Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Inorg Chem ; 58(24): 16458-16474, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31790221

ABSTRACT

Irradiation at 460 nm of [Mo3(µ3-S)(µ2-S2)3(S2CNR2)3]I ([2a]I, R = Me; [2b]I, R = Et; [2c]I, R = iBu; [2d]I, R = CH2C6H5) in a mixed aqueous-polar organic medium with [Ru(bipy)3]2+ as photosensitizer and Et3N as electron donor leads to H2 evolution. Maximum activity (300 turnovers, 3 h) is found with R = iBu in 1:9 H2O:MeCN; diminished activity is attributed to deterioration of [Ru(bipy)3]2+. Monitoring of the photolysis mixture by mass spectrometry suggests transformation of [Mo3(µ3-S)(µ2-S2)3(S2CNR2)3]+ to [Mo3(µ3-S)(µ2-S)3(S2CNR2)3]+ via extrusion of sulfur on a time scale of minutes without accumulation of the intermediate [Mo3S6(S2CNR2)3]+ or [Mo3S5(S2CNR2)3]+ species. Deliberate preparation of [Mo3S4(S2CNEt2)3]+ ([3]+) and treatment with Et2NCS21- yields [Mo3S4(S2CNEt2)4] (4), where the fourth dithiocarbamate ligand bridges one edge of the Mo3 triangle. Photolysis of 4 leads to H2 evolution but at ∼25% the level observed for [Mo3S7(S2CNEt2)3]+. Early time monitoring of the photolyses shows that [Mo3S4(S2CNEt2)4] evolves H2 immediately and at constant rate, while [Mo3S7(S2CNEt2)3]+ shows a distinctive incubation prior to a more rapid H2 evolution rate. This observation implies the operation of catalysts of different identity in the two cases. Photolysis solutions of [Mo3S7(S2CNiBu2)3]+ left undisturbed over 24 h deposit the asymmetric Mo6 cluster [(iBu2NCS2)3(µ2-S2)2(µ3-S)Mo3](µ3-S)(µ3-η2,η1-S',η1-S″-S2)[Mo3(µ2-S)3(µ3-S)(S2CNiBu2)2(µ2-S2CNiBu2)] in crystalline form, suggesting that species with this hexametallic composition and core topology are the probable H2-evolving catalysts in photolyses beginning with [Mo3S7(S2CNR2)3]+. When used as solvent, N,N-dimethylformamide (DMF) suppresses H2-evolution but to a greater degree for [Mo3S4(S2CNEt2)4] than for [Mo3S7(S2CNEt2)3]+. Recrystallization of [Mo3S4(S2CNEt2)4] from DMF affords [Mo3S4(S2CNEt2)4(η1,κO-DMF)] (5), implying that inhibition by DMF arises from competition for a Mo coordination site that is requisite for H2 evolution. Computational assessment of [Mo3S4(S2CNMe2)3]+ following addition of 2H+ and 2e- suggests a Mo(H)-µ2(SH) intermediate as the lowest energy species for H2 elimination. An analogous pathway may be available to the Mo6 cluster via dissociation of one end of the µ2-S2CNR2 ligand, a known hemilabile ligand type, in the [Mo3S4]4+ fragment.

2.
Acta Crystallogr E Crystallogr Commun ; 73(Pt 11): 1764-1769, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29152369

ABSTRACT

Tetra-kis(2-methyl-prop-yl)thio-per-oxy-dicarbonic di-amide, or tetra-iso-butyl-thiuram di-sulfide, C18H36N2S4, crystallizes in a general position in the triclinic space group P-1 but shows pseudo-C2 symmetry about the di-sulfide bond. The C-S-S-C torsion angle [-85.81 (2)°] and the dihedral angle between the two NCS2 mean planes [85.91 (5)°] are within the range observed for this compound type. Multiple intra- and inter-molecular S⋯H-C close contacts appear to play a role in assisting the specific conformation of the pendant isobutyl groups and the packing arrangement of mol-ecules within the cell. Tetra-iso-butyl-thiuram di-sulfide mol-ecules of one optical configuration form sheets in the plane of the a and b axes. Inversion centers exist between adjoining sheets, which stack along the c axis and alternate in the handedness of their constituent mol-ecules.

SELECTION OF CITATIONS
SEARCH DETAIL