Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Brain Behav Immun ; 109: 63-77, 2023 03.
Article in English | MEDLINE | ID: mdl-36592872

ABSTRACT

Non-human primates have an important translational value given their close phylogenetic relationship to humans. Studies in these animals remain essential for evaluating efficacy and safety of new therapeutic approaches, particularly in aging primates that display Alzheimer's disease (AD) -like pathology. With the objective to improve amyloid-ß (Aß) targeting immunotherapy, we investigated the safety and efficacy of an active immunisation with an Aß derivative, K6Aß1-30-NH2, in old non-human primates. Thirty-two aged (4-10 year-old) mouse lemurs were enrolled in the study, and received up to four subcutaneous injections of the vaccine in alum adjuvant or adjuvant alone. Even though antibody titres to Aß were not high, pathological examination of the mouse lemur brains showed a significant reduction in intraneuronal Aß that was associated with reduced microgliosis, and the vaccination did not lead to microhemorrhages. Moreover, a subtle cognitive improvement was observed in the vaccinated primates, which was probably linked to Aß clearance. This Aß derivative vaccine appeared to be safe as a prophylactic measure based on the brain analyses and because it did not appear to have detrimental effects on the general health of these old animals.


Subject(s)
Alzheimer Disease , Cheirogaleidae , Vaccines , Animals , Phylogeny , Amyloid beta-Peptides , Immunization , Alzheimer Disease/pathology , Vaccination , Disease Models, Animal
2.
PLoS Comput Biol ; 10(8): e1003735, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25101755

ABSTRACT

In a previous work by Alvarez-Martinez et al. (2011), the authors pointed out some fallacies in the mainstream interpretation of the prion amyloid formation. It appeared necessary to propose an original hypothesis able to reconcile the in vitro data with the predictions of a mathematical model describing the problem. Here, a model is developed accordingly with the hypothesis that an intermediate on-pathway leads to the conformation of the prion protein into an amyloid competent isoform thanks to a structure, called micelles, formed from hydrodynamic interaction. The authors also compare data to the prediction of their model and propose a new hypothesis for the formation of infectious prion amyloids.


Subject(s)
Amyloid/metabolism , Micelles , Models, Molecular , Prions/chemistry , Prions/metabolism , Amyloid/chemistry , Kinetics , Protein Conformation
3.
Sci Rep ; 13(1): 3054, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36810863

ABSTRACT

Microcebus murinus, or gray mouse lemur (GML), is one of the smallest primates known, with a size in between mice and rats. The small size, genetic proximity to humans and prolonged senescence, make this lemur an emerging model for neurodegenerative diseases. For the same reasons, it could help understand how aging affects cardiac activity. Here, we provide the first characterization of sinoatrial (SAN) pacemaker activity and of the effect of aging on GML heart rate (HR). According to GML size, its heartbeat and intrinsic pacemaker frequencies lie in between those of mice and rats. To sustain this fast automaticity the GML SAN expresses funny and Ca2+ currents (If, ICa,L and ICa,T) at densities similar to that of small rodents. SAN automaticity was also responsive to ß-adrenergic and cholinergic pharmacological stimulation, showing a consequent shift in the localization of the origin of pacemaker activity. We found that aging causes decrease of basal HR and atrial remodeling in GML. We also estimated that, over 12 years of a lifetime, GML generates about 3 billion heartbeats, thus, as many as humans and three times more than rodents of equivalent size. In addition, we estimated that the high number of heartbeats per lifetime is a characteristic that distinguishes primates from rodents or other eutherian mammals, independently from body size. Thus, cardiac endurance could contribute to the exceptional longevity of GML and other primates, suggesting that GML's heart sustains a workload comparable to that of humans in a lifetime. In conclusion, despite the fast HR, GML replicates some of the cardiac deficiencies reported in old people, providing a suitable model to study heart rhythm impairment in aging. Moreover, we estimated that, along with humans and other primates, GML presents a remarkable cardiac longevity, enabling longer life span than other mammals of equivalent size.


Subject(s)
Cheirogaleidae , Humans , Rats , Animals , Longevity , Aging/physiology , Heart , Heart Rate/physiology , Mammals
4.
Biochim Biophys Acta ; 1814(10): 1305-17, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21683809

ABSTRACT

It is generally accepted that spongiform encephalopathies result from the aggregation into amyloid of a ubiquitous protein, the so-called prion protein. As a consequence, the dynamics of amyloid formation should explain the characteristics of the prion diseases: infectivity as well as sporadic and genetic occurrence, long incubation time, species barriers and strain specificities. The success of this amyloid hypothesis is due to the good qualitative agreement of this hypothesis with the observations. However, a number of difficulties appeared when comparing quantitatively the in vitro experimental results with the theoretical models, suggesting that some differences should hide important discrepancies. We used well defined quantitative models to analyze the experimental results obtained by in vitro polymerization of the recombinant hamster prion protein. Although the dynamics of polymerization resembles a simple nucleus-dependent fibrillogenesis, neither the initial concentration dependence nor off-pathway hypothesis fit with experimental results. Furthermore, seeded polymerization starts after a long time delay suggesting the existence of a specific mechanism that takes place before nucleus formation. On the other hand, polymerization dynamics reveals a highly stochastic mechanism, the origin of which appears to be caused by nucleation heterogeneity. Moreover, the specific structures generated during nucleation are maintained during successive seeding although a clear improvement of the dynamics parameters (polymerization rate and lag time) is observed. We propose that an additional on-pathway reaction takes place before nucleation and it is responsible for the heterogeneity of structures produced during prion protein polymerization in vitro. These amyloid structures behave like prion strains. A model is proposed to explain the genesis of heterogeneity among prion amyloid.


Subject(s)
Plaque, Amyloid/metabolism , Prions/chemistry , Prions/metabolism , Protein Multimerization/physiology , Animals , Buffers , Cricetinae , Crystallization , Humans , Kinetics , Models, Biological , Molecular Dynamics Simulation , Plaque, Amyloid/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Signal Transduction , Time Factors
5.
Neurobiol Aging ; 94: 207-216, 2020 10.
Article in English | MEDLINE | ID: mdl-32650184

ABSTRACT

The gray mouse lemur (Microcebus murinus) is a valuable model in research on age-related proteopathies. This nonhuman primate, comparable to humans, naturally develops tau and amyloid-ß proteopathies during aging. Whether these are linked to cognitive alterations is unknown. Here, standardized cognitive testing in pairwise discrimination and reversal learning in a sample of 37 aged (>5 years) subjects was combined with tau and amyloid-ß histochemistry in individuals that died naturally. Correlation analyses in successfully tested subjects (n = 22) revealed a significant relation between object discrimination learning and age, strongly influenced by outliers, suggesting pathological cases. Where neuroimmunohistochemistry was possible, as subjects deceased, the naturally developed cortical amyloid-ß burden was significantly linked to pretraining success (intraneuronal accumulations) and discrimination learning (extracellular deposits), showing that cognitive (pairwise discrimination) performance in old age predicts the natural accumulation of amyloid-ß at death. This is the first description of a direct relation between the cortical amyloid-ß burden and cognition in a nonhuman primate.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain/metabolism , Brain/physiopathology , Cognition/physiology , Cognitive Aging/psychology , Animals , Cheirogaleidae , Discrimination Learning/physiology , Disease Models, Animal , Female , Male , tau Proteins/metabolism
6.
JCI Insight ; 3(14)2018 07 26.
Article in English | MEDLINE | ID: mdl-30046008

ABSTRACT

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease among the elderly. To understand its pathogenesis and to test therapies, animal models that faithfully reproduce key pathological PD hallmarks are needed. As a prelude to developing a model of PD, we tested the tropism, efficacy, biodistribution, and transcriptional effect of canine adenovirus type 2 (CAV-2) vectors in the brain of Microcebus murinus, a nonhuman primate that naturally develops neurodegenerative lesions. We show that introducing helper-dependent (HD) CAV-2 vectors results in long-term, neuron-specific expression at the injection site and in afferent nuclei. Although HD CAV-2 vector injection induced a modest transcriptional response, no significant adaptive immune response was generated. We then generated and tested HD CAV-2 vectors expressing leucine-rich repeat kinase 2 (LRRK2) and LRRK2 carrying a G2019S mutation (LRRK2G2019S), which is linked to sporadic and familial autosomal dominant forms of PD. We show that HD-LRRK2G2019S expression induced parkinsonian-like motor symptoms and histological features in less than 4 months.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/pharmacology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Adenoviruses, Canine/genetics , Animals , Brain/drug effects , Brain/pathology , Cheirogaleidae , Female , Gene Expression Profiling , Genetic Vectors , Male , Mutation , Neurons/drug effects , Stereotaxic Techniques , Tissue Distribution , Transcriptome , Transduction, Genetic , Tropism
7.
Neurobiol Aging ; 34(11): 2613-22, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23796662

ABSTRACT

Anti-amyloid beta (Aß) immunotherapy provides potential benefits in Alzheimer's disease patients. Nevertheless, strategies based on Aß1-42 peptide induced encephalomyelitis and possible microhemorrhages. These outcomes were not expected from studies performed in rodents. It is critical to determine if other animal models better predict side effects of immunotherapies. Mouse lemur primates can develop amyloidosis with aging. Here we used old lemurs to study immunotherapy based on Aß1-42 or Aß-derivative (K6Aß1-30). We followed anti-Aß40 immunoglobulin G and M responses and Aß levels in plasma. In vivo magnetic resonance imaging and histology were used to evaluate amyloidosis, neuroinflammation, vasogenic edema, microhemorrhages, and brain iron deposits. The animals responded mainly to the Aß1-42 immunogen. This treatment induced immune response and increased Aß levels in plasma and also microhemorrhages and iron deposits in the choroid plexus. A complementary study of untreated lemurs showed iron accumulation in the choroid plexus with normal aging. Worsening of iron accumulation is thus a potential side effect of Aß-immunization at prodromal stages of Alzheimer's disease, and should be monitored in clinical trials.


Subject(s)
Cerebral Hemorrhage/chemically induced , Cerebral Hemorrhage/pathology , Choroid Plexus/metabolism , Immunization/adverse effects , Iron/metabolism , Adjuvants, Immunologic/administration & dosage , Age Factors , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/toxicity , Animals , Cerebral Hemorrhage/immunology , Cheirogaleidae , Choroid Plexus/drug effects , Disease Models, Animal , Image Processing, Computer-Assisted , Immunoglobulins/blood , Magnetic Resonance Imaging , Peptide Fragments/adverse effects , Peptide Fragments/blood , Peptide Fragments/immunology , Peptide Fragments/toxicity , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Polysaccharides, Bacterial/immunology , Statistics as Topic , Time Factors
8.
Vet Res ; 39(4): 9, 2008.
Article in English | MEDLINE | ID: mdl-18073096

ABSTRACT

The prion protein (PrP) plays a key role in the pathogenesis of prion diseases. However, the normal function of the protein remains unclear. The cellular isoform (PrP(C)) is expressed most abundantly in the brain, but has also been detected in other non-neuronal tissues as diverse as lymphoid cells, lung, heart, kidney, gastrointestinal tract, muscle, and mammary glands. Cell biological studies of PrP contribute to our understanding of PrP(C) function. Like other membrane proteins, PrP(C) is post-translationally processed in the endoplasmic reticulum and Golgi on its way to the cell surface after synthesis. Cell surface PrP(C) constitutively cycles between the plasma membrane and early endosomes via a clathrin-dependent mechanism, a pathway consistent with a suggested role for PrP(C) in cellular trafficking of copper ions. Although PrP(-/-) mice have been reported to have only minor alterations in immune function, PrP(C) is up-regulated in T cell activation and may be expressed at higher levels by specialized classes of lymphocytes. Furthermore, antibody cross-linking of surface PrP(C) modulates T cell activation and leads to rearrangements of lipid raft constituents and increased phosphorylation of signaling proteins. These findings appear to indicate an important but, as yet, ill-defined role in T cell function. Recent work has suggested that PrP(C) is required for self-renewal of haematopoietic stem cells. PrP(C) is highly expressed in the central nervous system, and since this is the major site of prion pathology, most interest has focused on defining the role of PrP(C) in neurones. Although PrP(-/-) mice have a grossly normal neurological phenotype, even when neuronal PrP(C) is knocked out postnatally, they do have subtle abnormalities in synaptic transmission, hippocampal morphology, circadian rhythms, and cognition and seizure threshold. Other postulated neuronal roles for PrP(C) include copper-binding, as an anti- and conversely, pro-apoptotic protein, as a signaling molecule, and in supporting neuronal morphology and adhesion. The prion protein may also function as a metal binding protein such as copper, yielding cellular antioxidant capacity suggesting a role in the oxidative stress homeostasis. Finally, recent observations on the role of PrP(C) in long-term memory open a challenging field.


Subject(s)
Prions/physiology , Animals , Cell Membrane/physiology , Copper/metabolism , Mice , Prions/genetics , Protein Isoforms
9.
J Immunol ; 177(8): 5533-9, 2006 Oct 15.
Article in English | MEDLINE | ID: mdl-17015740

ABSTRACT

Human Vgamma9Vdelta2 T cells play a crucial role in early immune response to intracellular pathogens. Moreover, in brucellosis, these cells are drastically increased in the peripheral blood of patients during the acute phase of infection. In vitro, Vgamma9Vdelta2 T cells are capable of inhibiting Brucella growth and development through a combination of mechanisms: 1) cytotoxicity, 2) macrophage activation and bactericidal activity through cytokine and chemokine secretion, and 3) antibacterial effects. We previously described that antibacterial factors were found in supernatants from activated Vgamma9Vdelta2 T cells. In this study, we show that Vgamma9Vdelta2 T cells express the human cathelicidin hCAP18 and its mature form, known as LL-37, is released upon activation of Vgamma9Vdelta2 T cells. We also show that LL-37 has an antibacterial effect on Brucella suis. Overall, our results demonstrate that LL-37 is a soluble factor responsible for a part of the bactericidal activity of Vgamma9Vdelta2 T cells.


Subject(s)
Antimicrobial Cationic Peptides/immunology , Brucella suis/immunology , Receptors, Antigen, T-Cell, gamma-delta/physiology , T-Lymphocytes/immunology , Blood Bactericidal Activity , Brucellosis/immunology , Cells, Cultured , Humans , Immunity, Innate , Lymphocyte Activation , T-Lymphocytes/microbiology , Cathelicidins
10.
J Immunol ; 176(12): 7254-62, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16751368

ABSTRACT

The cellular prion protein (PrPC) is a host-encoded, GPI-anchored cell surface protein, expressed on a wide range of tissues including neuronal and lymphoreticular cells. PrPC may undergo posttranslational conversion, giving rise to scrapie PrP, the pathogenic conformer considered as responsible for prion diseases. Despite intensive studies, the normal function of PrPC is still enigmatic. Starting from microscope observations showing an accumulation of PrPC at the sites of contact between T cells and Ag-loaded dendritic cells (DC), we have studied the contribution of PrPC in alloantigen and peptide-MHC-driven T/DC interactions. Whereas the absence of PrPC on the DC results in a reduced allogeneic T cell response, its absence on the T cell partner has no apparent effect upon this response. Therefore, PrPC seems to fulfill different functions on the two cell partners forming the synapse. In contrast, PrPC mobilization by Ab reduces the stimulatory properties of DC and the proliferative potential of responding T cells. The contrasted consequences, regarding T cell function, between PrPC deletion and PrPC coating by Abs, suggests that the prion protein acts as a signaling molecule on T cells. Furthermore, our results show that the absence of PrPC has consequences in vivo also, upon the ability of APCs to stimulate proliferative T cell responses. Thus, independent of neurological considerations, some of the evolutionary constraints that may have contributed to the conservation of the Prnp gene in mammalians, could be of immunological origin.


Subject(s)
Cell Communication/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , H-Y Antigen/physiology , Prions/physiology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Amino Acid Sequence , Animals , Antigen Presentation/genetics , Cell Adhesion/immunology , Cell Communication/genetics , Cell Differentiation/immunology , Cell Membrane/genetics , Cell Membrane/immunology , Cell Membrane/metabolism , Dendritic Cells/cytology , Female , Lymphocyte Activation/genetics , Lymphocyte Culture Test, Mixed , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Molecular Sequence Data , Prions/biosynthesis , Prions/genetics , Receptors, Antigen, T-Cell/genetics , T-Lymphocyte Subsets/cytology , Up-Regulation/genetics , Up-Regulation/immunology
11.
Infect Immun ; 73(10): 6229-36, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16177294

ABSTRACT

Brucella spp. are stealthy bacteria that enter host cells without major perturbation. The molecular mechanism involved is still poorly understood, although numerous studies have been published on this subject. Recently, it was reported that Brucella abortus utilizes cellular prion protein (PrP(C)) to enter the cells and to reach its replicative niche. The molecular mechanisms involved were not clearly defined, prompting us to analyze this process using blocking antibodies against PrP(C). However, the behavior of Brucella during cellular infection under these conditions was not modified. In a next step, the behavior of Brucella in macrophages lacking the prion gene and the infection of mice knocked out for the prion gene were studied. We observed no difference from results obtained with the wild-type control. Although some contacts between PrP(C) and Brucella were observed on the surface of the cells by using confocal microscopy, we could not show that Brucella specifically bound recombinant PrP(C). Therefore, we concluded from our results that prion protein (PrP(C)) was not involved in Brucella infection.


Subject(s)
Brucella suis/physiology , Brucellosis/etiology , Macrophages/microbiology , PrPC Proteins/physiology , Animals , Antibodies/pharmacology , Brucella suis/chemistry , Brucellosis/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Chaperonin 60/analysis , Chaperonin 60/metabolism , Macrophages/metabolism , Mice , Mice, Knockout , Phagosomes/metabolism , PrPC Proteins/antagonists & inhibitors , PrPC Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL