Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Blood ; 143(23): 2373-2385, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38452208

ABSTRACT

ABSTRACT: Gene therapy using adeno-associated virus (AAV) vectors is a promising approach for the treatment of monogenic disorders. Long-term multiyear transgene expression has been demonstrated in animal models and clinical studies. Nevertheless, uncertainties remain concerning the nature of AAV vector persistence and whether there is a potential for genotoxicity. Here, we describe the mechanisms of AAV vector persistence in the liver of a severe hemophilia A dog model (male = 4, hemizygous; and female = 4, homozygous), more than a decade after portal vein delivery. The predominant vector form was nonintegrated episomal structures with levels correlating with long-term transgene expression. Random integration was seen in all samples (median frequency, 9.3e-4 sites per cell), with small numbers of nonrandom common integration sites associated with open chromatin. No full-length integrated vectors were found, supporting predominant episomal vector-mediated long-term transgene expression. Despite integration, this was not associated with oncogene upregulation or histopathological evidence of tumorigenesis. These findings support the long-term safety of this therapeutic modality.


Subject(s)
Dependovirus , Factor VIII , Genetic Therapy , Genetic Vectors , Hemophilia A , Liver , Animals , Dogs , Dependovirus/genetics , Hemophilia A/genetics , Hemophilia A/therapy , Genetic Vectors/genetics , Liver/metabolism , Liver/pathology , Male , Genetic Therapy/methods , Female , Factor VIII/genetics , Gene Transfer Techniques , Virus Integration , Transgenes , Disease Models, Animal
2.
J Hepatol ; 80(2): 352-361, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37890721

ABSTRACT

Gene therapy has garnered increasing interest over recent decades. Several therapies employing gene transfer mechanisms have been developed, and, of these, adeno-associated virus (AAV) vectors have demonstrated viability for use with in vivo gene therapy. Several AAV-based therapeutics have received regulatory approval in the last few years including those for retinal disease, spinal muscular atrophy or aromatic L-amino acid decarboxylase deficiency. Lately, with the introduction of novel liver-directed AAV vector-based therapeutics for the treatment of haemophilia A and B, gene therapy has attracted significant attention in the hepatology community, with the liver increasingly recognised as a target for gene therapy. However, the introduction of foreign DNA into hepatocytes is associated with a risk of hepatic reactions, with raised ALT (alanine aminotransferase) and AST (aspartate aminotransferase) being - so far - the most commonly reported side effects. The complete mechanisms underlying the ALT flairs remain to be determined and the long-term risks associated with these new treatments is not yet known. The liver community is increasingly being asked to support liver-directed gene therapy to mitigate potential liver associated harm. In this review, we focus on AAV vector-based gene therapy, shedding light on this promising technique and its remarkable success in haemophilia, with a special focus on hepatic complications and their management in daily clinical practice.


Subject(s)
Gastroenterologists , Gene Transfer Techniques , Humans , Dependovirus/genetics , Genetic Therapy/adverse effects , Genetic Therapy/methods , Liver , Genetic Vectors/genetics
3.
J Biol Chem ; 298(12): 102625, 2022 12.
Article in English | MEDLINE | ID: mdl-36306823

ABSTRACT

Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder caused by N-sulfoglucosamine sulfohydrolase (SGSH) deficiency. SGSH removes the sulfate from N-sulfoglucosamine residues on the nonreducing end of heparan sulfate (HS-NRE) within lysosomes. Enzyme deficiency results in accumulation of partially degraded HS within lysosomes throughout the body, leading to a progressive severe neurological disease. Enzyme replacement therapy has been proposed, but further evaluation of the treatment strategy is needed. Here, we used Chinese hamster ovary cells to produce a highly soluble and fully active recombinant human sulfamidase (rhSGSH). We discovered that rhSGSH utilizes both the CI-MPR and LRP1 receptors for uptake into patient fibroblasts. A single intracerebroventricular (ICV) injection of rhSGSH in MPS IIIA mice resulted in a tissue half-life of 9 days and widespread distribution throughout the brain. Following a single ICV dose, both total HS and the MPS IIIA disease-specific HS-NRE were dramatically reduced, reaching a nadir 2 weeks post dose. The durability of effect for reduction of both substrate and protein markers of lysosomal dysfunction and a neuroimmune response lasted through the 56 days tested. Furthermore, seven weekly 148 µg doses ICV reduced those markers to near normal and produced a 99.5% reduction in HS-NRE levels. A pilot study utilizing every other week dosing in two animals supports further evaluation of less frequent dosing. Finally, our dose-response study also suggests lower doses may be efficacious. Our findings show that rhSGSH can normalize lysosomal HS storage and markers of a neuroimmune response when delivered ICV.


Subject(s)
Brain Diseases , Mucopolysaccharidosis III , Cricetinae , Animals , Humans , Mice , Mucopolysaccharidosis III/drug therapy , Mucopolysaccharidosis III/metabolism , CHO Cells , Pilot Projects , Cricetulus , Hydrolases/metabolism , Brain/metabolism , Heparitin Sulfate/metabolism , Brain Diseases/metabolism , Lysosomes/metabolism , Disease Models, Animal
4.
Mol Ther ; 30(12): 3570-3586, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36348622

ABSTRACT

Recombinant adeno-associated virus (rAAV) vectors are often produced in HEK293 or Spodoptera frugiperda (Sf)-based cell lines. We compared expression profiles of "oversized" (∼5,000 bp) and "standard-sized" (4,600 bp) rAAV5-human α1-antitrypsin (rAAV5-hA1AT) vectors manufactured in HEK293 or Sf cells and investigated molecular mechanisms mediating expression decline. C57BL/6 mice received 6 × 1013 vg/kg of vector, and blood and liver samples were collected through week 57. For all vectors, peak expression (weeks 12-24) declined by 50% to week 57. For Sf- and HEK293-produced oversized vectors, serum hA1AT was initially comparable, but in weeks 12-57, Sf vectors provided significantly higher expression. For HEK293 oversized vectors, liver genomes decreased continuously through week 57 and significantly correlated with A1AT protein. In RNA-sequencing analysis, HEK293 vector-treated mice had significantly higher inflammatory responses in liver at 12 weeks compared with Sf vector- and vehicle-treated mice. Thus, HEK293 vector genome loss led to decreased transgene protein. For Sf-produced vectors, genomes did not decrease from peak expression. Instead, vector genome accessibility significantly decreased from peak to week 57 and correlated with transgene RNA. Vector DNA interactions with active histone marks (H3K27ac/H3K4me3) were significantly reduced from peak to week 57, suggesting that epigenetic regulation impacts transgene expression of Sf-produced vectors.


Subject(s)
Epigenesis, Genetic , Insecta , Humans , Mice , Animals , HEK293 Cells , Mice, Inbred C57BL , RNA , Mammals
5.
J Biol Chem ; 295(39): 13532-13555, 2020 09 25.
Article in English | MEDLINE | ID: mdl-31481471

ABSTRACT

Autosomal recessive mutations in the galactosidase ß1 (GLB1) gene cause lysosomal ß-gal deficiency, resulting in accumulation of galactose-containing substrates and onset of the progressive and fatal neurodegenerative lysosomal storage disease, GM1 gangliosidosis. Here, an enzyme replacement therapy (ERT) approach in fibroblasts from GM1 gangliosidosis patients with recombinant human ß-gal (rhß-gal) produced in Chinese hamster ovary cells enabled direct and precise rhß-gal delivery to acidified lysosomes. A single, low dose (3 nm) of rhß-gal was sufficient for normalizing ß-gal activity and mediating substrate clearance for several weeks. We found that rhß-gal uptake by the fibroblasts is dose-dependent and saturable and can be competitively inhibited by mannose 6-phosphate, suggesting cation-independent, mannose 6-phosphate receptor-mediated endocytosis from the cell surface. A single intracerebroventricularly (ICV) administered dose of rhß-gal (100 µg) resulted in broad bilateral biodistribution of rhß-gal to critical regions of pathology in a mouse model of GM1 gangliosidosis. Weekly ICV dosing of rhß-gal for 8 weeks substantially reduced brain levels of ganglioside and oligosaccharide substrates and reversed well-established secondary neuropathology. Of note, unlike with the ERT approach, chronic lentivirus-mediated GLB1 overexpression in the GM1 gangliosidosis patient fibroblasts caused accumulation of a prelysosomal pool of ß-gal, resulting in activation of the unfolded protein response and endoplasmic reticulum stress. This outcome was unsurprising in light of our in vitro biophysical findings for rhß-gal, which include pH-dependent and concentration-dependent stability and dynamic self-association. Collectively, our results highlight that ICV-ERT is an effective therapeutic intervention for managing GM1 gangliosidosis potentially more safely than with gene therapy approaches.


Subject(s)
Enzyme Replacement Therapy , Gangliosidosis, GM1/therapy , beta-Galactosidase/metabolism , Animals , Gangliosidosis, GM1/metabolism , Gangliosidosis, GM1/pathology , Mice
6.
Mol Ther ; 26(2): 496-509, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29292164

ABSTRACT

Hemophilia A is an X-linked bleeding disorder caused by mutations in the gene encoding the factor VIII (FVIII) coagulation protein. Bleeding episodes in patients are reduced by prophylactic therapy or treated acutely using recombinant or plasma-derived FVIII. We have made an adeno-associated virus 5 vector containing a B domain-deleted (BDD) FVIII gene (BMN 270) with a liver-specific promoter. BMN 270 injected into hemophilic mice resulted in a dose-dependent expression of BDD FVIII protein and a corresponding correction of bleeding time and blood loss. At the highest dose tested, complete correction was achieved. Similar corrections in bleeding were observed at approximately the same plasma levels of FVIII protein produced either endogenously by BMN 270 or following exogenous administration of recombinant BDD FVIII. No evidence of liver dysfunction or hepatocyte endoplasmic reticulum stress was observed. Comparable doses in primates produced similar levels of circulating FVIII. These preclinical data support evaluation of BMN 270 in hemophilia A patients.


Subject(s)
Factor VIII/genetics , Genetic Therapy , Hemophilia A/genetics , Hemophilia A/therapy , Peptide Fragments/genetics , Animals , Apoptosis/genetics , Cell Line , Dependovirus/genetics , Disease Models, Animal , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Gene Expression , Gene Order , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Hemophilia A/blood , Liver/metabolism , Male , Mice , Mice, Transgenic , Peptide Fragments/blood , Primates , Promoter Regions, Genetic
7.
J Neuropsychiatry Clin Neurosci ; 30(3): 208-213, 2018.
Article in English | MEDLINE | ID: mdl-29621927

ABSTRACT

Patients with behavioral variant frontotemporal dementia (bvFTD) and Alzheimer's disease (AD) differ in basic emotional tone. Skin conduction levels (SCLs), a measure of sympathetic tone, may be a sensitive test for discriminating these two dementias early in their course. Previous research has shown differences in resting SCLs between patients with bvFTD and AD, but no study has evaluated the discriminability of SCLs during different environmental conditions. The authors compared bvFTD patients (N=8), AD patients (N=10), and healthy control subjects (N=9) on SCL measures pertaining to real-life vignettes or scenarios differing in valence and emotional intensity. The SCLs among the bvFTD patients were decreased across all conditions, whereas the SCLs among the AD patients were increased compared with control participants. On analysis, the SCLs in response to emotional stimuli differentiated bvFTD from AD with an area under the receiver operator characteristic curve of 95.3%. At a cutoff ≤0.77 µS, emotional vignettes distinguished bvFTD from AD with a sensitivity of 86% and a specificity of 96%. These preliminary results indicate the potential utility of SCLs for differentiating bvFTD from AD early in their course, regardless of environmental condition.


Subject(s)
Alzheimer Disease/diagnosis , Frontotemporal Dementia/diagnosis , Galvanic Skin Response , Alzheimer Disease/physiopathology , Alzheimer Disease/psychology , Diagnosis, Differential , Emotions/physiology , Female , Frontotemporal Dementia/physiopathology , Frontotemporal Dementia/psychology , Humans , Male , Middle Aged , Neuropsychological Tests , Psychophysics , Sensitivity and Specificity
8.
J Thromb Haemost ; 22(5): 1263-1289, 2024 May.
Article in English | MEDLINE | ID: mdl-38103734

ABSTRACT

Adeno-associated virus gene therapy has been the subject of intensive investigation for monogenic disease gene addition therapy for more than 25 years, yet few therapies have been approved by regulatory agencies. Most have not progressed beyond phase 1/2 due to toxicity, lack of efficacy, or both. The liver is a natural target for adeno-associated virus since most serotypes have a high degree of tropism for hepatocytes due to cell surface receptors for the virus and the unique liver sinusoidal geometry facilitating high volumes of blood contact with hepatocyte cell surfaces. Recessive monogenic diseases such as hemophilia represent promising targets since the defective proteins are often synthesized in the liver and secreted into the circulation, making them easy to measure, and many do not require precise regulation. Yet, despite initiation of many disease-specific clinical trials, therapeutic windows are often nonexistent, resulting in excess toxicity and insufficient efficacy. Iterative progress built on these attempts is best illustrated by hemophilia, with the first regulatory approvals for factor IX and factor VIII gene therapies eventually achieved 25 years after the first gene therapy studies in humans. Although successful gene transfer may result in the production of sufficient transgenic protein to modify the disease, many emerging questions on durability, predictability, reliability, and variability of response have not been answered. The underlying biology accounting for these heterogeneous responses and the interplay between host and virus is the subject of intense investigation and the subject of this review.


