Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Anim Genet ; 55(2): 193-205, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38191264

ABSTRACT

Large genotyping datasets, obtained from high-density single nucleotide polymorphism (SNP) arrays, developed for different livestock species, can be used to describe and differentiate breeds or populations. To identify the most discriminating genetic markers among thousands of genotyped SNPs, a few statistical approaches have been proposed. In this study, we applied the Boruta algorithm, a wrapper of the machine learning random forest algorithm, on a database of 23 European pig breeds (20 autochthonous and three cosmopolitan breeds) genotyped with a 70k SNP chip, to pre-select informative SNPs. To identify different sets of SNPs, these pre-selected markers were then ranked with random forest based on their mean decrease accuracy and mean decrease gene indexes. We evaluated the efficiency of these subsets for breed classification and the usefulness of this approach to detect candidate genes affecting breed-specific phenotypes and relevant production traits that might differ among breeds. The lowest overall classification error (2.3%) was reached with a subpanel including only 398 SNPs (ranked based on their mean decrease accuracy), with no classification error in seven breeds using up to 49 SNPs. Several SNPs of these selected subpanels were in genomic regions in which previous studies had identified signatures of selection or genes associated with morphological or production traits that distinguish the analysed breeds. Therefore, even if these approaches have not been originally designed to identify signatures of selection, the obtained results showed that they could potentially be useful for this purpose.


Subject(s)
Algorithms , Genome , Swine/genetics , Animals , Genotype , Phenotype , Polymorphism, Single Nucleotide , Machine Learning
2.
J Anim Breed Genet ; 141(3): 328-342, 2024 May.
Article in English | MEDLINE | ID: mdl-38152994

ABSTRACT

Selection and breeding strategies to improve resistance to enteropathies are essential to reaching the sustainability of the rabbit production systems. However, disease heterogeneity (having only as major visible symptom diarrhoea) and low disease heritability are two barriers for the implementation of these strategies. Diarrhoea condition can affect rabbits at different life stages, starting from the suckling period, with large negative economic impacts. In this study, from a commercial population of suckling rabbits (derived from 133 litters) that experienced an outbreak of enteropathy, we first selected a few animals that died with severe symptoms of diarrhoea and characterized their microbiota, using 16S rRNA gene sequencing data. Clostridium genus was consistently present in all affected specimens. In addition, with the aim to identify genetic markers in the rabbit genome that could be used as selection tools, we performed genome-wide association studies for symptoms of diarrhoea in the same commercial rabbit population. These studies were also complemented with FST analyses between the same groups of rabbits. A total of 332 suckling rabbits (151 with severe symptoms of diarrhoea, 42 with mild symptoms and 129 without any symptoms till the weaning period), derived from 45 different litters (a subset of the 133 litters) were genotyped with the Affymetrix Axiom OrcunSNP Array. In both genomic approaches, rabbits within litters were paired to constitute two groups (susceptible and resistant, including the mildly affected in one or the other group) and run case and control genome-wide association analyses. Genomic heritability estimated in the designed experimental structure integrated in a commercial breeding scheme was 0.19-0.21 (s.e. 0.09-0.10). A total of eight genomic regions on rabbit chromosome 2 (OCU2), OCU3, OCU7, OCU12, OCU13, OCU16 and in an unassembled scaffold had significant single nucleotide polymorphisms (SNPs) and/or markers that trespassed the FST percentile distribution. Among these regions, three main peaks of SNPs were identified on OCU12, OCU13 and OCU16. The QTL region on OCU13 encompasses several genes that encode members of a family of immunoglobulin Fc receptors (FCER1G, FCRLA, FCRLB and FCGR2A) involved in the immune innate system, which might be important candidate genes for this pathogenic condition. The results obtained in this study demonstrated that resistance to an enteropathy occurring in suckling rabbits is in part genetically determined and can be dissected at the genomic level, providing DNA markers that could be used in breeding programmes to increase resistance to enteropathies in meat rabbits.


Subject(s)
Genome-Wide Association Study , Genome , Rabbits , Animals , Genome-Wide Association Study/veterinary , RNA, Ribosomal, 16S , Genomics , Genetic Markers , Polymorphism, Single Nucleotide , Diarrhea/genetics , Diarrhea/veterinary
3.
Genet Sel Evol ; 55(1): 88, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062367

ABSTRACT

BACKGROUND: Intense selection of modern pig breeds has resulted in genetic improvement of production traits while the performance of local pig breeds has remained lower. As local pig breeds have been bred in extensive systems, they have adapted to specific environmental conditions, resulting in a rich genotypic and phenotypic diversity. This study is based on European local pig breeds that have been genetically characterized using DNA-pool sequencing data and phenotypically characterized using breed level phenotypes related to stature, fatness, growth, and reproductive performance traits. These data were analyzed using a dedicated approach to detect signatures of selection linked to phenotypic traits in order to uncover potential candidate genes that may underlie adaptation to specific environments. RESULTS: Analysis of the genetic data of European pig breeds revealed four main axes of genetic variation represented by the Iberian and three modern breeds (i.e. Large White, Landrace, and Duroc). In addition, breeds clustered according to their geographical origin, for example French Gascon and Basque breeds, Italian Apulo Calabrese and Casertana breeds, Spanish Iberian, and Portuguese Alentejano breeds. Principal component analysis of the phenotypic data distinguished the larger and leaner breeds with better growth potential and reproductive performance from the smaller and fatter breeds with low growth and reproductive efficiency. Linking the signatures of selection with phenotype identified 16 significant genomic regions associated with stature, 24 with fatness, 2 with growth, and 192 with reproduction. Among them, several regions contained candidate genes with possible biological effects on stature, fatness, growth, and reproductive performance traits. For example, strong associations were found for stature in two regions containing, respectively, the ANXA4 and ANTXR1 genes, for fatness in a region containing the DNMT3A and POMC genes and for reproductive performance in a region containing the HSD17B7 gene. CONCLUSIONS: In this study on European local pig breeds, we used a dedicated approach for detecting signatures of selection that were supported by phenotypic data at the breed level to identify potential candidate genes that may have adapted to different living environments and production systems.


Subject(s)
Genome , Genomics , Swine/genetics , Animals , Phenotype , Genotype , Genomics/methods , Sequence Analysis, DNA
4.
Anim Genet ; 54(4): 510-525, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37194440

ABSTRACT

The domestic canary (Serinus canaria) is one of the most common pet birds and has been extensively selected and bred over the last few centuries to constitute many different varieties. Plumage pigmentation is one of the main phenotypic traits that distinguish canary breeds and lines. Feather colours in these birds, similarly to other avian species, are mainly depended on the presence of two major types of pigments: carotenoids and melanins. In this study, we exploited whole genome sequencing (WGS) datasets produced from five canary lines or populations (Black Frosted Yellow, Opal, Onyx, Opal × Onyx and Mogno, some of which carrying different putative dilute alleles), complemented with other WGS datasets retrieved from previous studies, to identify candidate genes that might explain pigmentation variability across canary breeds and varieties. Sequencing data were obtained using a DNA pool-seq approach and genomic data were compared using window-based FST analyses. We identified signatures of selection in genomic regions harbouring genes involved in carotenoid-derived pigmentation variants (CYP2J19, EDC, BCO2 and SCARB1), confirming the results reported by previous works, and identified several other signatures of selection in the correspondence of melanogenesis-related genes (AGRP, ASIP, DCT, EDNRB, KITLG, MITF, MLPH, SLC45A2, TYRP1 and ZEB2). Two putative causative mutations were identified in the MLPH gene that may explain the Opal and Onyx dilute mutant alleles. Other signatures of selection were also identified that might explain additional phenotypic differences between the investigated canary populations.


Subject(s)
Canaries , Pigmentation , Animals , Canaries/genetics , Color , Mutation , Pigmentation/genetics , Carotenoids , Alleles , Whole Genome Sequencing/veterinary
5.
Genomics ; 114(2): 110312, 2022 03.
Article in English | MEDLINE | ID: mdl-35151839

ABSTRACT

Whole genome sequencing (WGS) datasets, usually generated for the investigation of the individual animal genome, can be used for additional mining of the fraction of sequencing reads that remains unmapped to the respective reference genome. A significant proportion of these reads contains viral DNA derived from viruses that infected the sequenced animals. In this study, we mined more than 480 billion sequencing reads derived from 1471 WGS datasets produced from cattle, pigs, chickens and rabbits. We identified 367 different viruses among which 14, 11, 12 and 1 might specifically infect the cattle, pig, chicken and rabbit, respectively. Some of them are ubiquitous, avirulent, highly or potentially damaging for both livestock and humans. Retrieved viral DNA information provided a first unconventional and opportunistic landscape of the livestock viromes that could be useful to understand the distribution of some viruses with potential deleterious impacts on the animal food production systems.


Subject(s)
Virome , Viruses , Animals , Cattle , Chickens/genetics , DNA, Viral , Genome , High-Throughput Nucleotide Sequencing , Livestock/genetics , Rabbits , Swine , Viruses/genetics
6.
J Anim Breed Genet ; 140(6): 663-678, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37435689

ABSTRACT

Following the recent domestication process of the European rabbit (Oryctolagus cuniculus), many different breeds and lines, distinguished primarily by exterior traits such as coat colour, fur structure and body size and shape, have been constituted. In this study, we genotyped, with a high-density single-nucleotide polymorphism panel, a total of 645 rabbits from 10 fancy breeds (Belgian Hare, Champagne d'Argent, Checkered Giant, Coloured Dwarf, Dwarf Lop, Ermine, Giant Grey, Giant White, Rex and Rhinelander) and three meat breeds (Italian White, Italian Spotted and Italian Silver). ADMIXTURE analysis indicated that breeds with similar phenotypic traits (e.g. coat colour and body size) shared common ancestries. Signatures of selection using two haplotype-based approaches (iHS and XP-EHH), combined with the results obtained with other methods previously reported that we applied to the same breeds, we identified a total of 5079 independent genomic regions with some signatures of selection, covering about 1777 Mb of the rabbit genome. These regions consistently encompassed many genes involved in pigmentation processes (ASIP, EDNRA, EDNRB, KIT, KITLG, MITF, OCA2, TYR and TYRP1), coat structure (LIPH) and body size, including two major genes (LCORL and HMGA2) among many others. This study revealed novel genomic regions under signatures of selection and further demonstrated that population structures and signatures of selection, left into the genome of these rabbit breeds, may contribute to understanding the genetic events that led to their constitution and the complex genetic mechanisms determining the broad phenotypic variability present in these untapped rabbit genetic resources.

7.
Genet Sel Evol ; 54(1): 3, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35062866

ABSTRACT

BACKGROUND: Domestication of the rabbit (Oryctolagus cuniculus) has led to a multi-purpose species that includes many breeds and lines with a broad phenotypic diversity, mainly for external traits (e.g. coat colours and patterns, fur structure, and morphometric traits) that are valued by fancy rabbit breeders. As a consequence of this human-driven selection, distinct signatures are expected to be present in the rabbit genome, defined as signatures of selection or selective sweeps. Here, we investigated the genome of three Italian commercial meat rabbit breeds (Italian Silver, Italian Spotted and Italian White) and 12 fancy rabbit breeds (Belgian Hare, Burgundy Fawn, Champagne d'Argent, Checkered Giant, Coloured Dwarf, Dwarf Lop, Ermine, Giant Grey, Giant White, Rex, Rhinelander and Thuringian) by using high-density single nucleotide polymorphism data. Signatures of selection were identified based on the fixation index (FST) statistic with different approaches, including single-breed and group-based methods, the latter comparing breeds that are grouped based on external traits (different coat colours and body sizes) and types (i.e. meat vs. fancy breeds). RESULTS: We identified 309 genomic regions that contained signatures of selection and that included genes that are known to affect coat colour (ASIP, MC1R and TYR), coat structure (LIPH), and body size (LCORL/NCAPG, COL11A1 and HOXD) in rabbits and that characterize the investigated breeds. Their identification proves the suitability of the applied methodologies for capturing recent selection events. Other regions included novel candidate genes that might contribute to the phenotypic variation among the analyzed breeds, including genes for pigmentation-related traits (EDNRA, EDNRB, MITF and OCA2) and body size, with a strong candidate for dwarfism in rabbit (COL2A1). CONCLUSIONS: We report a genome-wide view of genetic loci that underlie the main phenotypic differences in the analyzed rabbit breeds, which can be useful to understand the shift from the domestication process to the development of breeds in O. cuniculus. These results enhance our knowledge about the major genetic loci involved in rabbit external traits and add novel information to understand the complexity of the genetic architecture underlying body size in mammals.


Subject(s)
Genome , Genomics , Animals , Meat , Phenotype , Polymorphism, Single Nucleotide , Rabbits , Selection, Genetic
8.
Anim Genet ; 53(6): 849-862, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36073189

ABSTRACT

Runs of homozygosity (ROH) are defined as long stretches of DNA homozygous at each polymorphic position. The proportion of genome covered by ROH and their length are indicators of the level and origin of inbreeding. In this study, we analysed SNP chip datasets (obtained using the Axiom OrcunSNP Array) of a total of 702 rabbits from 12 fancy breeds and four meat breeds to identify ROH with different approaches and calculate several genomic inbreeding parameters. The highest average number of ROH per animal was detected in Belgian Hare (~150) and the lowest in Italian Silver (~106). The average length of ROH ranged from 4.001 ± 0.556 Mb in Italian White to 6.268 ± 1.355 Mb in Ermine. The same two breeds had the lowest (427.9 ± 86.4 Mb, Italian White) and the highest (921.3 ± 179.8 Mb, Ermine) average values of the sum of all ROH segments. More fancy breeds had a higher level of genomic inbreeding (as defined by ROH) than meat breeds. Several ROH islands contain genes involved in body size, body length, pigmentation processes, carcass traits, growth, and reproduction traits (e.g.: AOX1, GPX5, IFRD1, ITGB8, NELL1, NR3C1, OCA2, TRIB1, TRIB2). Genomic inbreeding parameters can be useful to overcome the lack of information in the management of rabbit genetic resources. ROH provided information to understand, to some extent, the genetic history of rabbit breeds and to identify signatures of selection in the rabbit genome.


Subject(s)
Inbreeding , Polymorphism, Single Nucleotide , Rabbits , Animals , Islands , Homozygote , Genomics , Meat , Genotype
9.
J Dairy Sci ; 105(3): 2408-2425, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34955250

ABSTRACT

Reggiana and Modenese are autochthonous cattle breeds, reared in the North of Italy, that can be mainly distinguished for their standard coat color (Reggiana is red, whereas Modenese is white with some pale gray shades). Almost all milk produced by these breeds is transformed into 2 mono-breed branded Parmigiano-Reggiano cheeses, from which farmers receive the economic incomes needed for the sustainable conservation of these animal genetic resources. After the setting up of their herd books in 1960s, these breeds experienced a strong reduction in the population size that was subsequently reverted starting in the 1990s (Reggiana) or more recently (Modenese) reaching at present a total of about 2,800 and 500 registered cows, respectively. Due to the small population size of these breeds, inbreeding is a very important cause of concern for their conservation programs. Inbreeding is traditionally estimated using pedigree data, which are summarized in an inbreeding coefficient calculated at the individual level (FPED). However, incompleteness of pedigree information and registration errors can affect the effectiveness of conservation strategies. High-throughput SNP genotyping platforms allow investigation of inbreeding using genome information that can overcome the limits of pedigree data. Several approaches have been proposed to estimate genomic inbreeding, with the use of runs of homozygosity (ROH) considered to be the more appropriate. In this study, several pedigree and genomic inbreeding parameters, calculated using the whole herd book populations or considering genotyping information (GeneSeek GGP Bovine 150K) from 1,684 Reggiana cattle and 323 Modenese cattle, were compared. Average inbreeding values per year were used to calculate effective population size. Reggiana breed had generally lower genomic inbreeding values than Modenese breed. The low correlation between pedigree-based and genomic-based parameters (ranging from 0.187 to 0.195 and 0.319 to 0.323 in the Reggiana and Modenese breeds, respectively) reflected the common problems of local populations in which pedigree records are not complete. The high proportion of short ROH over the total number of ROH indicates no major recent inbreeding events in both breeds. ROH islands spread over the genome of the 2 breeds (15 in Reggiana and 14 in Modenese) identified several signatures of selection. Some of these included genes affecting milk production traits, stature, body conformation traits (with a main ROH island in both breeds on BTA6 containing the ABCG2, NCAPG, and LCORL genes) and coat color (on BTA13 in Modenese containing the ASIP gene). In conclusion, this work provides an extensive comparative analysis of pedigree and genomic inbreeding parameters and relevant genomic information that will be useful in the conservation strategies of these 2 iconic local cattle breeds.


Subject(s)
Inbreeding , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Female , Genotype , Homozygote , Islands , Italy
10.
J Anim Breed Genet ; 139(3): 307-319, 2022 May.
Article in English | MEDLINE | ID: mdl-34841617

ABSTRACT

Autochthonous cattle breeds are genetic resources that, in many cases, have been fixed for inheritable exterior phenotypes useful to understand the genetic mechanisms affecting these breed-specific traits. Reggiana and Modenese are two closely related autochthonous cattle breeds mainly raised in the production area of the well-known Protected Designation of Origin Parmigiano-Reggiano cheese, in the North of Italy. These breeds can be mainly distinguished for their standard coat colour: solid red in Reggiana and solid white with pale shades of grey in Modenese. In this study we genotyped with the GeneSeek GGP Bovine 150k single nucleotide polymorphism (SNP) chip almost half of the extant cattle populations of Reggiana (n = 1109 and Modenese (n = 326) and used genome-wide information in comparative FST analyses to detect signatures of selection that diverge between these two autochthonous breeds. The two breeds could be clearly distinguished using multidimensional scaling plots and admixture analysis. Considering the top 0.0005% FST values, a total of 64 markers were detected in the single-marker analysis. The top FST value was detected for the melanocortin 1 receptor (MC1R) gene mutation, which determines the red coat colour of the Reggiana breed. Another coat colour gene, agouti signalling protein (ASIP), emerged amongst this list of top SNPs. These results were also confirmed with the window-based analyses, which included 0.5-Mb or 1-Mb genome regions. As variability affecting ASIP has been associated with white coat colour in sheep and goats, these results highlighted this gene as a strong candidate affecting coat colour in Modenese breed. This study demonstrates how population genomic approaches designed to take advantage from the diversity between local genetic resources could provide interesting hints to explain exterior traits not yet completely investigated in cattle.


Subject(s)
Genome , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Color , Genotype , Italy , Phenotype , Sheep/genetics
11.
J Invertebr Pathol ; 184: 107628, 2021 09.
Article in English | MEDLINE | ID: mdl-34090931

ABSTRACT

Lotmaria passim is a trypanosomatid that infects honey bees. In this study, we established an axenic culture of L. passim from Italian isolates and then used its DNA as a control in subsequent analyses that investigated environmental DNA (eDNA) to detect this trypasonosomatid. The source of eDNA was honey, which has been already demonstrated to be useful to detect honey bee parasites. DNA from a total of 164 honey samples collected in the North of Italy was amplified with three L. passim specific PCR primers and 78% of the analysed samples gave positive results. These results indicated a high prevalence rate of this trypanosomatid in the North of Italy, where it might be considered another threat to honey bee health.


Subject(s)
Bees/parasitology , DNA, Environmental/analysis , Honey/analysis , Trypanosomatina/isolation & purification , Animals , Beekeeping , Italy
12.
Genet Sel Evol ; 52(1): 33, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32591011

ABSTRACT

BACKGROUND: Natural and artificial directional selection in cosmopolitan and autochthonous pig breeds and wild boars have shaped their genomes and resulted in a reservoir of animal genetic diversity. Signatures of selection are the result of these selection events that have contributed to the adaptation of breeds to different environments and production systems. In this study, we analysed the genome variability of 19 European autochthonous pig breeds (Alentejana, Bísara, Majorcan Black, Basque, Gascon, Apulo-Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano, Sarda, Krskopolje pig, Black Slavonian, Turopolje, Moravka, Swallow-Bellied Mangalitsa, Schwäbisch-Hällisches Schwein, Lithuanian indigenous wattle and Lithuanian White old type) from nine countries, three European commercial breeds (Italian Large White, Italian Landrace and Italian Duroc), and European wild boars, by mining whole-genome sequencing data obtained by using a DNA-pool sequencing approach. Signatures of selection were identified by using a single-breed approach with two statistics [within-breed pooled heterozygosity (HP) and fixation index (FST)] and group-based FST approaches, which compare groups of breeds defined according to external traits and use/specialization/type. RESULTS: We detected more than 22 million single nucleotide polymorphisms (SNPs) across the 23 compared populations and identified 359 chromosome regions showing signatures of selection. These regions harbour genes that are already known or new genes that are under selection and relevant for the domestication process in this species, and that affect several morphological and physiological traits (e.g. coat colours and patterns, body size, number of vertebrae and teats, ear size and conformation, reproductive traits, growth and fat deposition traits). Wild boar related signatures of selection were detected across all the genome of several autochthonous breeds, which suggests that crossbreeding (accidental or deliberate) occurred with wild boars. CONCLUSIONS: Our findings provide a catalogue of genetic variants of many European pig populations and identify genome regions that can explain, at least in part, the phenotypic diversity of these genetic resources.


Subject(s)
Genotyping Techniques/methods , Selection, Genetic/genetics , Swine/genetics , Acclimatization/genetics , Adaptation, Physiological/genetics , Algorithms , Animals , Breeding , Domestication , Europe , Female , Genome/genetics , Genomics/methods , Genotype , Male , Models, Genetic , Phenotype , Polymorphism, Single Nucleotide/genetics , Whole Genome Sequencing/methods
13.
Anim Genet ; 51(1): 58-69, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31696970

ABSTRACT

Intramuscular fat (IMF) is one of the main meat quality traits for breeding programmes in livestock species. The main objective of this study was to identify genomic regions associated with IMF content comparing two rabbit populations divergently selected for this trait, and to generate a list of putative candidate genes. Animals were genotyped using the Affymetrix Axiom OrcunSNP Array (200k). After quality control, the data involved 477 animals and 93 540 SNPs. Two methods were used in this research: single marker regressions with the data adjusted by genomic relatedness, and a Bayesian multiple marker regression. Associated genomic regions were located on the rabbit chromosomes (OCU) OCU1, OCU8 and OCU13. The highest value for the percentage of the genomic variance explained by a genomic region was found in two consecutive genomic windows on OCU8 (7.34%). Genes in the associated regions of OCU1 and OCU8 presented biological functions related to the control of adipose cell function, lipid binding, transportation and localisation (APOLD1, PLBD1, PDE6H, GPRC5D and GPRC5A) and lipid metabolic processes (MTMR2). The EWSR1 gene, underlying the OCU13 region, is linked to the development of brown adipocytes. The findings suggest that there is a large component of polygenic effect behind the differences in IMF content in these two lines, as the variance explained by most of the windows was low. The genomic regions of OCU1, OCU8 and OCU13 revealed novel candidate genes. Further studies would be needed to validate the associations and explore their possible application in selection programmes.


Subject(s)
Adipose Tissue, Brown , Breeding , Genotype , Rabbits/genetics , Animals , Bayes Theorem , Female , Genetic Association Studies/veterinary , Genetic Markers , Linkage Disequilibrium , Male , Meat/analysis , Phenotype , Polymorphism, Single Nucleotide
14.
J Anim Breed Genet ; 137(2): 123-138, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31657065

ABSTRACT

Uterine capacity (UC), defined as the total number of kits from unilaterally ovariectomized does at birth, has a high genetic correlation with litter size. The aim of our research was to identify genomic regions associated with litter size traits through a genomewide association study using rabbits from a divergent selection experiment for UC. A high-density SNP array (200K) was used to genotype 181 does from a control population, high and low UC lines. Traits included total number born (TNB), number born alive (NBA), number born dead, ovulation rate (OR), implanted embryos (IE) and embryo, foetal and prenatal survivals at second parity. We implemented the Bayes B method and the associations were tested by Bayes factors and the percentage of genomic variance (GV) explained by windows. Different genomic regions associated with TNB, NBA, IE and OR were found. These regions explained 7.36%, 1.27%, 15.87% and 3.95% of GV, respectively. Two consecutive windows on chromosome 17 were associated with TNB, NBA and IE. This genomic region accounted for 6.32% of GV of TNB. In this region, we found the BMP4, PTDGR, PTGER2, STYX and CDKN3 candidate genes which presented functional annotations linked to some reproductive processes. Our findings suggest that a genomic region on chromosome 17 has an important effect on litter size traits. However, further analyses are needed to validate this region in other maternal rabbit lines.


Subject(s)
Genome/genetics , Litter Size/genetics , Rabbits/genetics , Selection, Genetic , Animals , Chromosome Mapping/veterinary , Embryo Implantation/genetics , Female , Genome-Wide Association Study/veterinary , Genotype , Linkage Disequilibrium , Live Birth/genetics , Live Birth/veterinary , Ovulation/genetics , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Rabbits/physiology
15.
J Invertebr Pathol ; 161: 47-53, 2019 02.
Article in English | MEDLINE | ID: mdl-30707918

ABSTRACT

Honey contains DNA from many different organisms that are part of hive micro-environmental niches and honey bee pathospheres. In this study, we recovered and sequenced mite mitochondrial DNA (mtDNA) from honey from different locations around the world (Europe, Asia, Africa, North and South America). DNA extracted from 17 honey samples was amplified with eight primer pairs targeting three mite mtDNA genes, obtaining 88 amplicons that were sequenced with an Ion Torrent sequencing platform. A bioinformatic pipeline compared produced reads with Varroa spp. mtDNA sequence entries available in GenBank and assigned them to different mitotypes. In all honey samples, the highest percentage of reads was attributed to the K1 lineage, including a few variants derived from it, in addition to J1 reads observed in the two South American samples and C1-1 reads obtained from the Chinese honey. This study opens new possibilities to analyse mite lineages and variants and monitor their geographical and temporal distribution, simplifying surveillance against this damaging honey bee parasite.


Subject(s)
Bees/parasitology , DNA, Environmental/analysis , High-Throughput Nucleotide Sequencing , Honey/analysis , Varroidae , Animals , DNA, Mitochondrial , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Honey/parasitology , Varroidae/genetics
16.
Genet Sel Evol ; 50(1): 35, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29940848

ABSTRACT

BACKGROUND: In the last 50 years, the diversity of cattle breeds has experienced a severe contraction. However, in spite of the growing diffusion of cosmopolite specialized breeds, several local cattle breeds are still farmed in Italy. Genetic characterization of breeds represents an essential step to guide decisions in the management of farm animal genetic resources. The aim of this work was to provide a high-resolution representation of the genome-wide diversity and population structure of Italian local cattle breeds using a medium-density single nucleotide polymorphism (SNP) array. RESULTS: After quality control filtering, the dataset included 31,013 SNPs for 800 samples from 32 breeds. Our results on the genetic diversity of these breeds agree largely with their recorded history. We observed a low level of genetic diversity, which together with the small size of the effective populations, confirmed that several breeds are threatened with extinction. According to the analysis of runs of homozygosity, evidence of recent inbreeding was strong in some local breeds, such as Garfagnina, Mucca Pisana and Pontremolese. Patterns of genetic differentiation, shared ancestry, admixture events, and the phylogenetic tree, all suggest the presence of gene flow, in particular among breeds that originate from the same geographical area, such as the Sicilian breeds. In spite of the complex admixture events that most Italian cattle breeds have experienced, they have preserved distinctive characteristics and can be clearly discriminated, which is probably due to differences in genetic origin, environment, genetic isolation and inbreeding. CONCLUSIONS: This study is the first exhaustive genome-wide analysis of the diversity of Italian cattle breeds. The results are of significant importance because they will help design and implement conservation strategies. Indeed, efforts to maintain genetic diversity in these breeds are needed. Improvement of systems to record and monitor inbreeding in these breeds may contribute to their in situ conservation and, in view of this, the availability of genomic data is a fundamental resource.


Subject(s)
Animals, Domestic/genetics , Conservation of Natural Resources/methods , Genetic Variation , Polymorphism, Single Nucleotide , Animals , Breeding , Cattle , Evolution, Molecular , Genetics, Population , Genome-Wide Association Study , Linkage Disequilibrium , Phylogeny , Population Density
17.
J Hered ; 107(4): 295-308, 2016 07.
Article in English | MEDLINE | ID: mdl-26921276

ABSTRACT

The order Lagomorpha comprises about 90 living species, divided in 2 families: the pikas (Family Ochotonidae), and the rabbits, hares, and jackrabbits (Family Leporidae). Lagomorphs are important economically and scientifically as major human food resources, valued game species, pests of agricultural significance, model laboratory animals, and key elements in food webs. A quarter of the lagomorph species are listed as threatened. They are native to all continents except Antarctica, and occur up to 5000 m above sea level, from the equator to the Arctic, spanning a wide range of environmental conditions. The order has notable taxonomic problems presenting significant difficulties for defining a species due to broad phenotypic variation, overlap of morphological characteristics, and relatively recent speciation events. At present, only the genomes of 2 species, the European rabbit (Oryctolagus cuniculus) and American pika (Ochotona princeps) have been sequenced and assembled. Starting from a paucity of genome information, the main scientific aim of the Lagomorph Genomics Consortium (LaGomiCs), born from a cooperative initiative of the European COST Action "A Collaborative European Network on Rabbit Genome Biology-RGB-Net" and the World Lagomorph Society (WLS), is to provide an international framework for the sequencing of the genome of all extant and selected extinct lagomorphs. Sequencing the genomes of an entire order will provide a large amount of information to address biological problems not only related to lagomorphs but also to all mammals. We present current and planned sequencing programs and outline the final objective of LaGomiCs possible through broad international collaboration.


Subject(s)
Genome , Genomics , Lagomorpha/genetics , Mammals/genetics , Animal Diseases/etiology , Animals , Databases, Genetic , Disease Susceptibility , Genomics/methods , High-Throughput Nucleotide Sequencing , Lagomorpha/classification , Mammals/classification , Models, Animal , Transcriptome
18.
Anim Biotechnol ; 27(2): 77-83, 2016.
Article in English | MEDLINE | ID: mdl-26913548

ABSTRACT

A shortcut to identify DNA markers associated with economic traits is to use a candidate gene approach that is still useful in livestock species in which molecular tools and resources are not advanced or not well developed. Mutations in the growth hormone receptor (GHR) gene associated with production traits have been already described in several livestock species. For this reason GHR could be an interesting candidate gene in the rabbit. In this study we re-sequenced all exons and non-coding regions of the rabbit GHR gene in a panel of 10 different rabbits and identified 10 single nucleotide polymorphisms (SNPs). One of them (g.63453192C>G or c.106C>G), located in exon 3 was a missense mutation (p.L36V) substituting an amino acid in a highly conserved position across all mammals. This mutation was genotyped in 297 performance tested rabbits of a meat male line and association analysis showed that the investigated SNP was associated with weight at 70 days (P < 0.05). The most frequent genotype (GG) was in animals with higher weight at this age, suggesting that the high directional selection pressure toward this trait since the constitution of the genotyped line might have contributed to shape allele frequencies at this polymorphic site.


Subject(s)
Body Weight/genetics , Meat/standards , Polymorphism, Single Nucleotide/genetics , Receptors, Somatotropin/genetics , Amino Acid Sequence , Animals , Female , Genetic Association Studies , Male , Rabbits , Receptors, Somatotropin/chemistry , Sequence Alignment
20.
Anim Biotechnol ; 26(2): 92-7, 2015.
Article in English | MEDLINE | ID: mdl-25380460

ABSTRACT

The GPR120 gene (also known as FFAR4 or O3FAR1) encodes for a functional omega-3 fatty acid receptor/sensor that mediates potent insulin sensitizing effects by repressing macrophage-induced tissue inflammation. For its functional role, GPR120 could be considered a potential target gene in animal nutrigenetics. In this work we resequenced the porcine GPR120 gene by high throughput Ion Torrent semiconductor sequencing of amplified fragments obtained from 8 DNA pools derived, on the whole, from 153 pigs of different breeds/populations (two Italian Large White pools, Italian Duroc, Italian Landrace, Casertana, Pietrain, Meishan, and wild boars). Three single nucleotide polymorphisms (SNPs), two synonymous substitutions and one in the putative 3'-untranslated region (g.114765469C > T), were identified and their allele frequencies were estimated by sequencing reads count. The g.114765469C > T SNP was also genotyped by PCR-RFLP confirming estimated frequency in Italian Large White pools. Then, this SNP was analyzed in two Italian Large White cohorts using a selective genotyping approach based on extreme and divergent pigs for back fat thickness (BFT) estimated breeding value (EBV) and average daily gain (ADG) EBV. Significant differences of allele and genotype frequencies distribution was observed between the extreme ADG-EBV groups (P < 0.001) whereas this marker was not associated with BFT-EBV.


Subject(s)
Nutrigenomics/methods , Receptors, G-Protein-Coupled/genetics , Sequence Analysis, DNA/methods , Sus scrofa/growth & development , Sus scrofa/genetics , Animals , Gene Frequency , Genetic Association Studies , Italy , Polymorphism, Single Nucleotide/genetics , Semiconductors , Sequence Analysis, DNA/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL