age, gender identity, and combined race and ethnicity, respondents who perceived local COVID-19 transmission levels as high were more likely to report having made behavioral changes because of the level of COVID-19 transmission in their area, including wearing a mask in public, limiting travel, and avoiding crowded places or events. Continued monitoring of public perceptions of local COVID-19 levels and developing a better understanding of their influence on the use of preventive behaviors can guide COVID-19 communication strategies and policy making during and beyond the pandemic.


Subject(s)
COVID-19 , Adult , Humans , Female , Male , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , Michigan/epidemiology , COVID-19 Testing , SARS-CoV-2 , Gender Identity , Illinois/epidemiology , Perception
20.
MMWR Morb Mortal Wkly Rep ; 71(10): 365-370, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35271561

ABSTRACT

In the United States, annual vaccination against seasonal influenza is recommended for all persons aged ≥6 months except when contraindicated (1). Currently available influenza vaccines are designed to protect against four influenza viruses: A(H1N1)pdm09 (the 2009 pandemic virus), A(H3N2), B/Victoria lineage, and B/Yamagata lineage. Most influenza viruses detected this season have been A(H3N2) (2). With the exception of the 2020-21 season, when data were insufficient to generate an estimate, CDC has estimated the effectiveness of seasonal influenza vaccine at preventing laboratory-confirmed, mild/moderate (outpatient) medically attended acute respiratory infection (ARI) each season since 2004-05. This interim report uses data from 3,636 children and adults with ARI enrolled in the U.S. Influenza Vaccine Effectiveness Network during October 4, 2021-February 12, 2022. Overall, vaccine effectiveness (VE) against medically attended outpatient ARI associated with influenza A(H3N2) virus was 16% (95% CI = -16% to 39%), which is considered not statistically significant. This analysis indicates that influenza vaccination did not reduce the risk for outpatient medically attended illness with influenza A(H3N2) viruses that predominated so far this season. Enrollment was insufficient to generate reliable VE estimates by age group or by type of influenza vaccine product (1). CDC recommends influenza antiviral medications as an adjunct to vaccination; the potential public health benefit of antiviral medications is magnified in the context of reduced influenza VE. CDC routinely recommends that health care providers continue to administer influenza vaccine to persons aged ≥6 months as long as influenza viruses are circulating, even when VE against one virus is reduced, because vaccine can prevent serious outcomes (e.g., hospitalization, intensive care unit (ICU) admission, or death) that are associated with influenza A(H3N2) virus infection and might protect against other influenza viruses that could circulate later in the season.


Subject(s)
Influenza A Virus, H3N2 Subtype/immunology , Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Vaccine Efficacy , Adolescent , Adult , Aged , Child , Child, Preschool , Humans , Infant , Influenza A Virus, H1N1 Subtype/immunology , Influenza B virus/immunology , Middle Aged , Population Surveillance , Seasons , United States/epidemiology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL