Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Proc Natl Acad Sci U S A ; 121(28): e2403581121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968108

ABSTRACT

Adverse cardiac outcomes in COVID-19 patients, particularly those with preexisting cardiac disease, motivate the development of human cell-based organ-on-a-chip models to recapitulate cardiac injury and dysfunction and for screening of cardioprotective therapeutics. Here, we developed a heart-on-a-chip model to study the pathogenesis of SARS-CoV-2 in healthy myocardium established from human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and a cardiac dysfunction model, mimicking aspects of preexisting hypertensive disease induced by angiotensin II (Ang II). We recapitulated cytopathic features of SARS-CoV-2-induced cardiac damage, including progressively impaired contractile function and calcium handling, apoptosis, and sarcomere disarray. SARS-CoV-2 presence in Ang II-treated hearts-on-a-chip decreased contractile force with earlier onset of contractile dysfunction and profoundly enhanced inflammatory cytokines compared to SARS-CoV-2 alone. Toward the development of potential therapeutics, we evaluated the cardioprotective effects of extracellular vesicles (EVs) from human iPSC which alleviated the impairment of contractile force, decreased apoptosis, reduced the disruption of sarcomeric proteins, and enhanced beta-oxidation gene expression. Viral load was not affected by either Ang II or EV treatment. We identified MicroRNAs miR-20a-5p and miR-19a-3p as potential mediators of cardioprotective effects of these EVs.


Subject(s)
Angiotensin II , COVID-19 , Extracellular Vesicles , Induced Pluripotent Stem Cells , Myocytes, Cardiac , SARS-CoV-2 , Humans , Angiotensin II/pharmacology , COVID-19/virology , COVID-19/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/virology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Extracellular Vesicles/metabolism , Induced Pluripotent Stem Cells/metabolism , Apoptosis/drug effects , Lab-On-A-Chip Devices , MicroRNAs/metabolism , MicroRNAs/genetics , Cytokines/metabolism
2.
Adv Funct Mater ; 30(37)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-33708027

ABSTRACT

From micro-scaled capillaries to millimeter-sized arteries and veins, human vasculature spans multiple scales and cell types. The convergence of bioengineering, materials science, and stem cell biology has enabled tissue engineers to recreate the structure and function of different hierarchical levels of the vascular tree. Engineering large-scale vessels has been pursued over the past thirty years to replace or bypass damaged arteries, arterioles, and venules, and their routine application in the clinic may become a reality in the near future. Strategies to engineer meso- and microvasculature have been extensively explored to generate models to study vascular biology, drug transport, and disease progression, as well as for vascularizing engineered tissues for regenerative medicine. However, bioengineering of large-scale tissues and whole organs for transplantation, have failed to result in clinical translation due to the lack of proper integrated vasculature for effective oxygen and nutrient delivery. The development of strategies to generate multi-scale vascular networks and their direct anastomosis to host vasculature would greatly benefit this formidable goal. In this review, we discuss design considerations and technologies for engineering millimeter-, meso-, and micro-scale vessels. We further provide examples of recent state-of-the-art strategies to engineer multi-scale vasculature. Finally, we identify key challenges limiting the translation of vascularized tissues and offer our perspective on future directions for exploration.

3.
Proc Natl Acad Sci U S A ; 114(8): 1898-1903, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28167795

ABSTRACT

In cardiac tissue engineering cells are seeded within porous biomaterial scaffolds to create functional cardiac patches. Here, we report on a bottom-up approach to assemble a modular tissue consisting of multiple layers with distinct structures and functions. Albumin electrospun fiber scaffolds were laser-patterned to create microgrooves for engineering aligned cardiac tissues exhibiting anisotropic electrical signal propagation. Microchannels were patterned within the scaffolds and seeded with endothelial cells to form closed lumens. Moreover, cage-like structures were patterned within the scaffolds and accommodated poly(lactic-co-glycolic acid) (PLGA) microparticulate systems that controlled the release of VEGF, which promotes vascularization, or dexamethasone, an anti-inflammatory agent. The structure, morphology, and function of each layer were characterized, and the tissue layers were grown separately in their optimal conditions. Before transplantation the tissue and microparticulate layers were integrated by an ECM-based biological glue to form thick 3D cardiac patches. Finally, the patches were transplanted in rats, and their vascularization was assessed. Because of the simple modularity of this approach, we believe that it could be used in the future to assemble other multicellular, thick, 3D, functional tissues.


Subject(s)
Biocompatible Materials/chemistry , Cardiovascular Diseases/surgery , Heart Transplantation/methods , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Adhesives/chemistry , Albumins/chemistry , Animals , Endothelial Cells , Humans , Lactic Acid/chemistry , Male , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Porosity , Rats , Rats, Sprague-Dawley
4.
Nano Lett ; 18(7): 4069-4073, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29406721

ABSTRACT

Although cardiac patches hold a promise for repairing the infarcted heart, their integration with the myocardium by sutures may cause further damage to the diseased organ. To address this issue, we developed facile and safe, suture-free technology for the attachment of engineered tissues to organs. Here, nanocomposite scaffolds comprised of albumin electrospun fibers and gold nanorods (AuNRs) were developed. Cardiac cells were seeded within the scaffolds and assembled into a functioning patch. The engineered tissue was then positioned on the myocardium and irradiated with a near IR laser (808 nm). The AuNRs were able to absorb the light and convert it to thermal energy, which locally changed the molecular structure of the fibrous scaffold, and strongly, but safely, attached it to the wall of the heart. Such hybrid biomaterials can be used in the future to integrate any engineered tissue with any defected organs, while minimizing the risk of additional injury for the patient, caused by the conventional stitching methods.


Subject(s)
Heart/physiopathology , Myocardial Infarction/surgery , Nanocomposites/therapeutic use , Nanotubes/chemistry , Albumins/chemistry , Albumins/therapeutic use , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Cardiac Surgical Procedures , Disease Models, Animal , Gold/chemistry , Gold/therapeutic use , Humans , Myocardial Infarction/pathology , Nanocomposites/chemistry , Rats , Sutures/adverse effects , Tissue Engineering , Tissue Scaffolds/chemistry
5.
Nat Mater ; 15(6): 679-85, 2016 06.
Article in English | MEDLINE | ID: mdl-26974408

ABSTRACT

In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.


Subject(s)
Myocardium/metabolism , Myocytes, Cardiac/metabolism , Nanocomposites/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/surgery , Myocardium/pathology , Myocytes, Cardiac/pathology , Rats , Rats, Sprague-Dawley
6.
Nanotechnology ; 26(29): 291002, 2015 Jul 24.
Article in English | MEDLINE | ID: mdl-26133998

ABSTRACT

The cardiac ECM has a unique 3D structure responsible for tissue morphogenesis and strong contractions. It is divided into three fiber groups with specific roles and distinct dimensions; nanoscale endomysial fibers, perimysial fibers with a diameter of 1 µm, and epimysial fibers, which have a diameter of several micrometers. We report here on our work, where distinct 3D fibrous scaffolds, each of them recapitulating the dimension scales of a single fiber population in the heart matrix, were fabricated. We have assessed the mechanical properties of these scaffolds and the contribution of each fiber population to cardiomyocyte morphogenesis, tissue assembly and function. Our results show that the nanoscale fiber scaffolds were more elastic than the microscale scaffolds, however, cardiomyocytes cultured on microscale fiber scaffolds exhibited enhanced spreading and elongation, both on the single cell and on the engineered tissue levels. In addition, lower fibroblast proliferation rates were observed on these microscale topographies. Based on the collected data we have fabricated composite scaffolds containing micro and nanoscale fibers, promoting superior tissue morphogenesis without compromising tissue contraction. Cardiac tissues, engineered within these composite scaffolds exhibited superior function, including lower excitation threshold and stronger contraction forces than tissue engineered within the single-population fiber scaffolds.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Animals , Cell Culture Techniques , Cell Proliferation , Cells, Cultured , Elastic Modulus , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Muscle Fibers, Skeletal/chemistry , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Rats , Rats, Sprague-Dawley
7.
Nano Lett ; 14(10): 5792-6, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25176294

ABSTRACT

Decellularized matrices are valuable scaffolds for engineering functional cardiac patches for treating myocardial infarction. However, the lack of quick and efficient electrical coupling between adjacent cells may jeopardize the success of the treatment. To address this issue, we have deposited gold nanoparticles on fibrous decellularized omental matrices and investigated their morphology, conductivity, and degradation. We have shown that cardiac cells engineered within the hybrid scaffolds exhibited elongated and aligned morphology, massive striation, and organized connexin 43 electrical coupling proteins. Finally, we have shown that the hybrid patches demonstrated superior function as compared to pristine patches, including a stronger contraction force, lower excitation threshold, and faster calcium transients.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Myocardium/cytology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cells, Cultured , Connexin 43/analysis , Metal Nanoparticles/ultrastructure , Rats
8.
Biotechnol Bioeng ; 111(6): 1246-57, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24420414

ABSTRACT

In recent years attempts to engineer contracting cardiac patches were focused on recapitulation of the myocardium extracellular microenvironment. We report here on our work, where for the first time, a three-dimensional cardiac patch was fabricated from albumin fibers. We hypothesized that since albumin fibers' mechanical properties resemble those of cardiac tissue extracellular matrix (ECM) and their biochemical character enables their use as protein carriers, they can support the assembly of cardiac tissues capable of generating strong contraction forces. Here, we have fabricated aligned and randomly oriented electrospun albumin fibers and investigated their structure, mechanical properties, and chemical nature. Our measurements showed that the scaffolds have improved elasticity as compared to synthetic electrospun PCL fibers, and that they are capable of adsorbing serum proteins, such as laminin leading to strong cell-matrix interactions. Moreover, due to the functional groups on their backbone, the fibers can be chemically modified with essential biomolecules. When seeded with rat neonatal cardiac cells the engineered scaffolds induced the assembly of aligned cardiac tissues with high aspect ratio cardiomyocytes and massive actinin striation. Compared to synthetic fibrous scaffolds, cardiac cells cultured within aligned or randomly oriented scaffolds formed functional tissues, exhibiting significantly improved function already on Day 3, including higher beating rate (P = 0.0002 and P < 0.0001, respectively), and higher contraction amplitude (P = 0.009 and P = 0.003, respectively). Collectively, our results suggest that albumin electrospun scaffolds can play a key role in contributing to the ex vivo formation of a contracting cardiac muscle tissue.


Subject(s)
Macromolecular Substances/metabolism , Muscle Cells/physiology , Protein Multimerization , Serum Albumin, Bovine/metabolism , Tissue Engineering/methods , Tissue Scaffolds , Animals , Chemical Phenomena , Macromolecular Substances/chemistry , Rats , Serum Albumin, Bovine/chemistry
9.
IEEE Open J Eng Med Biol ; 5: 238-249, 2024.
Article in English | MEDLINE | ID: mdl-38606403

ABSTRACT

Goal: Contractile response and calcium handling are central to understanding cardiac function and physiology, yet existing methods of analysis to quantify these metrics are often time-consuming, prone to mistakes, or require specialized equipment/license. We developed BeatProfiler, a suite of cardiac analysis tools designed to quantify contractile function, calcium handling, and force generation for multiple in vitro cardiac models and apply downstream machine learning methods for deep phenotyping and classification. Methods: We first validate BeatProfiler's accuracy, robustness, and speed by benchmarking against existing tools with a fixed dataset. We further confirm its ability to robustly characterize disease and dose-dependent drug response. We then demonstrate that the data acquired by our automatic acquisition pipeline can be further harnessed for machine learning (ML) analysis to phenotype a disease model of restrictive cardiomyopathy and profile cardioactive drug functional response. To accurately classify between these biological signals, we apply feature-based ML and deep learning models (temporal convolutional-bidirectional long short-term memory model or TCN-BiLSTM). Results: Benchmarking against existing tools revealed that BeatProfiler detected and analyzed contraction and calcium signals better than existing tools through improved sensitivity in low signal data, reduction in false positives, and analysis speed increase by 7 to 50-fold. Of signals accurately detected by published methods (PMs), BeatProfiler's extracted features showed high correlations to PMs, confirming that it is reliable and consistent with PMs. The features extracted by BeatProfiler classified restrictive cardiomyopathy cardiomyocytes from isogenic healthy controls with 98% accuracy and identified relax90 as a top distinguishing feature in congruence with previous findings. We also show that our TCN-BiLSTM model was able to classify drug-free control and 4 cardiac drugs with different mechanisms of action at 96% accuracy. We further apply Grad-CAM on our convolution-based models to identify signature regions of perturbations by these drugs in calcium signals. Conclusions: We anticipate that the capabilities of BeatProfiler will help advance in vitro studies in cardiac biology through rapid phenotyping, revealing mechanisms underlying cardiac health and disease, and enabling objective classification of cardiac disease and responses to drugs.

10.
Cell Rep ; 43(6): 114302, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38824644

ABSTRACT

Resident cardiac macrophages are critical mediators of cardiac function. Despite their known importance to cardiac electrophysiology and tissue maintenance, there are currently no stem-cell-derived models of human engineered cardiac tissues (hECTs) that include resident macrophages. In this study, we made an induced pluripotent stem cell (iPSC)-derived hECT model with a resident population of macrophages (iM0) to better recapitulate the native myocardium and characterized their impact on tissue function. Macrophage retention within the hECTs was confirmed via immunofluorescence after 28 days of cultivation. The inclusion of iM0s significantly impacted hECT function, increasing contractile force production. A potential mechanism underlying these changes was revealed by the interrogation of calcium signaling, which demonstrated the modulation of ß-adrenergic signaling in +iM0 hECTs. Collectively, these findings demonstrate that macrophages significantly enhance cardiac function in iPSC-derived hECT models, emphasizing the need to further explore their contributions not only in healthy hECT models but also in the contexts of disease and injury.


Subject(s)
Induced Pluripotent Stem Cells , Macrophages , Myocardial Contraction , Tissue Engineering , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Macrophages/metabolism , Tissue Engineering/methods , Myocardial Contraction/physiology , Myocardium/metabolism , Myocardium/cytology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Cell Differentiation , Calcium Signaling
11.
Adv Sci (Weinh) ; : e2401415, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965824

ABSTRACT

Galactic cosmic radiation (GCR) is one of the most serious risks posed to astronauts during missions to the Moon and Mars. Experimental models capable of recapitulating human physiology are critical to understanding the effects of radiation on human organs and developing radioprotective measures against space travel exposures. The effects of systemic radiation are studied using a multi-organ-on-a-chip (multi-OoC) platform containing engineered tissue models of human bone marrow (site of hematopoiesis and acute radiation damage), cardiac muscle (site of chronic radiation damage) and liver (site of metabolism), linked by vascular circulation with an endothelial barrier separating individual tissue chambers from the vascular perfusate. Following protracted neutron radiation, the most damaging radiation component in deep space, a greater deviation of tissue function is observed as compared to the same cumulative dose delivered acutely. Further, by characterizing engineered bone marrow (eBM)-derived immune cells in circulation, 58 unique genes specific to the effects of protracted neutron dosing are identified, as compared to acutely irradiated and healthy tissues. It propose that this bioengineered platform allows studies of human responses to extended radiation exposure in an "astronaut-on-a-chip" model that can inform measures for mitigating cosmic radiation injury.

12.
bioRxiv ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38559188

ABSTRACT

Systemic lupus erythematosus (SLE) is a highly heterogenous autoimmune disease that affects multiple organs, including the heart. The mechanisms by which myocardial injury develops in SLE, however, remain poorly understood. Here we engineered human cardiac tissues and cultured them with IgG fractions containing autoantibodies from SLE patients with and without myocardial involvement. We observed unique binding patterns of IgG from two patient subgroups: (i) patients with severe myocardial inflammation exhibited enhanced binding to apoptotic cells within cardiac tissues subjected to stress, and (ii) patients with systolic dysfunction exhibited enhanced binding to the surfaces of viable cardiomyocytes. Functional assays and RNA sequencing (RNA-seq) revealed that IgGs from patients with systolic dysfunction exerted direct effects on engineered tissues in the absence of immune cells, altering tissue cellular composition, respiration and calcium handling. Autoantibody target characterization by phage immunoprecipitation sequencing (PhIP-seq) confirmed distinctive IgG profiles between patient subgroups. By coupling IgG profiling with cell surface protein analyses, we identified four pathogenic autoantibody candidates that may directly alter the function of cells within the myocardium. Taken together, these observations provide insights into the cellular processes of myocardial injury in SLE that have the potential to improve patient risk stratification and inform the development of novel therapeutic strategies.

13.
Biomaterials ; 301: 122267, 2023 10.
Article in English | MEDLINE | ID: mdl-37633022

ABSTRACT

Cosmic radiation is the most serious risk that will be encountered during the planned missions to the Moon and Mars. There is a compelling need to understand the effects, safety thresholds, and mechanisms of radiation damage in human tissues, in order to develop measures for radiation protection during extended space travel. As animal models fail to recapitulate the molecular changes in astronauts, engineered human tissues and "organs-on-chips" are valuable tools for studying effects of radiation in vitro. We have developed a bioengineered tissue platform for studying radiation damage in individualized settings. To demonstrate its utility, we determined the effects of radiation using engineered models of two human tissues known to be radiosensitive: engineered cardiac tissues (eCT, a target of chronic radiation damage) and engineered bone marrow (eBM, a target of acute radiation damage). We report the effects of high-dose neutrons, a proxy for simulated galactic cosmic rays, on the expression of key genes implicated in tissue responses to ionizing radiation, phenotypic and functional changes in both tissues, and proof-of-principle application of radioprotective agents. We further determined the extent of inflammatory, oxidative stress, and matrix remodeling gene expression changes, and found that these changes were associated with an early hypertrophic phenotype in eCT and myeloid skewing in eBM. We propose that individualized models of human tissues have potential to provide insights into the effects and mechanisms of radiation during deep-space missions and allow testing of radioprotective measures.


Subject(s)
Cosmic Radiation , Humans , Biomedical Engineering , Cosmic Radiation/adverse effects , Hypertrophy
14.
Cell Rep Med ; 4(3): 100976, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36921598

ABSTRACT

Restrictive cardiomyopathy (RCM) is defined as increased myocardial stiffness and impaired diastolic relaxation leading to elevated ventricular filling pressures. Human variants in filamin C (FLNC) are linked to a variety of cardiomyopathies, and in this study, we investigate an in-frame deletion (c.7416_7418delGAA, p.Glu2472_Asn2473delinAsp) in a patient with RCM. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with this variant display impaired relaxation and reduced calcium kinetics in 2D culture when compared with a CRISPR-Cas9-corrected isogenic control line. Similarly, mutant engineered cardiac tissues (ECTs) demonstrate increased passive tension and impaired relaxation velocity compared with isogenic controls. High-throughput small-molecule screening identifies phosphodiesterase 3 (PDE3) inhibition by trequinsin as a potential therapy to improve cardiomyocyte relaxation in this genotype. Together, these data demonstrate an engineered cardiac tissue model of RCM and establish the translational potential of this precision medicine approach to identify therapeutics targeting myocardial relaxation.


Subject(s)
Cardiomyopathy, Restrictive , Humans , Cardiomyopathy, Restrictive/genetics , Tissue Engineering , Myocytes, Cardiac , Myocardium , Drug Discovery
15.
Nat Rev Mater ; 7(4): 295-313, 2022.
Article in English | MEDLINE | ID: mdl-34691764

ABSTRACT

The convergence of tissue engineering and patient-specific stem cell biology has enabled the engineering of in vitro tissue models that allow the study of patient-tailored treatment modalities. However, sex-related disparities in health and disease, from systemic hormonal influences to cellular-level differences, are often overlooked in stem cell biology, tissue engineering and preclinical screening. The cardiovascular system, in particular, shows considerable sex-related differences, which need to be considered in cardiac tissue engineering. In this Review, we analyse sex-related properties of the heart muscle in the context of health and disease, and discuss a framework for including sex-based differences in human cardiac tissue engineering. We highlight how sex-based features can be implemented at the cellular and tissue levels, and how sex-specific cardiac models could advance the study of cardiovascular diseases. Finally, we define design criteria for sex-specific cardiac tissue engineering and provide an outlook to future research possibilities beyond the cardiovascular system.

16.
ACS Biomater Sci Eng ; 8(11): 4598-4604, 2022 11 14.
Article in English | MEDLINE | ID: mdl-34878769

ABSTRACT

The field of tissue engineering has evolved from its early days of engineering tissue substitutes to current efforts at building human tissues for regenerative medicine and mechanistic studies of tissue disease, injury, and regeneration. Advances in bioengineering, material science, and stem cell biology have enabled major developments in the field. In this perspective, we reflect on the September 2021 virtual Next Generation Tissue Engineering symposium and trainee workshop, as well as our projections for the field over the next 15 years.


Subject(s)
Regenerative Medicine , Tissue Engineering , Humans , Stem Cells
17.
J Cyst Fibros ; 21(6): 1027-1035, 2022 11.
Article in English | MEDLINE | ID: mdl-35525782

ABSTRACT

BACKGROUND: Manifestations of cystic fibrosis, although well-characterized in the proximal airways, are understudied in the distal lung. Characterization of the cystic fibrosis lung 'matrisome' (matrix proteome) has not been previously described, and could help identify biomarkers and inform therapeutic strategies. METHODS: We performed liquid chromatography-mass spectrometry, gene ontology analysis, and multi-modal imaging, including histology, immunofluorescence, and electron microscopy for a comprehensive evaluation of distal human lung extracellular matrix (matrix) structure and composition in end-stage cystic fibrosis. RESULTS: Quantitative proteomic profiling identified sixty-eight (68) matrix constituents with significantly altered expression in end-stage cystic fibrosis. Over 90% of significantly different matrix peptides detected, including structural and basement membrane proteins, were expressed at lower levels in cystic fibrosis. However, the total abundance of matrix in cystic fibrosis lungs was not significantly different from control lungs, suggesting that cystic fibrosis leads to loss of diversity among lung matrix proteins rather than an absolute loss of matrix. Visualization of distal lung matrix via immunofluorescence and electron microscopy revealed pathological remodeling of distal lung tissue architecture and loss of alveolar basement membrane, consistent with significantly altered pathways identified by gene ontology analysis. CONCLUSIONS: Dysregulation of matrix organization and aberrant wound healing pathways are associated with loss of matrix protein diversity and obliteration of distal lung tissue structure in end-stage cystic fibrosis. While many therapeutics aim to functionally restore defective cystic fibrosis transmembrane conductance regulator (CFTR), drugs that target dysregulated matrix pathways may serve as adjunct interventions to support lung recovery.


Subject(s)
Cystic Fibrosis , Humans , Cystic Fibrosis/therapy , Proteomics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Lung/metabolism
18.
Cell Stem Cell ; 28(6): 993-1015, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34087161

ABSTRACT

Tissue engineering has markedly matured since its early beginnings in the 1980s. In addition to the original goal to regenerate damaged organs, the field has started to explore modeling of human physiology "in a dish." Induced pluripotent stem cell (iPSC) technologies now enable studies of organ regeneration and disease modeling in a patient-specific context. We discuss the potential of "organ-on-a-chip" systems to study regenerative therapies with focus on three distinct organ systems: cardiac, respiratory, and hematopoietic. We propose that the combinatorial studies of human tissues at these two scales would help realize the translational potential of tissue engineering.


Subject(s)
Induced Pluripotent Stem Cells , Regenerative Medicine , Heart , Humans , Lab-On-A-Chip Devices , Tissue Engineering
19.
ACS Biomater Sci Eng ; 7(11): 5215-5229, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34668692

ABSTRACT

Engineered cardiac tissues derived from human induced pluripotent stem cells (iPSCs) are increasingly used for drug discovery, pharmacology and in models of development and disease. While there are numerous platforms to engineer cardiac tissues, they often require expensive and nonconventional equipment and utilize complex video-processing algorithms. As a result, only specialized academic laboratories have been able to harness this technology. In addition, methodologies and tissue features have been challenging to reproduce between different groups and models. Here, we describe a facile technology (milliPillar) that covers the entire pipeline required for studies of engineered cardiac tissues. We include methodologies for (i) platform fabrication, (ii) cardiac tissue generation, (iii) electrical stimulation, (iv) automated real-time data acquisition, and (v) advanced video analyses. We validate these methodologies and demonstrate the versatility of the platform by showcasing the fabrication of tissues in different hydrogel materials and using cardiomyocytes derived from different iPSC lines in combination with different types of stromal cells. We also validate the long-term culture of tissues within the platform and provide protocols for automated analysis of force generation and calcium flux using both brightfield and fluorescence imaging. Lastly, we demonstrate the compatibility of the milliPillar platform with electromechanical stimulation to enhance cardiac tissue function. We expect that this resource will provide a valuable and user-friendly tool for the generation and real-time assessment of engineered human cardiac tissues for basic and translational studies.


Subject(s)
Induced Pluripotent Stem Cells , Tissue Engineering , Humans , Hydrogels , Myocytes, Cardiac
20.
Nanomaterials (Basel) ; 9(5)2019 May 02.
Article in English | MEDLINE | ID: mdl-31052595

ABSTRACT

Hydrogels are widely used materials for cardiac tissue engineering. However, once the cells are encapsulated within hydrogels, mass transfer to the core of the engineered tissue is limited, and cell viability is compromised. Here, we report on the development of a channeled ECM-based nanofibrous hydrogel for engineering vascularized cardiac tissues. An omentum hydrogel was mixed with cardiac cells, patterned to create channels and closed, and then seeded with endothelial cells to form open cellular lumens. A mathematical model was used to evaluate the necessity of the channels for maintaining cell viability and the true potential of the vascularized hydrogel to form a viable cardiac patch was studied.

SELECTION OF CITATIONS
SEARCH DETAIL