ABSTRACT
OBJECTIVE: Investigating associations between group-based medical mistrust (GBMM) and perceptions of patient-provider encounters can identify one mechanism through which GBMM may influence health outcomes and serve as a barrier to equitable healthcare. The present study investigated associations between GBMM reported by caregivers of children with a possibly genetic condition and caregivers' and providers' perceptions of a specialty care appointment discussing diagnostic plans. METHODS: Caregivers (N=177) completed the GBMM scale and other measures prior to their child's initial specialty clinic visit. After the visit, they reported their perceptions of the visit, including patient-centeredness and satisfaction with care. Providers (N=6) reported their perceptions of patient engagement. RESULTS: Multivariable linear regression showed that higher caregiver GBMM was associated with caregivers' lower satisfaction with care (p<0.01) and more negative perceptions of every domain of patient-centeredness (p=0.001-0.04). Multilevel modeling showed that higher caregiver GBMM was associated with more negative provider perceptions of caregivers' preparedness to participate in care (p=0.03), likely treatment compliance (p=0.03), and relevance of questions asked during visit (p=0.04). CONCLUSION: Our findings extend evidence for detrimental effects of GBMM on patient satisfaction to caregivers of pediatric patients and offer new evidence for associations with healthcare providers' perceptions of caregivers' engagement with care.
ABSTRACT
PURPOSE: Research that includes diverse patient populations is necessary to optimize implementation of telehealth. METHODS: As part of a Clinical Sequencing Evidence-Generating Research Consortium cross-site study, we assessed satisfaction with mode of return of results (RoR) delivery across a diverse sample of participants receiving genetic testing results in person vs telemedicine (TM). RESULTS: Ninety-eight percent of participants were satisfied with their mode of results delivery. Participants receiving results by TM were more likely to report a preference for receiving results in a different way and challenges with providers noticing difficulties with understanding. More than 90% reported satisfaction across all items measuring support and interaction during sessions. Participants self-reporting Hispanic/Latino or Black/African American race and ethnicity compared with White/European American, fewer years of education, and having lower health literacy were more likely to report challenges with understanding the information or asking questions. Participants who were White/European American, had more years of education, and higher health literacy reported higher communication scores, reflecting more positive evaluations of the communication experience. CONCLUSION: TM is an acceptable mode of return of results delivery across diverse settings and populations. Research optimizing approaches for underrepresented populations, populations with lower levels of education and health literacy, and multilingual populations is necessary.
Subject(s)
Genetic Testing , Humans , Female , Male , Adult , Genetic Testing/methods , Middle Aged , Telemedicine , Genomics/methods , Patient Satisfaction , Health Literacy , AgedABSTRACT
PURPOSE: The ClinGen Actionability Working Group (AWG) developed an evidence-based framework to generate actionability reports and scores of gene-condition pairs in the context of secondary findings from genome sequencing. Here we describe the expansion of the framework to include actionability assertions. METHODS: Initial development of the actionability rubric was based on previously scored adult gene-condition pairs and individual expert evaluation. Rubric refinement was iterative and based on evaluation, feedback, and discussion. The final rubric was pragmatically evaluated via integration into actionability assessments for 27 gene-condition pairs. RESULTS: The resulting rubric has a 4-point scale (limited, moderate, strong, and definitive) and uses the highest-scoring outcome-intervention pair of each gene-condition pair to generate a preliminary assertion. During AWG discussions, predefined criteria and factors guide discussion to produce a consensus assertion for a gene-condition pair, which may differ from the preliminary assertion. The AWG has retrospectively generated assertions for all previously scored gene-condition pairs and are prospectively asserting on gene-condition pairs under assessment, having completed over 170 adult and 188 pediatric gene-condition pairs. CONCLUSION: The AWG expanded its framework to provide actionability assertions to enhance the clinical value of their resources and increase their utility as decision aids regarding return of secondary findings.
Subject(s)
Evidence-Based Medicine , Humans , Evidence-Based Medicine/methods , Genetic Testing/methods , Incidental Findings , Whole Genome SequencingABSTRACT
PURPOSE: Research is underway worldwide to investigate the feasibility, acceptability, and utility of sequencing-based newborn screening. Different methods have been used to select gene-condition pairs for screening, leading to highly inconsistent gene lists across studies. METHODS: Early Check developed and utilized actionability-based frameworks for evaluating gene-condition pairs for inclusion in newborn panels (Panel 1 - high actionability, Panel 2 - possible actionability). A previously developed framework, the Age-based Semi Quantitative Metric (ASQM), was adapted. Increasing ASQM scores, with a maximum of 15, suggest greater actionability. Wilcoxon tests were performed to compare Panel 1 gene-condition pairs on the Recommended Uniform Screening Panel (RUSP) to non-RUSP pairs. RESULTS: In our first round of assessment, Early Check identified 178 gene-condition pairs for inclusion in Panel 1 and 29 for Panel 2. Median ASQM scores of RUSP conditions on Panel 1 was 12 (range 4 to 15) and non-RUSP was 13 (range 9 to 15). Median scores for Panel 2 was 10 (range 6 to 14). CONCLUSION: The Early Check frameworks provide a transparent, semiquantitative, and reproducible methodology for selecting gene-condition pairs for NBS sequencing pilot studies that may inform future integration of genomic sequencing into population-level NBS. Collaborative efforts among newborn sequencing studies to establish shared criteria is needed to enhance cross-study comparisons.
ABSTRACT
Newborn screening (NBS) was established as a public health program in the 1960s and is crucial for facilitating detection of certain medical conditions in which early intervention can prevent serious, life-threatening health problems. Genomic sequencing can potentially expand the screening for rare hereditary disorders, but many questions surround its possible use for this purpose. We examined the use of exome sequencing (ES) for NBS in the North Carolina Newborn Exome Sequencing for Universal Screening (NC NEXUS) project, comparing the yield from ES used in a screening versus a diagnostic context. We enrolled healthy newborns and children with metabolic diseases or hearing loss (106 participants total). ES confirmed the participant's underlying diagnosis in 15 out of 17 (88%) children with metabolic disorders and in 5 out of 28 (â¼18%) children with hearing loss. We discovered actionable findings in four participants that would not have been detected by standard NBS. A subset of parents was eligible to receive additional information for their child about childhood-onset conditions with low or no clinical actionability, clinically actionable adult-onset conditions, and carrier status for autosomal-recessive conditions. We found pathogenic variants associated with hereditary breast and/or ovarian cancer in two children, a likely pathogenic variant in the gene associated with Lowe syndrome in one child, and an average of 1.8 reportable variants per child for carrier results. These results highlight the benefits and limitations of using genomic sequencing for NBS and the challenges of using such technology in future precision medicine approaches.
Subject(s)
Breast Neoplasms/diagnosis , Genetic Testing/statistics & numerical data , Hearing Loss/diagnosis , Metabolic Diseases/diagnosis , Oculocerebrorenal Syndrome/diagnosis , Ovarian Neoplasms/diagnosis , Breast Neoplasms/genetics , Child, Preschool , Female , Genome, Human , Hearing Loss/genetics , Heterozygote , Humans , Infant , Infant, Newborn , Male , Metabolic Diseases/genetics , Neonatal Screening , North Carolina , Oculocerebrorenal Syndrome/genetics , Ovarian Neoplasms/genetics , Public Health/methods , Exome SequencingABSTRACT
Harmonization of variant pathogenicity classification across laboratories is important for advancing clinical genomics. The two CLIA-accredited Electronic Medical Record and Genomics Network sequencing centers and the six CLIA-accredited laboratories and one research laboratory performing genome or exome sequencing in the Clinical Sequencing Evidence-Generating Research Consortium collaborated to explore current sources of discordance in classification. Eight laboratories each submitted 20 classified variants in the ACMG secondary finding v.2.0 genes. After removing duplicates, each of the 158 variants was annotated and independently classified by two additional laboratories using the ACMG-AMP guidelines. Overall concordance across three laboratories was assessed and discordant variants were reviewed via teleconference and email. The submitted variant set included 28 P/LP variants, 96 VUS, and 34 LB/B variants, mostly in cancer (40%) and cardiac (27%) risk genes. Eighty-six (54%) variants reached complete five-category (i.e., P, LP, VUS, LB, B) concordance, and 17 (11%) had a discordance that could affect clinical recommendations (P/LP versus VUS/LB/B). 21% and 63% of variants submitted as P and LP, respectively, were discordant with VUS. Of the 54 originally discordant variants that underwent further review, 32 reached agreement, for a post-review concordance rate of 84% (118/140 variants). This project provides an updated estimate of variant concordance, identifies considerations for LP classified variants, and highlights ongoing sources of discordance. Continued and increased sharing of variant classifications and evidence across laboratories, and the ongoing work of ClinGen to provide general as well as gene- and disease-specific guidance, will lead to continued increases in concordance.
Subject(s)
Cardiovascular Diseases/genetics , Genetic Variation , Genomics/standards , Laboratories/standards , Neoplasms/genetics , Cardiovascular Diseases/diagnosis , Computational Biology/methods , Genetic Testing , Genetics, Medical/methods , Genome, Human , High-Throughput Nucleotide Sequencing , Humans , Laboratory Proficiency Testing/statistics & numerical data , Neoplasms/diagnosis , Sequence Analysis, DNA , Software , Terminology as TopicABSTRACT
Central giant cell granuloma of the jaw (CGCJ) can be locally aggressive and result in facial and dental deformity. A child with CGCJ was treated surgically and with denosumab with a response but life-threatening toxicity. Imatinib, a tyrosine kinase inhibitor, was prescribed based on clinical similarities between CGCJ and cherubism, for which Imatinib has been effective. Within 2 months, a computed tomographic scan showed significant ossification, which increased over the following 8 months. This case suggests that tyrosine kinase inhibitors may be an effective option, and one with limited toxicity, for CGCJ.
Subject(s)
Cherubism , Granuloma, Giant Cell , Child , Humans , Granuloma, Giant Cell/drug therapy , Granuloma, Giant Cell/diagnosis , Imatinib Mesylate/therapeutic use , Cherubism/diagnosis , Diagnosis, Differential , Tomography, X-Ray ComputedABSTRACT
AIMS: Children with disabilities and rare or undiagnosed conditions and their families have faced numerous hardships of living during the COVID-19 pandemic. For those with undiagnosed conditions, the diagnostic odyssey can be long, expensive, and marked by uncertainty. We, therefore, sought to understand whether and how COVID-19 impacted the trajectory of children's care. METHODS: We conducted semi-structured qualitative interviews with 25 caregivers who, prior to the pandemic, were on a diagnostic odyssey for their children. RESULTS: Most caregivers did not report any interruptions to their child's diagnostic odyssey. The greatest impact was access to therapy services, including the suspension or loss of their child's in-person therapeutic care and difficulties with virtual therapies. This therapy gap caused caregivers to fear that their children were not making progress. CONCLUSION: Although much has been written about the challenges of diagnostic odysseys for children and their families, this study illustrates the importance of expanding the focus of these studies to include therapeutic odysseys. Because therapeutic odysseys continue regardless of whether diagnoses are made, future research should investigate how to support caregivers through children's therapies within and outside of the COVID-19 context.
Subject(s)
COVID-19 , Caregivers , Humans , Child , Pandemics , FearABSTRACT
PURPOSE: Synthesis and curation of evidence regarding the clinical actionability of secondary findings (SFs) from genome-scale sequencing are needed to support decision-making on reporting of these findings. To assess actionability of SFs in children and adolescents, the Clinical Genome Resource established the Pediatric Actionability Working Group (AWG). METHODS: The Pediatric AWG modified the framework of the existing Adult AWG, which included production of summary reports of actionability for genes and associated conditions and consensus actionability scores for specific outcome-intervention pairs. Modification of the adult framework for the pediatric setting included accounting for special considerations for reporting presymptomatic or predictive genetic findings in the pediatric context, such as maintaining future autonomy by not disclosing conditions not actionable until adulthood. The Pediatric AWG then applied this new framework to genes and associated conditions with putative actionability. RESULTS: As of September 2021, the Pediatric AWG applied the new framework to 70 actionability topics representing 143 genes. Reports and scores are publicly available at www.clinicalgenome.org. CONCLUSION: The Pediatric AWG continues to curate gene-condition topics and build an evidence-based resource, supporting clinical communities and decision-makers with policy development on the return of SFs in pediatric populations.
Subject(s)
Genetic Testing , Research Report , Adolescent , Adult , Child , Chromosome Mapping , HumansABSTRACT
The descriptor 'usual care' refers to standard or routine care. Yet, no formal definition exists. The need to define what constitutes usual care arises in clinical research. Often one arm in a trial represents usual care in comparison with a novel intervention. Accordingly, usual care in genetic counseling research appears predominantly in randomized controlled trials. Recent standards for reporting genetic counseling research call for standardization, but do not address usual care. We (1) inventoried all seven studies in the Clinical Sequencing Evidence-Generating Consortium (CSER) about how genetic counseling was conceptualized, conducted, and whether a usual care arm was involved; (2) conducted a review of published randomized control trials in genetic counseling, comparing how researchers describe usual care groups; and (3) reviewed existing professionally endorsed definitions and practice descriptions of genetic counseling. We found wide variation in the content and delivery of usual care. Descriptions frequently detailed the content of usual care, most often noting assessment of genetic risk factors, collecting family histories, and offering testing. A minority included addressing psychological concerns or the risks versus benefits of testing. Descriptions of how care was delivered were vague except for mode and type of clinician, which varied. This significant variation, beyond differences expected among subspecialties, reduces the validity and generalizability of genetic counseling research. Ideally, research reflects clinical practice so that evidence generated can be used to improve clinical outcomes. To address this objective, we propose a definition of usual care in genetic counseling research that merges common elements from the National Society of Genetic Counselors' practice definition, the Reciprocal Engagement Model, and the Accreditation Council for Genetic Counselors' practice-based competencies. Promoting consistent execution of usual care in the design of genetic counseling trials can lead to more consistency in representing clinical care and facilitate the generation of evidence to improve it.
Subject(s)
Counseling , Genetic Counseling , Accreditation , HumansABSTRACT
PURPOSE: People undergoing diagnostic genome-scale sequencing are expected to have better psychological outcomes when they can incorporate and act on accurate, relevant knowledge that supports informed decision making. METHODS: This longitudinal study used data from the North Carolina Clinical Genomic Evaluation by NextGen Exome Sequencing Study (NCGENES) of diagnostic exome sequencing to evaluate associations between factual genomic knowledge (measured with the University of North Carolina Genomic Knowledge Scale at three assessments from baseline to after return of results) and sequencing outcomes that reflected participants' perceived understanding of the study and sequencing, regret for joining the study, and responses to learning sequencing results. It also investigated differences in genomic knowledge associated with subgroups differing in race/ethnicity, income, education, health literacy, English proficiency, and prior genetic testing. RESULTS: Multivariate models revealed higher genomic knowledge at baseline for non-Hispanic Whites and those with higher income, education, and health literacy (p values < 0.001). These subgroup differences persisted across study assessments despite a general increase in knowledge among all groups. Greater baseline genomic knowledge was associated with lower test-related distress (p = 0.047) and greater perceived understanding of diagnostic genomic sequencing (p values 0.04 to <0.001). CONCLUSION: Findings extend understanding of the role of genomic knowledge in psychological outcomes of diagnostic exome sequencing, providing guidance for additional research and interventions.
Subject(s)
Decision Making , Exome Sequencing/methods , Genomics/education , Adult , Aged , Female , Health Knowledge, Attitudes, Practice/ethnology , Health Literacy , Humans , Longitudinal Studies , Male , Middle Aged , Socioeconomic FactorsABSTRACT
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
ABSTRACT
PURPOSE: We investigated the diagnostic and clinical performance of trio exome sequencing (ES) in parent-fetus trios where the fetus had sonographic abnormalities but normal karyotype, microarray and, in some cases, normal gene-specific sequencing. METHODS: ES was performed from DNA of 102 anomalous fetuses and from peripheral blood from their parents. Parents provided consent for the return of diagnostic results in the fetus, medically actionable findings in the parents, and identification as carrier couple for significant autosomal recessive conditions. RESULTS: In 21/102 (20.6%) fetuses, ES provided a positive-definitive or positive-probable diagnosis. In 10/102 (9.8%), ES provided an inconclusive-possible result. At least 2/102 (2.0%) had a repeat pregnancy during the study period and used the information from the study for prenatal diagnosis in the next pregnancy. Six of 204 (2.9%) parents received medically actionable results that affected their own health and 3/102 (2.9%) of couples received results that they were carriers for the same autosomal recessive condition. CONCLUSION: ES has diagnostic utility in a select population of fetuses where a genetic diagnosis was highly suspected. Challenges related to genetics literacy, variant interpretation, and various types of diagnostic results affecting both fetal and parental health must be addressed by highly tailored pre- and post-test genetic counseling.
Subject(s)
Exome , Ultrasonography, Prenatal , Exome/genetics , Female , Humans , Pregnancy , Pregnancy Trimester, First , Prenatal Diagnosis , Exome SequencingABSTRACT
As panel testing and exome sequencing are increasingly incorporated into clinical care, clinicians must grapple with how to communicate the risks and treatment decisions surrounding breast cancer genes beyond BRCA1 and BRCA2. In this paper, we examine clinicians' practice of employing BRCA1 and BRCA2 to help contextualize less certain genetic information regarding cancer risk and the possible implications of this practice for patients within the context of an exome sequencing study, NCGENES. We audio-recorded return of results appointments for 14 women who participated in NCGENES, previously had breast cancer, and were suspected of having a hereditary cancer predisposition. These patients were also interviewed four weeks later regarding their understanding of their results. We found that BRCA1 and BRCA2 were held as the gold standard, where clinicians compared what is known about BRCA to the limited understanding of other breast cancer-related genes. BRCA1 and BRCA2 were used as anchors to shape patients' understandings of genetic knowledge, risk, and management, illustrating how the information clinicians provide to patients may work as an external anchor. Yet, presenting BRCA1 and BRCA2 as a means of scientific reassurance can run the risk of patients conflating knowledge about certainty of risk with degree of risk after receiving a result for a moderate penetrance gene. This can be further complicated by misperceptions of the precision of cancer predictability attributed to these or other described 'cancer genes' in public media.
Subject(s)
Breast Neoplasms/genetics , Genes, BRCA1 , Genes, BRCA2 , Genetic Predisposition to Disease , Uncertainty , Adult , Aged , Female , Genotype , Humans , Middle Aged , Mutation , Exome SequencingABSTRACT
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
ABSTRACT
PURPOSE: Genomic sequencing can reveal variants with limited to no medical actionability. Previous research has assessed individuals' intentions to learn this information, but few report the decisions they made and why. METHODS: The North Carolina Clinical Genomic Evaluation by Next Generation Exome Sequencing (NCGENES) project evaluated adult patients randomized to learn up to six types of non-medically actionable secondary findings (NMASF). We previously found that most participants intended to request NMASF and intentions were strongly predicted by anticipated regret. Here we examine discrepancies between intentions and decisions to request NMASF, hypothesizing that anticipated regret would predict requests but that this association would be mediated by participants' intentions. RESULTS: Of the 76% who expressed intentions to learn results, only 42% made one or more requests. Overall, only 32% of the 155 eligible participants requested NMASF. Analyses support a plausible causal link between anticipated regret, intentions, and requests. CONCLUSIONS: The discordance between participants' expressed intentions and their actions provides insight into factors that influence patients' preferences for genomic information that has little to no actionability. These findings have implications for the timing and methods of eliciting preferences for NMASF and suggest that decisions to learn this information have cognitive and emotional components.
Subject(s)
Incidental Findings , Patient Preference/psychology , Whole Genome Sequencing/ethics , Adult , Aged , Decision Making/ethics , Emotions , Exome , Female , Genetic Testing/ethics , Genomics/methods , Health Knowledge, Attitudes, Practice , Health Personnel , High-Throughput Nucleotide Sequencing/ethics , Humans , Intention , Male , Middle Aged , Patients , Whole Genome Sequencing/methodsABSTRACT
OBJECTIVE: To assess the performance of a standardized, age-based metric for scoring clinical actionability to evaluate conditions for inclusion in newborn screening and compare it with the results from other contemporary methods. STUDY DESIGN: The North Carolina Newborn Exome Sequencing for Universal Screening study developed an age-based, semiquantitative metric to assess the clinical actionability of gene-disease pairs and classify them with respect to age of onset or timing of interventions. This categorization was compared with the gold standard Recommended Uniform Screening Panel and other methods to evaluate gene-disease pairs for newborn genomic sequencing. RESULTS: We assessed 822 gene-disease pairs, enriched for pediatric onset of disease and suspected actionability. Of these, 466 were classified as having childhood onset and high actionability, analogous to conditions selected for the Recommended Uniform Screening Panel core panel. Another 245 were classified as having childhood onset and low to no actionability, 25 were classified as having adult onset and high actionability, 19 were classified as having adult onset and low to no actionability, and 67 were excluded due to controversial evidence and/or prenatal onset. CONCLUSIONS: This study describes a novel method to facilitate decisions about the potential use of genomic sequencing for newborn screening. These categories may assist parents and physicians in making informed decisions about the disclosure of results from voluntary genomic sequencing in children.
Subject(s)
Chromosome Mapping/methods , Genetic Diseases, Inborn/diagnosis , Genetic Testing/methods , Neonatal Screening/methods , Sequence Analysis, DNA/methods , Decision Making, Shared , Female , Genetic Diseases, Inborn/epidemiology , Genome, Human , Humans , Infant, Newborn , Male , North Carolina , Exome SequencingABSTRACT
In recent years, genetic counselors have moved into increasingly varied areas of patient care. Yet limited information is known about how these genetic counselors transitioned from more general clinical practice to subspecialized practice. This study was designed to answer three research questions: (1) What common factors establish a need for a genetic counselor in a subspecialty setting? (2) How do genetic counselors in subspecialties establish their positions? (3) Once established, how do the positions of these genetic counselors evolve as the subspecialty expands? Phone interviews with subspecialized genetic counselors led to the development of an online survey distributed through the National Society of Genetic Counselors ListServ. Sixty-eight of the 144 initial participants met eligibility criteria for participation as subspecialty genetic counselors in a clinical role. Physician interest in hiring a genetic counselor, clinical need, genetic counselor interest in subspecialty area, and available genetic testing were commonly reported as contributing factors to position creation. Most subspecialty genetic counseling positions were created as new positions, rather than evolved from a previous position. Over time, subspecialty positions drew more departmental funding and included increased clinical coordination or administrative responsibilities. The results of this study can encourage genetic counselors to collaborate with their medical institutions to utilize their skill-set in diverse areas of patient care.
Subject(s)
Counselors/psychology , Genetic Counseling/methods , Adult , Clinical Competence , Cross-Sectional Studies , Female , Genetic Counseling/classification , Humans , MaleABSTRACT
Recommendations for laboratories to report incidental findings from genomic tests have stimulated interest in such results. In order to investigate the criteria and processes for assigning the pathogenicity of specific variants and to estimate the frequency of such incidental findings in patients of European and African ancestry, we classified potentially actionable pathogenic single-nucleotide variants (SNVs) in all 4300 European- and 2203 African-ancestry participants sequenced by the NHLBI Exome Sequencing Project (ESP). We considered 112 gene-disease pairs selected by an expert panel as associated with medically actionable genetic disorders that may be undiagnosed in adults. The resulting classifications were compared to classifications from other clinical and research genetic testing laboratories, as well as with in silico pathogenicity scores. Among European-ancestry participants, 30 of 4300 (0.7%) had a pathogenic SNV and six (0.1%) had a disruptive variant that was expected to be pathogenic, whereas 52 (1.2%) had likely pathogenic SNVs. For African-ancestry participants, six of 2203 (0.3%) had a pathogenic SNV and six (0.3%) had an expected pathogenic disruptive variant, whereas 13 (0.6%) had likely pathogenic SNVs. Genomic Evolutionary Rate Profiling mammalian conservation score and the Combined Annotation Dependent Depletion summary score of conservation, substitution, regulation, and other evidence were compared across pathogenicity assignments and appear to have utility in variant classification. This work provides a refined estimate of the burden of adult onset, medically actionable incidental findings expected from exome sequencing, highlights challenges in variant classification, and demonstrates the need for a better curated variant interpretation knowledge base.
Subject(s)
Exome , Genomics , Incidental Findings , Adult , Black People/genetics , Female , Gene Frequency , Genes, Dominant , Genetic Association Studies , Genetic Testing , Genome, Human , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , Male , Phenotype , Polymorphism, Single Nucleotide , White People/geneticsABSTRACT
PURPOSE: In a diagnostic exome sequencing study (the North Carolina Clinical Genomic Evaluation by Next-Generation Exome Sequencing project, NCGENES), we investigated adult patients' intentions to request six categories of secondary findings (SFs) with low or no medical actionability and correlates of their intentions. METHODS: At enrollment, eligible participants (n = 152) completed measures assessing their sociodemographic, clinical, and literacy-related characteristics. Prior to and during an in-person diagnostic result disclosure visit, they received education about categories of SFs they could request. Immediately after receiving education at the visit, participants completed measures of intention to learn SFs, interest in each category, and anticipated regret for learning and not learning each category. RESULTS: Seventy-eight percent of participants intended to learn at least some SFs. Logistic regressions examined their intention to learn any or all of these findings (versus none) and interest in each of the six individual categories (yes/no). Results revealed little association between intentions and sociodemographic, clinical, or literacy-related factors. Across outcomes, participants who anticipated regret for learning SFs reported weaker intention to learn them (odds ratios (ORs) from 0.47 to 0.71), and participants who anticipated regret for not learning these findings reported stronger intention to learn them (OR 1.61-2.22). CONCLUSION: Intentions to request SFs with low or no medical actionability may be strongly influenced by participants' desire to avoid regret.