Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38365270

ABSTRACT

Neural oscillations are important for working memory and reasoning and they are modulated during cognitively challenging tasks, like mathematics. Previous work has examined local cortical synchrony on theta (4-8 Hz) and alpha (8-13 Hz) bands over frontal and parietal electrodes during short mathematical tasks when sitting. However, it is unknown whether processing of long and complex math stimuli evokes inter-regional functional connectivity. We recorded cortical activity with EEG while math experts and novices watched long (13-68 seconds) and complex (bachelor-level) math demonstrations when sitting and standing. Fronto-parietal connectivity over the left hemisphere was stronger in math experts than novices reflected by enhanced delta (0.5-4 Hz) phase synchrony in experts. Processing of complex math tasks when standing extended the difference to right hemisphere, suggesting that other cognitive processes, such as maintenance of body balance when standing, may interfere with novice's internal concentration required during complex math tasks more than in experts. There were no groups differences in phase synchrony over theta or alpha frequencies. These results suggest that low-frequency oscillations modulate inter-regional connectivity during long and complex mathematical cognition and demonstrate one way in which the brain functions of math experts differ from those of novices: through enhanced fronto-parietal functional connectivity.


Subject(s)
Cognition , Problem Solving , Memory, Short-Term , Mathematics , Neural Pathways , Electroencephalography
2.
Trends Neurosci Educ ; 35: 100226, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879197

ABSTRACT

BACKGROUND: Much of modern mathematics education prioritizes symbolic formalism even at the expense of non-symbolic intuition, we contextualize our study in the ongoing debates on the balance between symbolic and non-symbolic reasoning. We explore the dissociation of oscillatory dynamics between algebraic (symbolic) and geometric (non-symbolic) processing in advanced mathematical reasoning during a naturalistic design. METHOD: Employing mobile EEG technology, we investigated students' beta and gamma wave patterns over frontal and parietal regions while they engaged with mathematical demonstrations in symbolic and non-symbolic formats within a tutor-student framework. We used extended, naturalistic stimuli to approximate an authentic educational setting. CONCLUSION: Our findings reveal nuanced distinctions in neural processing, particularly in terms of gamma waves and activity in parietal regions. Furthermore, no clear overall format preference emerged from the neuroscientific perspective despite students rating symbolic demonstrations higher for understanding and familiarity.


Subject(s)
Cognitive Neuroscience , Electroencephalography , Mathematics , Humans , Mathematics/education , Brain/physiology , Male , Female , Young Adult , Students/psychology
SELECTION OF CITATIONS
SEARCH DETAIL