Subject(s)
Dependovirus , Genetic Therapy , Genetic Vectors , Hemophilia A , Liver , Humans , Dependovirus/genetics , Hemophilia A/therapy , Hemophilia A/genetics , Genetic Therapy/methods , Liver/metabolism , Liver/virology , Animals , Factor VIII/genetics , Factor VIII/metabolism , Gene Transfer Techniques
9.
Blood Adv ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38843379

ABSTRACT

Gene therapy for severe hemophilia A employs an adeno-associated virus (AAV) vector and liver-specific promoters that depend on healthy hepatocyte function to achieve safe and long-lasting increases in FVIII activity. Thus, hepatocyte health is an essential aspect of safe and successful gene therapy. Many people living with hemophilia A have current or past chronic hepatitis C virus infection, metabolic dysfunction-associated steatosis or steatohepatitis, or other conditions that may compromise the efficacy and safety of AAV-mediated gene therapy. In addition, gene therapy may induce an immune response to transduced hepatocytes, leading to liver inflammation and reduced FVIII activity. The immune response can be treated with immunosuppression, but close monitoring of liver function tests and factor levels is necessary. The long-term risk of hepatocellular carcinoma associated with gene therapy is unknown. Routine screening by imaging for hepatocellular carcinoma, preferable every 6 months, is essential in patients at high risk and recommended in all recipients of hemophilia A gene therapy. This paper describes our current understanding of the biologic underpinnings of how liver health affects hemophilia A gene therapy, and provides practical clinical guidance for assessing, monitoring, and managing liver health both before and after gene therapy.

10.
Hum Gene Ther ; 35(1-2): 36-47, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38126359

ABSTRACT

Adeno-associated virus (AAV) vectors are used to deliver therapeutic transgenes, but host immune responses may interfere with transduction and transgene expression. We evaluated prophylactic corticosteroid treatment on AAV5-mediated expression in liver tissue. Wild-type C57BL/6 mice received 6 × 1013 vg/kg AAV5-HLP-hA1AT, an AAV5 vector carrying a human α1-antitrypsin (hA1AT) gene with a hepatocyte-specific promoter. Mice received 4 weeks of daily 2 mg/kg prednisolone or water starting day -1 or 0 before vector dosing. Mice that received prophylactic corticosteroids had significantly higher serum hA1AT protein than mice that did not, starting at 6 weeks and persisting to the study end at 12 weeks, potentially through a decrease in the number of low responders. RNAseq and proteomic analyses investigating mechanisms mediating the improvement of transgene expression found that prophylactic corticosteroid treatment upregulated the AAV5 coreceptor platelet-derived growth factor receptor alpha (PDGFRα) on hepatocytes and downregulated its competitive ligand PDGFα, thus increasing the uptake of AAV5 vectors. Evidently, prophylactic corticosteroid treatment also suppressed acute immune responses to AAV. Together, these mechanisms resulted in increased uptake and preservation of the transgene, allowing more vector genomes to be available to assemble into stable, full-length structures mediating long-term transgene expression. Prophylactic corticosteroids represent a potential actionable strategy to improve AAV5-mediated transgene expression and decrease intersubject variability.


Subject(s)
Prednisolone , Proteomics , Humans , Mice , Animals , Up-Regulation , Mice, Inbred C57BL , Hepatocytes , Transgenes , Adrenal Cortex Hormones , Receptors, Platelet-Derived Growth Factor/genetics , Immunity, Innate , Dependovirus/genetics , Genetic Vectors/genetics
11.
Cogn Behav Neurol ; 26(2): 85-92, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23812172

ABSTRACT

Semantic dementia impairs semantic autobiographical memory, but tends to spare its episodic components that are critical for the sense of self. Investigators have recently discovered disturbances in the "future self" in semantic dementia. We report a 63-year-old man with semantic dementia who was hospitalized after suicide attempts that he attributed to his loss of a sense of future self. He complained of a decreased sense of being human, because he could not imagine doing things in the future that he had done in the past. Suicidal thinking and inability to place himself in future tasks persisted despite resolution of depression. Clinical assessment revealed a crossmodal loss of semantic knowledge, and neuroimaging showed bilateral anterior temporal atrophy and hypometabolism. On specific tests of autobiographical memory, identity, attribute knowledge, and future projection, the patient could return to the past and visualize himself in familiar scenarios, but he could not visualize himself even passively in these scenarios in the future. His future self was impaired not from seeing himself disabled; it was from an absence of semantic details of potential experiences, associated with impaired semantic autobiographical memory. His self-representations were concrete and specific rather than abstract and generalizable. This patient and recent publications indicate that semantic dementia impairs the ability to imagine oneself as capable in the future, leading some patients to suicidal behavior. We discuss possible mechanisms for these findings, including the potential role of abstract construals for future thinking.


Subject(s)
Frontotemporal Dementia/psychology , Self Concept , Suicide, Attempted/psychology , Humans , Imagination , Male , Middle Aged , Thinking
12.
Proc Natl Acad Sci U S A ; 107(43): 18616-21, 2010 Oct 26.
Article in English | MEDLINE | ID: mdl-20926749

ABSTRACT

Most patients who die from cancer succumb to treatment-refractory advanced metastatic progression. Although the early stages of tumor metastasis result in the formation of clinically silent micrometastatic foci, its later stages primarily reflect the progressive, organ-destructive growth of already advanced metastases. Early-stage metastasis is regulated by multiple factors within tumor cells as well as by the tumor microenvironment (TME). In contrast, the molecular determinants that control advanced metastatic progression remain essentially uncharacterized, precluding the development of therapies targeted against it. Here we show that the TME, functioning in part through platelet endothelial cell adhesion molecule 1 (PECAM-1), drives advanced metastatic progression and is essential for progression through its preterminal end stage. PECAM-1-KO and chimeric mice revealed that its metastasis-promoting effects are mediated specifically through vascular endothelial cell (VEC) PECAM-1. Anti-PECAM-1 mAb therapy suppresses both end-stage metastatic progression and tumor-induced cachexia in tumor-bearing mice. It reduces proliferation, but not angiogenesis or apoptosis, within advanced tumor metastases. Because its antimetastatic effects are mediated by binding to VEC rather than to tumor cells, anti-PECAM-1 mAb appears to act independently of tumor type. A modified 3D coculture assay showed that anti-PECAM-1 mAb inhibits the proliferation of PECAM-1-negative tumor cells by altering the concentrations of secreted factors. Our studies indicate that a complex interplay between elements of the TME and advanced tumor metastases directs end-stage metastatic progression. They also suggest that some therapeutic interventions may target late-stage metastases specifically. mAb-based targeting of PECAM-1 represents a TME-targeted therapeutic approach that suppresses the end stages of metastatic progression, until now a refractory clinical entity.


Subject(s)
Neoplasms, Experimental/secondary , Platelet Endothelial Cell Adhesion Molecule-1/physiology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacology , Apoptosis , Bone Marrow Transplantation , Cachexia/therapy , Cell Line, Tumor , Cell Proliferation , Disease Progression , Endothelial Cells/physiology , Female , Humans , Lung Neoplasms/secondary , Lung Neoplasms/therapy , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Mice, Transgenic , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy , Neovascularization, Pathologic , Paracrine Communication , Phenotype , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/immunology
13.
Nat Med ; 28(4): 789-797, 2022 04.
Article in English | MEDLINE | ID: mdl-35411075

ABSTRACT

Factor VIII gene transfer with a single intravenous infusion of valoctocogene roxaparvovec (AAV5-hFVIII-SQ) has demonstrated clinical benefits lasting 5 years to date in people with severe hemophilia A. Molecular mechanisms underlying sustained AAV5-hFVIII-SQ-derived FVIII expression have not been studied in humans. In a substudy of the phase 1/2 clinical trial ( NCT02576795 ), liver biopsy samples were collected 2.6-4.1 years after gene transfer from five participants. Primary objectives were to examine effects on liver histopathology, determine the transduction pattern and percentage of hepatocytes transduced with AAV5-hFVIII-SQ genomes, characterize and quantify episomal forms of vector DNA and quantify transgene expression (hFVIII-SQ RNA and hFVIII-SQ protein). Histopathology revealed no dysplasia, architectural distortion, fibrosis or chronic inflammation, and no endoplasmic reticulum stress was detected in hepatocytes expressing hFVIII-SQ protein. Hepatocytes stained positive for vector genomes, showing a trend for more cells transduced with higher doses. Molecular analysis demonstrated the presence of full-length, inverted terminal repeat-fused, circular episomal genomes, which are associated with long-term expression. Interindividual differences in transgene expression were noted despite similar successful transduction, possibly influenced by host-mediated post-transduction mechanisms of vector transcription, hFVIII-SQ protein translation and secretion. Overall, these results demonstrate persistent episomal vector structures following AAV5-hFVIII-SQ administration and begin to elucidate potential mechanisms mediating interindividual variability.


Subject(s)
Dependovirus , Hemophilia A , Dependovirus/genetics , Dependovirus/metabolism , Factor VIII/genetics , Factor VIII/therapeutic use , Genetic Therapy/methods , Genetic Vectors/genetics , Hemophilia A/genetics , Hemophilia A/therapy , Humans , RNA, Messenger , Transgenes/genetics
14.
Mol Ther Methods Clin Dev ; 24: 142-153, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35036471

ABSTRACT

Valoctocogene roxaparvovec (AAV5-hFVIII-SQ) is an adeno-associated virus serotype 5 (AAV5)-based gene therapy vector containing a B-domain-deleted human coagulation factor VIII (hFVIII) gene controlled by a liver-selective promoter. AAV5-hFVIII-SQ is currently under clinical investigation as a treatment for severe hemophilia A. The full-length AAV5-hFVIII-SQ is >4.9 kb, which is over the optimal packaging limit of AAV5. Following administration, the vector must undergo a number of genome-processing, assembly, and repair steps to form full-length circularized episomes that mediate long-term FVIII expression in target tissues. To understand the processing kinetics of the oversized AAV5-hFVIII-SQ vector genome into circular episomes, we characterized the various molecular forms of the AAV5-hFVIII-SQ genome at multiple time points up to 6 months postdose in the liver of murine and non-human primate models. Full-length circular episomes were detected in liver tissue beginning 1 week postdosing. Over 6 months, quantities of circular episomes (in a predominantly head-to-tail configuration) increased, while DNA species lacking inverted terminal repeats were preferentially degraded. Levels of duplex, circular, full-length genomes significantly correlated with levels of hFVIII-SQ RNA transcripts in mice and non-human primates dosed with AAV5-hFVIII-SQ. Altogether, we show that formation of full-length circular episomes in the liver following AAV5-hFVIII-SQ transduction was associated with long-term FVIII expression.

15.
Mol Ther Methods Clin Dev ; 26: 61-71, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-35782594

ABSTRACT

Recombinant adeno-associated virus (AAV) is an effective platform for therapeutic gene transfer; however, tissue-tropism differences between species are a challenge for successful translation of preclinical results to humans. We evaluated the use of in vitro primary hepatocyte cultures to predict in vivo liver-directed AAV expression in different species. We assessed whether in vitro AAV transduction assays in cultured primary hepatocytes from mice, nonhuman primates (NHPs), and humans could model in vivo liver-directed AAV expression of valoctocogene roxaparvovec (AAV5-hFVIII-SQ), an experimental gene therapy for hemophilia A with a hepatocyte-selective promoter. Relative levels of DNA and RNA in hepatocytes grown in vitro correlated with in vivo liver transduction across species. Expression in NHP hepatocytes more closely reflected expression in human hepatocytes than in mouse hepatocytes. We used this hepatocyte culture model to assess transduction efficacy of a novel liver-directed AAV capsid across species and identified which of 3 different canine factor VIII vectors produced the most transgene expression. Results were confirmed in vivo. Further, we determined mechanisms mediating inhibition of AAV5-hFVIII-SQ expression by concomitant isotretinoin using primary human hepatocytes. These studies support using in vitro primary hepatocyte models to predict species translatability of liver-directed AAV gene therapy and improve mechanistic understanding of drug-drug interactions.

16.
Mol Ther Methods Clin Dev ; 26: 519-531, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36092364

ABSTRACT

Valoctocogene roxaparvovec (AAV5-hFVIII-SQ) gene transfer provided reduced bleeding for adult clinical trial participants with severe hemophilia A. However, pediatric outcomes are unknown. Using a mouse model of hemophilia A, we investigated the effect of vector dose and age at treatment on transgene production and persistence. We dosed AAV5-hFVIII-SQ to neonatal and adult mice based on body weight or at a fixed dose and assessed human factor VIII-SQ variant (hFVIII-SQ) expression through 16 weeks. AAV5-hFVIII-SQ dosed per body weight in neonatal mice did not result in meaningful plasma hFVIII-SQ protein levels in adulthood. When treated with the same total vector genomes per mouse as adult mice, neonates maintained hFVIII-SQ expression into adulthood, although plasma levels were 3- to 4-fold lower versus mice dosed as adults. Mice <1 week old initially exhibited high hFVIII-SQ plasma levels and maintained meaningful levels into adulthood, despite a partial decline potentially due to age-related body mass and blood volume increases. Spatial transduction patterns differed between mice dosed as neonates versus adults. No features of hepatotoxicity or endoplasmic reticulum stress were observed with dosing at any age. These data suggest that young mice require the same total vector genomes as adult mice to sustain hFVIII-SQ plasma levels.

17.
Int J Cancer ; 129(12): 2945-57, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-21509784

ABSTRACT

Bezielle is an orally administered aqueous extract of Scutellaria barbata for treatment of advanced and metastatic breast cancer. Phase I trials showed promising tolerability and efficacy. In our study, we used a combined proteomic-metabolomic approach to investigate the molecular pathways affected by Bezielle in ER-positive BT474 and ER-negative SKBR3 cell lines. In both, Bezielle inhibited cell proliferation, induced cell death and G2 cycle arrest by regulating the mediator proteins Jab1, p27(Kip1) and p21(Cip1) . In addition, it stimulated reactive oxygen species production, hyperactivation of PARP and inhibition of glycolysis. Bezielle's ability to induce oxidative stress was associated with the changes in expression of redox potential maintaining enzymes: glutathione- and thioredoxin-related proteins and peroxiredoxins. In regards to cell metabolism, decreased expression of α-enolase was associated with a reduction of de novo (13) C-lactate formation. Reduced Krebs cycle activity as evidenced by the reduced expression of α-ketoglutarate dehydrogenase and succinyl-CoA synthetase led to decreased intracellular succinate concentrations. By inhibiting glucose metabolism, cells reacted by lowering the expression of glucose transporters and resulting in decreased intracellular glucose concentration. Decreased expression of fatty acid synthase and reduced concentration of phosphocholine indicated considerable changes in phospholipid metabolism. Ultimately, by inhibiting the major energy-producing pathways, Bezielle caused depletion of ATP and NAD(H). Both cell lines were responsive, thus suggesting that Bezielle has the potential to be effective against ER-negative breast cancers. In conclusion, Bezielle's cytotoxicity toward cancer cells is primarily based on inhibition of metabolic pathways that are preferentially activated in tumor cells thus explaining its specificity for cancer cells.


Subject(s)
Breast Neoplasms/metabolism , Metabolomics/methods , Oxidative Stress , Plant Extracts/pharmacology , Proteomics/methods , Breast Neoplasms/drug therapy , Cell Cycle/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Glycolysis/drug effects , Humans , Lipid Metabolism/drug effects , Scutellaria , Scutellaria baicalensis , Signal Transduction/drug effects
18.
BMC Cell Biol ; 11: 23, 2010 Apr 07.
Article in English | MEDLINE | ID: mdl-20374651

ABSTRACT

BACKGROUND: The pro-apoptotic protein CC3/TIP30 has an unusual cellular function as an inhibitor of nucleocytoplasmic transport. This function is likely to be activated under conditions of stress. A number of studies support the notion that CC3 acts as a tumor and metastasis suppressor in various types of cancer. The yeast homolog of CC3 is likely to be involved in responses to DNA damage. Here we examined the potential role of CC3 in regulation of cellular responses to genotoxic stress. RESULTS: We found that forced expression of CC3 in CC3-negative cells strongly delays the repair of UV-induced DNA damage. Exogenously introduced CC3 negatively affects expression levels of DDB2/XPE and p21CIP1, and inhibits induction of c-FOS after UV exposure. In addition, exogenous CC3 prevents the nuclear accumulation of P21CIP in response to UV. These changes in the levels/localization of relevant proteins resulting from the enforced expression of CC3 are likely to contribute to the observed delay in DNA damage repair. Silencing of CC3 in CC3-positive cells has a modest delaying effect on repair of the UV induced damage, but has a much more significant negative affect on the translesion DNA synthesis after UV exposure. This could be related to the higher expression levels and increased nuclear localization of p21CIP1 in cells where expression of CC3 is silenced. Expression of CC3 also inhibits repair of oxidative DNA damage and leads to a decrease in levels of nucleoredoxin, that could contribute to the reduced viability of CC3 expressing cells after oxidative insult. CONCLUSIONS: Manipulation of the cellular levels of CC3 alters expression levels and/or subcellular localization of proteins that exhibit nucleocytoplasmic shuttling. This results in altered responses to genotoxic stress and adversely affects DNA damage repair by affecting the recruitment of adequate amounts of required proteins to proper cellular compartments. Excess of cellular CC3 has a significant negative effect on DNA repair after UV and oxidant exposure, while silencing of endogenous CC3 slightly delays repair of UV-induced damage.


Subject(s)
Acetyltransferases/metabolism , DNA Repair , Transcription Factors/metabolism , Cell Survival , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage/radiation effects , Humans , Nuclear Proteins/metabolism , Oxidative Stress , Oxidoreductases/metabolism , Pyrimidine Dimers/metabolism , Ultraviolet Rays
19.
Int J Cancer ; 126(10): 2490-6, 2010 May 15.
Article in English | MEDLINE | ID: mdl-19662653

ABSTRACT

The inhibitor of basic helix-loop-helix transcription factors, Id-1, is an important gene whose expression increases during prostate cancer progression and that upregulates proliferation, migration and invasion. We used microarray analysis to identify the downstream genes whose transcriptional expression is modulated by Id-1 protein. We compared gene expression in control LNCaP cells and Id-1-transduced LNCaP cells, which become significantly more aggressive after Id-1 overexpression, thus mimicking the high levels of Id-1 detected in metastatic cell lines. We used the Affy HTA U133A Expression Arrays with 45,000 probe sets representing more than 39,000 transcripts. We found that one of the most significantly downregulated genes on Id-1 expression was kallikrein 3 [also called prostate specific antigen (PSA)], the most commonly used biomarker of prostate cancer. Here, we show that the reduction in PSA mRNA and protein expression associated with high-grade prostate cancers, which generally express high levels of Id-1, could be the consequence of Id-1 overexpression.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma/metabolism , Inhibitor of Differentiation Protein 1/metabolism , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/metabolism , Blotting, Western , Carcinoma/immunology , Cell Line, Tumor , Disease Progression , Down-Regulation , Gene Expression Regulation, Neoplastic , Helix-Loop-Helix Motifs/drug effects , Humans , Inhibitor of Differentiation Protein 1/pharmacology , Male , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Prostate-Specific Antigen/drug effects , Prostatic Neoplasms/immunology , RNA, Small Interfering/metabolism , Up-Regulation
20.
Int J Cancer ; 127(5): 1209-19, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20027631

ABSTRACT

Hormonal, targeted and chemotherapeutic strategies largely depend on the expression of their cognate receptors and are often accompanied by intolerable toxicities. Effective and less toxic therapies for estrogen receptor negative (ER-) breast cancers are urgently needed. Here, we present the potential molecular mechanisms mediating the selective pro-apoptotic effect induced by BN107 and its principle terpene, oleanolic acid (OA), on ER- breast cancer cells. A panel of breast cancer cell lines was examined and the most significant cytotoxic effect was observed in ER- breast lines. Apoptosis was the major cellular pathway mediating the cytotoxicity of BN107. We demonstrated that sensitivity to BN107 was correlated to the status of ERalpha. Specifically, the presence of functional ERalpha protected cells from BN107-induced apoptosis and absence of ERalpha increased the sensitivity. BN107, an extract rich in OA derivatives, caused rapid alterations in cholesterol homeostasis, presumably by depleting cholesterol in lipid rafts (LRs), which subsequently interfered with signaling mediated by LRs. We showed that BN107 or OA treatment in ER- breast cancer cells resulted in rapid and specific inhibition of LR-mediated survival signaling, namely mTORC1 and mTORC2 activities, by decreasing the levels of the mTOR/FRAP1, RAPTOR and RICTOR. Cotreatment with cholesterol abolished the proapoptotic effect and restored the disrupted mTOR activities. This is the first report demonstrating possible concomitant inhibition of both mTORC1 and mTORC2 activities by modulating the levels of protein constituents present in these signaling complexes, and thus provides a basis for future development of OA-based mTOR inhibitors.


Subject(s)
Breast Neoplasms/drug therapy , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Gleditsia/chemistry , Oleanolic Acid/pharmacology , Transcription Factors/antagonists & inhibitors , Apoptosis/drug effects , Blotting, Western , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cholesterol/metabolism , Cytochromes c/metabolism , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/antagonists & inhibitors , Estrogen Receptor beta/genetics , Female , Fluorescent Antibody Technique , Humans , Mechanistic Target of Rapamycin Complex 1 , Membrane Microdomains/drug effects , Membrane Potential, Mitochondrial/drug effects , Multiprotein Complexes , Plant Extracts/pharmacology , Proteins , TOR Serine-Threonine Kinases , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL