Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Angew Chem Int Ed Engl ; 63(4): e202316662, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38059768

ABSTRACT

Aryl-maleimides undergo a novel [2+4]-photodimerization instead of the expected [2+2]-photodimerization under both direct irradiation with visible light and under sensitized energy transfer conditions. This new excited state reactivity in aryl-maleimides is deciphered through photochemical, photophysical, and spectroscopic studies. The stereochemistry of the photodimer depends on the type of non-bonding interactions prevalent during photodimerization which is in turn dictated by the substituents on the maleimide ring. More importantly, the stereochemistry of the photodimer formed is complementary to the product observed under thermal conditions.

2.
Proc Natl Acad Sci U S A ; 117(9): 4921-4930, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32071223

ABSTRACT

Antibiotic-resistant superbug bacteria represent a global health problem with no imminent solutions. Here we demonstrate that the combination (termed AB569) of acidified nitrite (A-NO2-) and Na2-EDTA (disodium ethylenediaminetetraacetic acid) inhibited all Gram-negative and Gram-positive bacteria tested. AB569 was also efficacious at killing the model organism Pseudomonas aeruginosa in biofilms and in a murine chronic lung infection model. AB569 was not toxic to human cell lines at bactericidal concentrations using a basic viability assay. RNA-Seq analyses upon treatment of P. aeruginosa with AB569 revealed a catastrophic loss of the ability to support core pathways encompassing DNA, RNA, protein, ATP biosynthesis, and iron metabolism. Electrochemical analyses elucidated that AB569 produced more stable SNO proteins, potentially explaining one mechanism of bacterial killing. Our data implicate that AB569 is a safe and effective means to kill pathogenic bacteria, suggesting that simple strategies could be applied with highly advantageous therapeutic/toxicity index ratios to pathogens associated with a myriad of periepithelial infections and related disease scenarios.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Edetic Acid/pharmacology , Sodium Nitrite/pharmacology , Animals , Anti-Bacterial Agents/therapeutic use , Biofilms/drug effects , Disease Models, Animal , Down-Regulation , Drug Resistance, Bacterial/drug effects , Edetic Acid/chemistry , Lung Diseases/drug therapy , Lung Diseases/microbiology , Metabolic Networks and Pathways , Mice , Nitrites/chemistry , Nitrites/pharmacology , Pseudomonas aeruginosa/drug effects
3.
Photochem Photobiol Sci ; 20(2): 255-263, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33721251

ABSTRACT

The photochemistry of Fe(III) coordinated to natural uronate-containing polysaccharides has been investigated quantitatively in aqueous solution. It is demonstrated that the photoreduction of the coordinated Fe(III) to Fe(II) and oxidative decarboxylation occurs in a variety of uronate-containing polysaccharides. The photochemistry of the Fe(III)-polyuronic acid system generated a radical species during the reaction which was studied using the spin trapping technique. The identity of the radical species from this reaction was confirmed as CO2•- indicating that both bond cleavage of the carboxylate and oxidative decarboxylation after ligand to metal charge transfer radical reactions may be taking place upon irradiation. Degradation of the polyuronic acid chain was investigated with dynamic light scattering, showing a decrease in the hydrodynamic radius of the polymer assemblies in solution after light irradiation that correlates with the Fe(II) generation. A decrease in viscosity of Fe(IIII)-alginate after light irradiation was also observed. Additionally, the photochemical reaction was investigated in plant root tissue (parsnip) demonstrating that Fe(III) coordination in these natural materials leads to photoreactivity that degrades the pectin component. These results highlight that this Fe(III)-polyuronic acid can occur in many natural systems and may play a role in biogeochemical cycling of iron and ferrous iron generation in plants with significant polyuronic acid content.

4.
J Am Chem Soc ; 142(43): 18513-18521, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-32976712

ABSTRACT

The creation of ordered arrays of qubits that can be interfaced from the macroscopic world is an essential challenge for the development of quantum information science (QIS) currently being explored by chemists and physicists. Recently, porous metal-organic frameworks (MOFs) have arisen as a promising solution to this challenge as they allow for atomic-level spatial control of the molecular subunits that comprise their structures. To date, no organic qubit candidates have been installed in MOFs despite their structural variability and promise for creating systems with adjustable properties. With this in mind, we report the development of a pillared-paddlewheel-type MOF structure that contains 4,7-bis(2-(4-pyridyl)-ethynyl) isoindoline N-oxide and 1,4-bis(2-(4-pyridyl)-ethynyl)-benzene pillars that connect 2D sheets of 9,10-dicarboxytriptycene struts and Zn2(CO2)4 secondary binding units. The design allows for the formation of ordered arrays of reorienting isoindoline nitroxide spin centers with variable concentrations through the use of mixed crystals containing the secondary 1,4-phenylene pillar. While solvent removal causes decomposition of the MOF, magnetometry measurements of the MOF containing only N-oxide pillars demonstrated magnetic interactions with changes in magnetic moment as a function of temperature between 150 and 5 K. Variable-temperature electron paramagnetic resonance (EPR) experiments show that the nitroxides couple to one another at distances as long as 2 nm, but act independently at distances of 10 nm or more. We also use a specially designed resonance microwave cavity to measure the face-dependent EPR spectra of the crystal, demonstrating that it has anisotropic interactions with impingent electromagnetic radiation.

5.
J Am Chem Soc ; 142(1): 502-511, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31814397

ABSTRACT

Substituted triphenylamine (TPA) radical cations show great potential as oxidants and as spin-containing units in polymer magnets. Their properties can be further tuned by supramolecular assembly. Here, we examine how the properties of photogenerated radical cations, intrinsic to TPA macrocycles, are altered upon their self-assembly into one-dimensional columns. These macrocycles consist of two TPAs and two methylene ureas, which drive the assembly into porous organic materials. Advantageously, upon activation the crystals can undergo guest exchange in a single-crystal-to-single-crystal transformation generating a series of isoskeletal host-guest complexes whose properties can be directly compared. Photoinduced electron transfer, initiated using 365 nm light-emitting diodes, affords radicals at room temperature as observed by electron paramagnetic resonance (EPR) spectroscopy. The line shape of the EPR spectra and the quantity of radicals can be modulated by both polarity and heavy atom inclusion of the encapsulated guest. These photogenerated radicals are persistent, with half-lives between 1 and 7 d and display no degradation upon radical decay. Re-irradiation of the samples can restore the radical concentration back to a similar maximum concentration, a feature that is reproducible over several cycles. EPR simulations of a representative spectrum indicate two species, one containing two N hyperfine interactions and an additional broad signal with no resolvable hyperfine interaction. Intriguingly, TPA analogues without bromine substitution also exhibit similar quantities of photogenerated radicals, suggesting that supramolecular strategies can enable more flexibility in stable TPA radical structures. These studies will help guide the development of new photoactive materials.

6.
J Phys Chem A ; 124(37): 7411-7415, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32794775

ABSTRACT

Understanding factors that underpin the signs and magnitudes of electron spin-spin couplings in biradicaloids, especially those that are integrated into highly delocalized electronic structures, promises to inform the design of molecular spintronic systems. Using steady-state and variable temperature electron paramagnetic resonance (EPR) spectroscopy, we examine spin dynamics in symmetric, strongly π-conjugated bis[(porphinato)copper] (bis[PCu]) systems and probe the roles played by atom-specific macrocycle spin density, porphyrin-to-porphyrin linkage topology, and orbital symmetry on the magnitudes of electronic spin-spin couplings over substantial Cu-Cu distances. These studies examine the following: (i) meso-to-meso-linked bis[PCu] systems having oligoyne spacers, (ii) meso-to-meso-bridged bis[PCu] arrays in which the PCu centers are separated by a single ethynyl unit or multiple 5,15-diethynyl(porphinato)zinc(II) units, and (iii) the corresponding ß-to-ß-bridged bis[PCu] structures. EPR data show that, for ß-to-ß-bridged systems and meso-to-meso-linked bis[PCu] structures having oligoyne spacers, a through σ-bond coupling mechanism controls the average exchange interaction (Javg). In contrast, PCu centers separated by a single ethynyl or multiple 5,15-diethynyl(porphinato)zinc(II) units display a phenomenological decay of ln[Javg] versus Cu-Cu σ-bond separation number of ∼0.115 per bond, half as large as for these other compositions, congruent with the importance of π-mediated spin-spin coupling. These disparities derive from effects that trace their origin to the nature of the macrocycle-macrocycle linkage topology and the relative energy of the Cu dx2-y2 singly occupied molecular orbital within the frontier orbital manifold of these electronically delocalized structures. This work provides insight into approaches to tune the extent of spin exchange interactions and distance-dependent electronic spin-spin coupling magnitudes in rigid, highly conjugated biradicaloids.

7.
J Am Chem Soc ; 139(29): 9759-9762, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28578583

ABSTRACT

Spin and conformational dynamics in symmetric alkyne-bridged multi[copper(II) porphyrin] structures have been studied in toluene solution at variable temperature using steady-state electron paramagnetic resonance (EPR) spectroscopy. Comparison of the dimer EPR spectra to those of Cu porphyrin monomers shows evidence of an isotropic exchange interaction (Javg) in these biradicaloid structures, manifested by a significant line broadening in the dimer spectra. The extent line broadening depends on molecular structure and temperature, suggesting Javg is modulated by conformational dynamics that impact the torsional angle distribution between the porphyrin-porphyrin least-squares planes. Computational simulation of the experimental EPR spectra, using a developed algorithm for J modulation in flexible organic biradicals, supports this hypothesis. Comparison of ethyne and butadiyne alkyne bridges reveals remarkable sensitivity to orbital interactions between the spacer and the metal, reflected in measurements of Javg as a function of temperature. The results suggest orbital symmetry relationships may be more important than recognized in design of optimized molecular spintronic devices.

8.
J Am Chem Soc ; 139(23): 7681-7684, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28509547

ABSTRACT

Viologen-tetraarylborate ion-pair complexes were prepared and investigated by steady-state and time-resolved spectroscopic techniques such as fluorescence and femtosecond transient absorption. The results highlight a charge transfer transition that leads to changes in the viologen structure in the excited singlet state. Femtosecond transient absorption reveals the formation of excited-state absorption and stimulated emission bands assigned to the planar (kobs < 1012 s-1) and twisted (kobs ∼ 1010 s-1) structures between two pyridinium groups in the viologen ion. An efficient photoinduced electron transfer from the tetraphenylborate anionic moiety to the viologen dication was observed less than 1 µs after excitation. This is a consequence of the push-pull character of the electron donor twisted viologen structure, which helps formation of the borate triplet state. The borate triplet state is deactivated further via a second electron transfer process, generating viologen cation radical (V•+).

9.
Chemistry ; 23(34): 8315-8319, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28423212

ABSTRACT

UV-irradiation of a self-assembled benzophenone bis-urea macrocycle generates µm amounts of radicals that persist for weeks under ambient conditions. High-field EPR and variable-temperature X-band EPR studies suggest a resonance stabilized radical pair through H-abstraction. These endogenous radicals were applied as a polarizing agent for magic angle spinning (MAS) dynamic nuclear polarization (DNP) NMR enhancement. The field-stepped DNP enhancement profile exhibits a sharp peak with a maximum enhancement of ϵon/off =4 superimposed on a nearly constant DNP enhancement of ϵon/off =2 over a broad field range. This maximum coincides with the high field EPR absorption spectrum, consistent with an Overhauser effect mechanism. DNP enhancement was observed for both the host and guests, suggesting that even low levels of endogenous radicals can facilitate the study of host-guest relationships in the solid-state.

10.
Proc Natl Acad Sci U S A ; 116(29): 14398-14400, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31266894
11.
Photochem Photobiol Sci ; 15(9): 1124-1137, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27529675

ABSTRACT

The photophysics and reactivity of two tetraphenylborate salts and triphenylborane have been studied using ultrafast transient absorption, steady-state fluorescence, electron paramagnetic resonance with spin trapping, and DFT calculations. The singlet excited state of tetraarylborates exhibit extended π-orbital coupling between two adjacent aryl groups. The maximum fluorescence band, as well as the transient absorption bands centered at 560 nm (τ = 1.05 ns) and 680 nm (τ = 4.35 ns) are influenced by solvent viscosity and polarity, indicative of a twisted intramolecular charge transfer (TICT) state. Orbital contour plots of the HOMO and LUMO orbitals of the tetraarylboron compounds support the existence of electron delocalization between two aryl groups in the LUMO. This TICT-state and aryl-aryl electron extension is not observed for the trigonal arylboron compound, in which excited π-orbital coupling only occurs between the boron atom and one aryl group, which restricts the twist motion of the aryl-boron bond. The excited triplet state is deactivated primarily through aryl-boron bond cleavage, yielding aryl and diphenylboryl radicals. In the presence of oxygen, this photochemistry results in phenoxyl and diphenylboroxyl radicals, as confirmed by EPR spectroscopy of spin trapped radical adducts. The TICT transition and radical generation is not expected for BoDIPY molecules where the rotational vibration of the B-aryl bond is rigid, restricting changes in the geometric structure. In this sense, this work contributes to the development of new BoDIPY derivatives where the TICT transition may be observed for aryl ligands with free rotational vibrations in the BoDIPY structure.


Subject(s)
Boron Compounds/chemistry , Photochemical Processes , Molecular Structure , Quantum Theory
12.
Inorg Chem ; 55(5): 1962-9, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26848595

ABSTRACT

Cobalamins are known to react with thiols to yield stable ß-axial Co(III)-S bonded thiolato-cobalamin complexes. However, in stark contrast to the Co-C bond in alkylcobalamins, the photolability of the Co-S bond in thiolato-cobalamins remains undetermined. We have investigated the photolysis of N-acetylcysteinyl cob(III)alamin at several wavelengths within the ultraviolet and visible spectrum. To aid in photolysis, we show that attaching fluorophore "antennae" to the cobalamin scaffold can improve photolytic efficiency by up to an order of magnitude. Additionally, electron paramagnetic resonance confirms previous conjectures that the photolysis of thiolato-cobalamins at wavelengths as long as 546 nm produces thiyl radicals.


Subject(s)
Fluorescent Dyes/chemistry , Photolysis , Vitamin B 12/chemistry , Chromatography, Liquid , Electron Spin Resonance Spectroscopy , Proton Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization , Sulfhydryl Compounds/chemistry
13.
J Am Chem Soc ; 137(9): 3372-8, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25697508

ABSTRACT

Medical hydrogel applications have expanded rapidly over the past decade. Implantation in patients by noninvasive injection is preferred, but this requires hydrogel solidification from a low viscosity solution to occur in vivo via an applied stimuli. Transdermal photo-cross-linking of acrylated biopolymers with photoinitiators and lights offers a mild, spatiotemporally controlled solidification trigger. However, the current short wavelength initiators limit curing depth and efficacy because they do not absorb within the optical window of tissue (600-900 nm). As a solution to the current wavelength limitations, we report the development of a red light responsive initiator capable of polymerizing a range of acrylated monomers. Photoactivation occurs within a range of skin type models containing high biochromophore concentrations.


Subject(s)
Hydrogels/chemistry , Materials Testing/methods , Photochemistry/methods , Vitamin B 12/chemistry , Acrylates/chemistry , Cell Survival , Hep G2 Cells , Humans , Light , Melanins/chemistry , Photolysis , Polyethylene Glycols/chemistry , Polymerization , Propane/analogs & derivatives , Propane/chemistry , Skin
14.
Photochem Photobiol Sci ; 13(2): 454-63, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24424520

ABSTRACT

In the second paper, spectral decomposition is used to explain the origin of the asymmetry of the anti-phase structure (APS) and its temperature dependence in dynamic spin correlated radical pairs (SCRPs) created via the photoreduction of benzophenone (BP) in sodium dodecyl sulfate (SDS) micelles. It is shown that the main parameters defining the spectral shape of the TREPR spectra are the effectiveness of the electron spin exchange in contact pairs, and the ratio of the frequency of enforced encounters (Z) to the frequency of singlet-triplet mixing (q) in the separated radical pairs. The Z/q ratio is particularly important for the creation of the APS asymmetry. The existence of different q values in the same TREPR spectrum in this system affords the observation of SCRPs in both regimes: exchange broadening (large |q|/Z) and exchange narrowing (small |q|/Z). An important observation, supported by the successful simulation of the TREPR spectra, is that the S-component of the APS can be shifted in a direction opposite to that predicted by the earlier Closs-Forbes-Norris (CFN) model. This result is naturally explained in terms of a spectral exchange approach. Dispersion-like components in the spectra further amplify the asymmetry of the APS.

15.
Photochem Photobiol Sci ; 13(2): 439-53, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24424485

ABSTRACT

Radical pairs created by the photoreduction of benzophenone (BP) in sodium dodecyl sulfate (SDS) micelles exhibit strong asymmetry in the line shapes of their time-resolved electron paramagnetic resonance (TREPR) signals. The asymmetry is strongly dependent on the temperature from 16 °C to 66 °C. Simulations of the anti-phase structure (APS) line shape of these spin correlated radical pairs (SCRPs), based on a numerical solution of the Stochastic Liouville Equation with the spin exchange interaction depending exponentially on the distance between radicals, are presented and discussed. The proposed model takes into account the diffusive motion of the radicals along with the motion of the transverse magnetization and accounts satisfactorily and self-consistently for the asymmetry of the observed TREPR signals.

16.
Photochem Photobiol Sci ; 13(12): 1804-11, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25369860

ABSTRACT

Reaction kinetics for two sterically hindered secondary amines with singlet oxygen have been studied in detail. A water soluble porphyrin sensitizer, 5,10,15,20-tetrakis-(4-sulfunatophenyl)-21,23H-porphyrin (TPPS), was irradiated in oxygenated aqueous solutions containing either 2,2,6,6-tetramethylpiperidin-4-one (TMPD) or 4-[N,N,N-trimethyl-ammonium]-2,2,6,6-tetramethylpiperidinyl chloride (N-TMPCl). The resulting sensitization reaction produced singlet oxygen in high yield, ultimately leading to the formation of the corresponding nitroxide free radicals (R2NO) which were detected using steady-state electron paramagnetic resonance (EPR) spectroscopy. Careful actinometry and EPR calibration curves, coupled with a detailed kinetic analysis, led to a simple and compact expression relating the nitroxide quantum yield ΦR2NO (from the doubly-integrated EPR signal intensity) to the initial amine concentration [R2NH]i. With all other parameters held constant, a plot of ΦR2NOvs. [R2NH]i gave a straight line with a slope proportional to the rate constant for nitroxide formation, kR2NO. This establishment of a rigorous quantitative relationship between the EPR signal and the rate constant provides a mechanism for quantifying singlet oxygen production as a function of its topology in heterogeneous media. Implications for in vivo assessment of singlet oxygen topology are briefly discussed.


Subject(s)
Singlet Oxygen/chemistry , Amines/chemistry , Electron Spin Resonance Spectroscopy , Energy Transfer , Kinetics , Molecular Structure , Nitrogen Oxides/chemistry , Photolysis , Porphyrins/chemistry , Solutions , Water/chemistry
17.
Proc Natl Acad Sci U S A ; 108(21): 8554-8, 2011 May 24.
Article in English | MEDLINE | ID: mdl-21555541

ABSTRACT

The simultaneous, concerted transfer of electrons and protons--electron-proton transfer (EPT)--is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectral measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H(+) is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck-Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated (+)H ─ B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.


Subject(s)
Coloring Agents/chemistry , Electrons , Hydrogen Bonding , Protons , Biphenyl Compounds , Coumarins , Nitrophenols , Photochemical Processes , Spectrum Analysis
18.
Photochem Photobiol ; 99(3): 901-905, 2023.
Article in English | MEDLINE | ID: mdl-36825924

ABSTRACT

The study evaluates compatibility of stabilizers with dye doped liquid crystal (LC) scaffolds that are used in electronically dimmable materials. The photodegradation of the materials was investigated and suitable stabilizers were evaluated to slow the degradation process. Various types of benzotriazole-based stabilizers were evaluated for stabilizing the liquid crystals. Based on spin trapping experiments, radicals generated upon UV exposure is likely responsible for the degradation of the system. The radical generation is competitively inhibited by the addition of stabilizers.

19.
Langmuir ; 27(9): 5304-9, 2011 May 03.
Article in English | MEDLINE | ID: mdl-21476533

ABSTRACT

A series of photoinduced H-atom abstraction reactions between anthraquinone-2,6,-disulfonate, disodium salt (AQDS) and differently charged micellar substrates is presented. After a 248 nm excimer laser flash, the first excited triplet state of AQDS is rapidly formed and then quenched by abstraction of a hydrogen atom from the alkyl chain of the micelle surfactant, leading to a spin-correlated radical pair (SCRP). The SCRP is detected 500 ns after the laser flash using time-resolved (direct detection) electron paramagnetic resonance (TREPR) spectroscopy at X-band (9.5 GHz). By changing the charge on the surfactant headgroup from negative (sodium dodecyl sulfate, SDS) to positive (dodecyltrimethylammonium chloride, DTAC), TREPR spectra with different degrees of antiphase structure (APS) in their line shape were observed. The first derivative-like APS line shape is the signature of an SCRP experiencing an electron spin exchange interaction between the radical centers, which was clearly observable in DTAC micelles and absent in SDS micellar solutions. Solutions with surfactant concentrations well below the critical micelle concentration (cmc) or solutions where micellar formation had been disrupted (1:1 v/v CH(3)CN/H(2)O) also showed no APS line shapes in their TREPR spectra. These results support the conclusion that electrostatic forces between the sensitizer (AQDS) charge and the substrate (surfactant) headgroup charge are responsible for the observed effects. The results represent a new example of electrostatic control of a spin exchange interaction in mobile radical pairs.

20.
J Phys Chem A ; 115(15): 3346-56, 2011 Apr 21.
Article in English | MEDLINE | ID: mdl-21434655

ABSTRACT

The proton-coupled electron transfer (PCET) reaction between the bpz-based photoexcited (3)MLCT state of [Ru(II)(bpy)(2)(bpz)](2+) (bpy = 2,2'-bipyridine, bpz = 2,2'-bipyrazine) and a series of substituted hydroquinones (H(2)Q) has been studied by transient absorption (TA) and time-resolved electron paramagnetic resonance (TREPR) spectroscopy at X-band. When the reaction is carried out in a CH(3)CN/H(2)O mixed solvent system with unsubstituted hydroquinone, the neutral semiquinone radical (4a) and its conjugate base, the semiquinone radical anion (4b), are both observed. Variation of the acid strength in the solvent mixture allows the acid/base dependence of the PCET reaction to be investigated. In solutions with very low acid concentrations, TREPR spectra exclusively derived from radical anion 4b are observed, while at very high acid concentrations, the spectrum is assigned to the protonated structure 4a. At intermediate acid concentrations, either a superposition of spectra is observed (slow exchange between 4a and 4b) or substantial broadening in the TREPR spectrum is observed (fast exchange between 4a and 4b). Variation of substituents on the H(2)Q ring substantially alter this acid/base dependence and provide a means to investigate electronic effects on both the ET and PT components of the PCET process. The TA results suggest a change in mechanism from PCET to direct ET quenching in strongly basic solutions and with electron withdrawing groups on the H(2)Q ring system. Changing the ligand on the Ru complex also alters the acid/base dependence of the TREPR spectra through a series of complex equilibria between protonated and deprotonated hydroquinone radicals and anions. The relative intensities of the signals from radical 4a versus 4b can be rationalized quantitatively in terms of these equilibria and the relevant pK(a) values. An observed equilibrium deuterium isotope effect supports the conclusion that the post-PCET HQ(•)/Q(•-) equilibrium is the most important in determining the 4a/4b ratio at early delay times.


Subject(s)
Hydroquinones/chemistry , Organometallic Compounds/chemistry , Quantum Theory , Ruthenium/chemistry , Hydrogen-Ion Concentration , Molecular Conformation , Molecular Structure , Oxidation-Reduction , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL