Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
PLoS Comput Biol ; 20(6): e1012112, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38861575

ABSTRACT

Cell sedimentation in 3D hydrogel cultures refers to the vertical migration of cells towards the bottom of the space. Understanding this poorly examined phenomenon may allow us to design better protocols to prevent it, as well as provide insights into the mechanobiology of cancer development. We conducted a multiscale experimental and mathematical examination of 3D cancer growth in triple negative breast cancer cells. Migration was examined in the presence and absence of Paclitaxel, in high and low adhesion environments and in the presence of fibroblasts. The observed behaviour was modeled by hypothesizing active migration due to self-generated chemotactic gradients. Our results did not reject this hypothesis, whereby migration was likely to be regulated by the MAPK and TGF-ß pathways. The mathematical model enabled us to describe the experimental data in absence (normalized error<40%) and presence of Paclitaxel (normalized error<10%), suggesting inhibition of random motion and advection in the latter case. Inhibition of sedimentation in low adhesion and co-culture experiments further supported the conclusion that cells actively migrated downwards due to the presence of signals produced by cells already attached to the adhesive glass surface.


Subject(s)
Cell Adhesion , Cell Movement , Paclitaxel , Humans , Cell Adhesion/physiology , Cell Movement/physiology , Paclitaxel/pharmacology , Cell Line, Tumor , Models, Biological , Cell Culture Techniques, Three Dimensional/methods , Triple Negative Breast Neoplasms/pathology , Computational Biology , Fibroblasts/physiology , Chemotaxis/physiology
2.
IEEE Trans Biomed Eng ; 70(4): 1318-1329, 2023 04.
Article in English | MEDLINE | ID: mdl-36264745

ABSTRACT

Mathematical models of cancer growth have become increasingly more accurate both in the space and time domains. However, the limited amount of data typically available has resulted in a larger number of qualitative rather than quantitative studies. In the present study, we provide an integrated experimental-computational framework for the quantification of the morphological characteristics and the mechanistic modelling of cancer progression in 3D environments. The proposed framework allows for the calibration of multiscale, spatiotemporal models of cancer growth using state-of-the-art 3D cell culture data, and their validation based on the resulting experimental morphological patterns using spatial point-pattern analysis techniques. We applied this framework to the study of the development of Triple Negative Breast Cancer cells cultured in Matrigel scaffolds, and validated the hypothesis of chemotactic migration using a multiscale, hybrid Keller-Segel model. The results revealed transient, non-random spatial distributions of cancer cells that consist of clustered, and dispersion patterns. The proposed model was able to describe the general characteristics of the experimental observations and suggests that chemotactic migration together with random motion was found to be a plausible mechanism leading to accumulation, during the examined time period of development. The developed framework enabled us to pursue two goals; first, the quantitative description of the morphology of cancer growth in 3D cultures using point-pattern analysis, and second, the relation of tumour morphology with underlying biophysical mechanisms that govern cancer growth and migration.


Subject(s)
Models, Biological , Neoplasms , Humans , Computer Simulation , Models, Theoretical
3.
Ann Biomed Eng ; 51(2): 318-328, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35896866

ABSTRACT

The invasion of cancer cells into the surrounding tissues is one of the hallmarks of cancer. However, a precise quantitative understanding of the spatiotemporal patterns of cancer cell migration and invasion still remains elusive. A promising approach to investigate these patterns are 3D cell cultures, which provide more realistic models of cancer growth compared to conventional 2D monolayers. Quantifying the spatial distribution of cells in these 3D cultures yields great promise for understanding the spatiotemporal progression of cancer. In the present study, we present an image processing and segmentation pipeline for the detection of 3D GFP-fluorescent triple-negative breast cancer cell nuclei, and we perform quantitative analysis of the formed spatial patterns and their temporal evolution. The performance of the proposed pipeline was evaluated using experimental 3D cell culture data, and was found to be comparable to manual segmentation, outperforming four alternative automated methods. The spatiotemporal statistical analysis of the detected distributions of nuclei revealed transient, non-random spatial distributions that consisted of clustered patterns across a wide range of neighbourhood distances, as well as dispersion for larger distances. Overall, the implementation of the proposed framework revealed the spatial organization of cellular nuclei with improved accuracy, providing insights into the 3 dimensional inter-cellular organization and its progression through time.


Subject(s)
Imaging, Three-Dimensional , Triple Negative Breast Neoplasms , Humans , Imaging, Three-Dimensional/methods , Image Processing, Computer-Assisted/methods , Cell Movement , Coloring Agents , Algorithms
4.
Biomater Sci ; 11(2): 400-431, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36484344

ABSTRACT

Tissue development, wound healing, pathogenesis, regeneration, and homeostasis rely upon coordinated and dynamic spatial and temporal remodeling of extracellular matrix (ECM) molecules. ECM reorganization and normal physiological tissue function, require the establishment and maintenance of biological, chemical, and mechanical feedback mechanisms directed by cell-matrix interactions. To replicate the physical and biological environment provided by the ECM in vivo, methods have been developed to decellularize and solubilize tissues which yield organ and tissue-specific bioactive hydrogels. While these biomaterials retain several important traits of the native ECM, the decellularizing process, and subsequent sterilization, and solubilization result in fragmented, cleaved, or partially denatured macromolecules. The final product has decreased viscosity, moduli, and yield strength, when compared to the source tissue, limiting the compatibility of isolated decellularized ECM (dECM) hydrogels with fabrication methods such as extrusion bioprinting. This review describes the physical and bioactive characteristics of dECM hydrogels and their role as biomaterials for biofabrication. In this work, critical variables when selecting the appropriate tissue source and extraction methods are identified. Common manual and automated fabrication techniques compatible with dECM hydrogels are described and compared. Fabrication and post-manufacturing challenges presented by the dECM hydrogels decreased mechanical and structural stability are discussed as well as circumvention strategies. We further highlight and provide examples of the use of dECM hydrogels in tissue engineering and their role in fabricating complex in vitro 3D microenvironments.


Subject(s)
Hydrogels , Tissue Engineering , Tissue Engineering/methods , Decellularized Extracellular Matrix , Extracellular Matrix/chemistry , Biocompatible Materials/analysis , Tissue Scaffolds/chemistry
5.
Biomed Mater ; 18(4)2023 06 02.
Article in English | MEDLINE | ID: mdl-37220760

ABSTRACT

Constant matrix remodeling and cellular heterogeneity in cancer are key contributors to its development and can profoundly alter treatment efficacy. Developingin-vitromodels containing relevant features that can recapitulate these aspects of the tumor microenvironment and that are well characterized can circumvent the limitations of conventional 2D cultures and animal models. Automated fabrication methods combined with biomimetic biomaterials have provided the opportunity to create platforms that can potentially incorporate a heterogeneous population of cells in a 3D environment that allows cell-cell and cell-ECM interactions with reproducibility. This study used 3D extrusion bioprinting and a composite bioink containing a reinforced decellularized extracellular matrix (ECM) hydrogel to fabricate a head and neck cancerin-vitromodel. The constituents of this model included fibroblasts and active ECM proteins to represent the stroma, along with HNSCC cells to represent the tumor component. The topographical characterization of the bioink showed a fibrous network with nanometer-sized pores. After cell encapsulation and model fabrication, we observed spheroid development and growth over time with cancer cells in the core and fibroblasts in the periphery. Our model is compatible with matrix metalloproteinase (MMP) quantification techniques and showed significant differences in the presence of MMP-9 and MMP-10 compared to the control groups. This characterized model is proposed as a tool for further translational and drug discovery applications since it provides a biomimetic scenario that allows the study of the tumor microenvironmentin-vitrousing nondestructive longitudinal monitoring over time.


Subject(s)
Bioprinting , Neoplasms , Animals , Tissue Scaffolds , Tissue Engineering/methods , Decellularized Extracellular Matrix , Reproducibility of Results , Extracellular Matrix/metabolism , Neoplasms/metabolism , Bioprinting/methods , Printing, Three-Dimensional , Tumor Microenvironment
6.
ACS Appl Mater Interfaces ; 15(28): 33250-33262, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37404007

ABSTRACT

The immune response against a tumor is characterized by the interplay among components of the immune system and neoplastic cells. Here, we bioprinted a model with two distinct regions containing gastric cancer patient-derived organoids (PDOs) and tumor-infiltrated lymphocytes (TILs). The initial cellular distribution allows for the longitudinal study of TIL migratory patterns concurrently with multiplexed cytokine analysis. The chemical properties of the bioink were designed to present physical barriers that immune T-cells must breech during infiltration and migration toward a tumor with the use of an alginate, gelatin, and basal membrane mix. TIL activity, degranulation, and regulation of proteolytic activity reveal insights into the time-dependent biochemical dynamics. Regulation of the sFas and sFas-ligand present on PDOs and TILs, respectively, and the perforin and granzyme longitudinal secretion confirms TIL activation when encountering PDO formations. TIL migratory profiles were used to create a deterministic reaction-advection diffusion model. The simulation provides insights that decouple passive from active cell migration mechanisms. The mechanisms used by TILs and other adoptive cell therapeutics as they infiltrate the tumor barrier are poorly understood. This study presents a pre-screening strategy for immune cells where motility and activation across ECM environments are crucial indicators of cellular fitness.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Neoplasms , Humans , Coculture Techniques , Lymphocytes, Tumor-Infiltrating/pathology , Longitudinal Studies , Hydrogels , Neoplasms/pathology , Cell Movement
7.
ACS Biomater Sci Eng ; 9(2): 542-561, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36598339

ABSTRACT

Malignant tumor tissues exhibit inter- and intratumoral heterogeneities, aberrant development, dynamic stromal composition, diverse tissue phenotypes, and cell populations growing within localized mechanical stresses in hypoxic conditions. Experimental tumor models employing engineered systems that isolate and study these complex variables using in vitro techniques are under development as complementary methods to preclinical in vivo models. Here, advances in extrusion bioprinting as an enabling technology to recreate the three-dimensional tumor milieu and its complex heterogeneous characteristics are reviewed. Extrusion bioprinting allows for the deposition of multiple materials, or selected cell types and concentrations, into models based upon physiological features of the tumor. This affords the creation of complex samples with representative extracellular or stromal compositions that replicate the biology of patient tissue. Biomaterial engineering of printable materials that replicate specific features of the tumor microenvironment offer experimental reproducibility, throughput, and physiological relevance compared to animal models. In this review, we describe the potential of extrusion-based bioprinting to recreate the tumor microenvironment within in vitro models.


Subject(s)
Bioprinting , Neoplasms , Animals , Bioprinting/methods , Reproducibility of Results , Printing, Three-Dimensional , Biocompatible Materials , Tumor Microenvironment
8.
Biofabrication ; 13(2)2021 03 10.
Article in English | MEDLINE | ID: mdl-33440351

ABSTRACT

Hydrogels consisting of controlled fractions of alginate, gelatin, and Matrigel enable the development of patient-derived bioprinted tissue models that support cancer spheroid growth and expansion. These engineered models can be dissociated to be then reintroduced to new hydrogel solutions and subsequently reprinted to generate multigenerational models. The process of harvesting cells from 3D bioprinted models is possible by chelating the ions that crosslink alginate, causing the gel to weaken. Inclusion of the gelatin and Matrigel fractions to the hydrogel increases the bioactivity by providing cell-matrix binding sites and promoting cross-talk between cancer cells and their microenvironment. Here we show that immortalized triple-negative breast cancer cells (MDA-MB-231) and patient-derived gastric adenocarcinoma cells can be reprinted for at least three 21 d culture cycles following bioprinting in the alginate/gelatin/Matrigel hydrogels. Our drug testing results suggest that our 3D bioprinted model can also be used to recapitulatein vivopatient drug response. Furthermore, our results show that iterative bioprinting techniques coupled with alginate biomaterials can be used to maintain and expand patient-derived cancer spheroid cultures for extended periods without compromising cell viability, altering division rates, or disrupting cancer spheroid formation.


Subject(s)
Bioprinting , Neoplasms , Printing, Three-Dimensional , Alginates , Collagen , Drug Combinations , Gelatin , Humans , Hydrogels , Laminin , Proteoglycans
9.
ACS Biomater Sci Eng ; 7(11): 5288-5300, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34661396

ABSTRACT

Reinforced extracellular matrix (ECM)-based hydrogels recapitulate several mechanical and biochemical features found in the tumor microenvironment (TME) in vivo. While these gels retain several critical structural and bioactive molecules that promote cell-matrix interactivity, their mechanical properties tend toward the viscous regime limiting their ability to retain ordered structural characteristics when considered as architectured scaffolds. To overcome this limitation characteristic of pure ECM hydrogels, we present a composite material containing alginate, a seaweed-derived polysaccharide, and gelatin, denatured collagen, as rheological modifiers which impart mechanical integrity to the biologically active decellularized ECM (dECM). After an optimization process, the reinforced gel proposed is mechanically stable and bioprintable and has a stiffness within the expected physiological values. Our hydrogel's elastic modulus has no significant difference when compared to tumors induced in preclinical xenograft head and neck squamous cell carcinoma (HNSCC) mouse models. The bioprinted cell-laden model is highly reproducible and allows proliferation and reorganization of HNSCC cells while maintaining cell viability above 90% for periods of nearly 3 weeks. Cells encapsulated in our bioink produce spheroids of at least 3000 µm2 of cross-sectional area by day 15 of culture and are positive for cytokeratin in immunofluorescence quantification, a common marker of HNSCC model validation in 2D and 3D models. We use this in vitro model system to evaluate the standard-of-care small molecule therapeutics used to treat HNSCC clinically and report a 4-fold increase in the IC50 of cisplatin and an 80-fold increase for 5-fluorouracil compared to monolayer cultures. Our work suggests that fabricating in vitro models using reinforced dECM provides a physiologically relevant system to evaluate malignant neoplastic phenomena in vitro due to the physical and biological features replicated from the source tissue microenvironment.


Subject(s)
Bioprinting , Animals , Extracellular Matrix , Hydrogels , Mice , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
10.
Biofabrication ; 12(1): 015024, 2019 12 31.
Article in English | MEDLINE | ID: mdl-31404917

ABSTRACT

Tunable bioprinting materials are capable of creating a broad spectrum of physiological mimicking 3D models enabling in vitro studies that more accurately resemble in vivo conditions. Tailoring the material properties of the bioink such that it achieves both bioprintability and biomimicry remains a key challenge. Here we report the development of engineered composite hydrogels consisting of gelatin and alginate components. The composite gels are demonstrated as a cell-laden bioink to build 3D bioprinted in vitro breast tumor models. The initial mechanical characteristics of each composite hydrogel are correlated to cell proliferation rates and cell spheroid morphology spanning month long culture conditions. MDA-MB-231 breast cancer cells show gel formulation-dependency on the rates and frequency of self-assembly into multicellular tumor spheroids (MCTS). Hydrogel compositions comprised of decreasing alginate concentrations, and increasing gelatin concentrations, result in gels that are mechanically soft and contain a greater number of cell-adhesion moieties driving the development of large MCTS; conversely gels containing increasing alginate, and decreasing gelatin concentrations are mechanically stiffer, with fewer cell-adhesion moieties present in the composite gels yielding smaller and less viable MCTS. These composite hydrogels can be used in the biofabrication of tunable in vitro systems that mimic both the mechanical and biochemical properties of the native tumor stroma.


Subject(s)
Alginates/chemistry , Bioprinting/instrumentation , Breast Neoplasms/physiopathology , Gelatin/chemistry , Hydrogels/chemistry , Tissue Engineering/instrumentation , Tissue Scaffolds/chemistry , Bioprinting/methods , Cell Adhesion , Cell Line, Tumor , Cell Proliferation , Humans , Kinetics , Printing, Three-Dimensional , Spheroids, Cellular/chemistry , Spheroids, Cellular/cytology , Tissue Engineering/methods
11.
J Vis Exp ; (137)2018 07 02.
Article in English | MEDLINE | ID: mdl-30010644

ABSTRACT

The cellular, biochemical, and biophysical heterogeneity of the native tumor microenvironment is not recapitulated by growing immortalized cancer cell lines using conventional two-dimensional (2D) cell culture. These challenges can be overcome by using bioprinting techniques to build heterogeneous three-dimensional (3D) tumor models whereby different types of cells are embedded. Alginate and gelatin are two of the most common biomaterials employed in bioprinting due to their biocompatibility, biomimicry, and mechanical properties. By combining the two polymers, we achieved a bioprintable composite hydrogel with similarities to the microscopic architecture of a native tumor stroma. We studied the printability of the composite hydrogel via rheology and obtained the optimal printing window. Breast cancer cells and fibroblasts were embedded in the hydrogels and printed to form a 3D model mimicking the in vivo microenvironment. The bioprinted heterogeneous model achieves a high viability for long-term cell culture (> 30 days) and promotes the self-assembly of breast cancer cells into multicellular tumor spheroids (MCTS). We observed the migration and interaction of the cancer-associated fibroblast cells (CAFs) with the MCTS in this model. By using bioprinted cell culture platforms as co-culture systems, it offers a unique tool to study the dependence of tumorigenesis on the stroma composition. This technique features a high-throughput, low cost, and high reproducibility, and it can also provide an alternative model to conventional cell monolayer cultures and animal tumor models to study cancer biology.


Subject(s)
Alginates/chemistry , Bioprinting/methods , Gelatin/chemistry , Hydrogels/chemistry , Printing, Three-Dimensional/instrumentation , Spheroids, Cellular/metabolism , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Humans , Reproducibility of Results
12.
Sci Rep ; 7(1): 4575, 2017 07 04.
Article in English | MEDLINE | ID: mdl-28676662

ABSTRACT

Human tumour progression is a dynamic process involving diverse biological and biochemical events such as genetic mutation and selection in addition to physical, chemical, and mechanical events occurring between cells and the tumour microenvironment. Using 3D bioprinting we have developed a method to embed MDA-MB-231 triple negative breast cancer cells, and IMR-90 fibroblast cells, within a cross-linked alginate/gelatin matrix at specific initial locations relative to each other. After 7 days of co-culture the MDA-MB-231 cells begin to form multicellular tumour spheroids (MCTS) that increase in size and frequency over time. After ~15 days the IMR-90 stromal fibroblast cells migrate through a non-cellularized region of the hydrogel matrix and infiltrate the MDA-MB-231 spheroids creating mixed MDA-MB-231/IMR-90 MCTS. This study provides a proof-of-concept that biomimetic in vitro tissue co-culture models bioprinted with both breast cancer cells and fibroblasts will result in MCTS that can be maintained for durations of several weeks.


Subject(s)
Alginates , Bioprinting , Gelatin , Hydrogels , Spheroids, Cellular , Tissue Scaffolds , Tumor Cells, Cultured , Alginates/chemistry , Coculture Techniques , Gelatin/chemistry , Humans , Hydrogels/chemistry , Neoplasms/pathology , Spheroids, Cellular/pathology , Spheroids, Cellular/ultrastructure , Tissue Scaffolds/chemistry , Tumor Cells, Cultured/pathology , Tumor Cells, Cultured/ultrastructure , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL