Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 227
Filter
Add more filters

Publication year range
1.
Am J Med Genet C Semin Med Genet ; : e32097, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925597

ABSTRACT

BACKGROUND: Mosaic Down syndrome is a triplication of chromosome 21 in some but not all cells. Little is known about the epidemiology of mosaic Down syndrome. We described prevalence of mosaic Down syndrome and the co-occurrence of common chronic conditions in 94,533 Medicaid enrolled adults with any Down syndrome enrolled from 2016 to 2019. METHODS: We identified mosaic Down syndrome using the International Classification of Diseases and Related Health Problems, tenth edition code for mosaic Down syndrome and compared to those with nonmosaic Down syndrome codes. We identified chronic conditions using established algorithms and compared prevalence by mosaicism. RESULTS: In total, 1966 (2.08%) had claims for mosaic Down syndrome. Mosaicism did not differ by sex or race/ethnicity with similar age distributions. Individuals with mosaicism were more likely to present with autism (13.9% vs. 9.6%) and attention deficit hyperactivity disorder (17.7% vs. 14.0%) compared to individuals without mosaicism. In total, 22.3% of those with mosaic Down syndrome and 21.5% of those without mosaicism had claims for Alzheimer's dementia (Prevalence difference: 0.8; 95% Confidence interval: -1.0, 2.8). The mosaic group had 1.19 times the hazard of Alzheimer's dementia compared to the nonmosaic group (95% CI: 1.0, 1.3). DISCUSSION: Mosaicism may be associated with a higher susceptibility to certain neurodevelopmental and neurodegenerative conditions, including Alzheimer's dementia. Our findings challenge previous assumptions about its protective effects in Down syndrome. Further research is necessary to explore these associations in greater depth.

2.
Mov Disord ; 39(5): 814-824, 2024 May.
Article in English | MEDLINE | ID: mdl-38456361

ABSTRACT

BACKGROUND: Evidence regarding cortical atrophy patterns in Parkinson's disease (PD) with probable rapid eye movement sleep behavior disorder (RBD) (PD-pRBD) remains scarce. Cortical mean diffusivity (cMD), as a novel imaging biomarker highly sensitive to detecting cortical microstructural changes in different neurodegenerative diseases, has not been investigated in PD-pRBD yet. OBJECTIVES: The aim was to investigate cMD as a sensitive measure to identify subtle cortical microstructural changes in PD-pRBD and its relationship with cortical thickness (CTh). METHODS: Twenty-two PD-pRBD, 31 PD without probable RBD (PD-nonpRBD), and 28 healthy controls (HC) were assessed using 3D T1-weighted and diffusion-weighted magnetic resonance imaging on a 3-T scanner and neuropsychological testing. Measures of cortical brain changes were obtained through cMD and CTh. Two-class group comparisons of a general linear model were performed (P < 0.05). Cohen's d effect size for both approaches was computed. RESULTS: PD-pRBD patients showed higher cMD than PD-nonpRBD patients in the left superior temporal, superior frontal, and precentral gyri, precuneus cortex, as well as in the right middle frontal and postcentral gyri and paracentral lobule (d > 0.8), whereas CTh did not detect significant differences. PD-pRBD patients also showed increased bilateral posterior cMD in comparison with HCs (d > 0.8). These results partially overlapped with CTh results (0.5 < d < 0.8). PD-nonpRBD patients showed no differences in cMD when compared with HCs but showed cortical thinning in the left fusiform gyrus and lateral occipital cortex bilaterally (d > 0.5). CONCLUSIONS: cMD may be more sensitive than CTh displaying significant cortico-structural differences between PD subgroups, indicating this imaging biomarker's utility in studying early cortical changes in PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Cerebral Cortex , Parkinson Disease , REM Sleep Behavior Disorder , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Parkinson Disease/complications , Parkinson Disease/physiopathology , REM Sleep Behavior Disorder/diagnostic imaging , REM Sleep Behavior Disorder/pathology , Male , Female , Aged , Middle Aged , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Magnetic Resonance Imaging , Diffusion Magnetic Resonance Imaging/methods , Atrophy/pathology , Neuropsychological Tests
3.
Immun Ageing ; 21(1): 32, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760856

ABSTRACT

BACKGROUND: An elevated neutrophil-lymphocyte ratio (NLR) in blood has been associated with Alzheimer's disease (AD). However, an elevated NLR has also been implicated in many other conditions that are risk factors for AD, prompting investigation into whether the NLR is directly linked with AD pathology or a result of underlying comorbidities. Herein, we explored the relationship between the NLR and AD biomarkers in the cerebrospinal fluid (CSF) of cognitively unimpaired (CU) subjects. Adjusting for sociodemographics, APOE4, and common comorbidities, we investigated these associations in two cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the M.J. de Leon CSF repository at NYU. Specifically, we examined associations between the NLR and cross-sectional measures of amyloid-ß42 (Aß42), total tau (t-tau), and phosphorylated tau181 (p-tau), as well as the trajectories of these CSF measures obtained longitudinally. RESULTS: A total of 111 ADNI and 190 NYU participants classified as CU with available NLR, CSF, and covariate data were included. Compared to NYU, ADNI participants were older (73.79 vs. 61.53, p < 0.001), had a higher proportion of males (49.5% vs. 36.8%, p = 0.042), higher BMIs (27.94 vs. 25.79, p < 0.001), higher prevalence of hypertensive history (47.7% vs. 16.3%, p < 0.001), and a greater percentage of Aß-positivity (34.2% vs. 20.0%, p = 0.009). In the ADNI cohort, we found cross-sectional associations between the NLR and CSF Aß42 (ß = -12.193, p = 0.021), but not t-tau or p-tau. In the NYU cohort, we found cross-sectional associations between the NLR and CSF t-tau (ß = 26.812, p = 0.019) and p-tau (ß = 3.441, p = 0.015), but not Aß42. In the NYU cohort alone, subjects classified as Aß + (n = 38) displayed a stronger association between the NLR and t-tau (ß = 100.476, p = 0.037) compared to Aß- subjects or the non-stratified cohort. In both cohorts, the same associations observed in the cross-sectional analyses were observed after incorporating longitudinal CSF data. CONCLUSIONS: We report associations between the NLR and Aß42 in the older ADNI cohort, and between the NLR and t-tau and p-tau in the younger NYU cohort. Associations persisted after adjusting for comorbidities, suggesting a direct link between the NLR and AD. However, changes in associations between the NLR and specific AD biomarkers may occur as part of immunosenescence.

4.
Alzheimers Dement ; 20(3): 2262-2272, 2024 03.
Article in English | MEDLINE | ID: mdl-38270275

ABSTRACT

Individuals with Down syndrome (DS) have a partial or complete trisomy of chromosome 21, resulting in an increased risk for early-onset Alzheimer's disease (AD)-type dementia by early midlife. Despite ongoing clinical trials to treat late-onset AD, individuals with DS are often excluded. Furthermore, timely diagnosis or management is often not available. Of the genetic causes of AD, people with DS represent the largest cohort. Currently, there is a knowledge gap regarding the underlying neurobiological mechanisms of DS-related AD (DS-AD), partly due to limited access to well-characterized brain tissue and biomaterials for research. To address this challenge, we created an international consortium of brain banks focused on collecting and disseminating brain tissue from persons with DS throughout their lifespan, named the Down Syndrome Biobank Consortium (DSBC) consisting of 11 biobanking sites located in Europe, India, and the USA. This perspective describes the DSBC harmonized protocols and tissue dissemination goals.


Subject(s)
Alzheimer Disease , Down Syndrome , Humans , Down Syndrome/genetics , Biological Specimen Banks , Alzheimer Disease/genetics , Brain , Europe
5.
Alzheimers Dement ; 20(5): 3649-3656, 2024 05.
Article in English | MEDLINE | ID: mdl-38480678

ABSTRACT

Prior authorization criteria for Federal Drug Administration (FDA) approved immunotherapeutics, among the class of anti-amyloid monoclonal antibodies (mAbs), established by state drug formulary committees, are tailored for adults with late-onset Alzheimer's disease. This overlooks adults with Down syndrome (DS), who often experience dementia at a younger age and with different diagnostic assessment outcomes. This exclusion may deny DS adults access to potential disease-modifying treatments. To address this issue, an international expert panel convened to establish adaptations of prescribing criteria suitable for DS patients and parameters for access to Centers for Medicare & Medicaid Services (CMS) registries. The panel proposed mitigating disparities by modifying CMS and payer criteria to account for younger onset age, using alternative language and assessment instruments validated for cognitive decline in the DS population. The panel also recommended enhancing prescribing clinicians' diagnostic capabilities for DS and initiated awareness-raising activities within healthcare organizations. These efforts facilitated discussions with federal officials, aimed at achieving equity in access to anti-amyloid immunotherapeutics, with implications for national authorities worldwide evaluating these and other new disease-modifying therapeutics for Alzheimer's disease.


Subject(s)
Down Syndrome , Humans , United States , Alzheimer Disease/drug therapy , Adult , Antibodies, Monoclonal/therapeutic use , Immunotherapy/methods
6.
Alzheimers Dement ; 20(5): 3270-3280, 2024 05.
Article in English | MEDLINE | ID: mdl-38506627

ABSTRACT

INTRODUCTION: People with Down syndrome (DS) have high risk of developing Alzheimer's disease (AD). This study examined mean ages of AD diagnosis and associations with co-occurring conditions among adults with DS from five European countries. METHODS: Data from 1335 people with DS from the Horizon 21 European DS Consortium were used for the analysis. RESULTS: Mean ages of AD diagnosis ranged between 51.4 (SD 7.0) years (United Kingdom) and 55.6 (SD 6.8) years (France). Sleep-related and mental health problems were associated with earlier age of AD diagnosis. The higher number of co-occurring conditions the more likely the person with DS is diagnosed with AD at an earlier age. DISCUSSION: Mean age of AD diagnosis in DS was relatively consistent across countries. However, co-occurring conditions varied and impacted on age of diagnosis, suggesting that improvements can be made in diagnosing and managing these conditions to delay onset of AD in DS. HIGHLIGHTS: Mean age of AD diagnosis was relatively consistent between countries Sleep problems and mental health problems were associated with earlier age of AD diagnosis APOE ε4 carriers were diagnosed with AD at an earlier age compared to non-carriers Number of co-occurring conditions was associated with earlier age of AD diagnosis No differences between level of intellectual disability and mean age of AD diagnosis.


Subject(s)
Alzheimer Disease , Down Syndrome , Humans , Down Syndrome/epidemiology , Down Syndrome/diagnosis , Down Syndrome/complications , Alzheimer Disease/diagnosis , Alzheimer Disease/epidemiology , Male , Female , Middle Aged , Europe/epidemiology , Adult , United Kingdom/epidemiology , Sleep Wake Disorders/epidemiology , Sleep Wake Disorders/diagnosis , Age Factors , Age of Onset , France/epidemiology , Aged , Comorbidity , Apolipoprotein E4/genetics
7.
Alzheimers Dement ; 20(6): 3906-3917, 2024 06.
Article in English | MEDLINE | ID: mdl-38644660

ABSTRACT

BACKGROUND: Cortical microinfarcts (CMI) were attributed to cerebrovascular disease and cerebral amyloid angiopathy (CAA). CAA is frequent in Down syndrome (DS) while hypertension is rare, yet no studies have assessed CMI in DS. METHODS: We included 195 adults with DS, 63 with symptomatic sporadic Alzheimer's disease (AD), and 106 controls with 3T magnetic resonance imaging. We assessed CMI prevalence in each group and CMI association with age, AD clinical continuum, vascular risk factors, vascular neuroimaging findings, amyloid/tau/neurodegeneration biomarkers, and cognition in DS. RESULTS: CMI prevalence was 11.8% in DS, 4.7% in controls, and 17.5% in sporadic AD. In DS, CMI increased in prevalence with age and the AD clinical continuum, was clustered in the parietal lobes, and was associated with lacunes and cortico-subcortical infarcts, but not hemorrhagic lesions. DISCUSSION: In DS, CMI are posteriorly distributed and related to ischemic but not hemorrhagic findings suggesting they might be associated with a specific ischemic CAA phenotype. HIGHLIGHTS: This is the first study to assess cortical microinfarcts (assessed with 3T magnetic resonance imaging) in adults with Down syndrome (DS). We studied the prevalence of cortical microinfarcts in DS and its relationship with age, the Alzheimer's disease (AD) clinical continuum, vascular risk factors, vascular neuroimaging findings, amyloid/tau/neurodegeneration biomarkers, and cognition. The prevalence of cortical microinfarcts was 11.8% in DS and increased with age and along the AD clinical continuum. Cortical microinfarcts were clustered in the parietal lobes, and were associated with lacunes and cortico-subcortical infarcts, but not hemorrhagic lesions. In DS, cortical microinfarcts are posteriorly distributed and related to ischemic but not hemorrhagic findings suggesting they might be associated with a specific ischemic phenotype of cerebral amyloid angiopathy.


Subject(s)
Alzheimer Disease , Down Syndrome , Magnetic Resonance Imaging , Humans , Down Syndrome/pathology , Down Syndrome/complications , Down Syndrome/diagnostic imaging , Female , Male , Middle Aged , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Adult , Aged , Cerebral Infarction/diagnostic imaging , Cerebral Infarction/pathology , Prevalence , Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Amyloid Angiopathy/pathology , Cerebral Amyloid Angiopathy/complications , Risk Factors , Cerebral Cortex/pathology , Cerebral Cortex/diagnostic imaging
8.
Alzheimers Dement ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087352

ABSTRACT

INTRODUCTION: In Down syndrome (DS), white matter hyperintensities (WMHs) are highly prevalent, yet their topography and association with sociodemographic data and Alzheimer's disease (AD) biomarkers remain largely unexplored. METHODS: In 261 DS adults and 131 euploid controls, fluid-attenuated inversion recovery magnetic resonance imaging scans were segmented and WMHs were extracted in concentric white matter layers and lobar regions. We tested associations with AD clinical stages, sociodemographic data, cerebrospinal fluid (CSF) AD biomarkers, and gray matter (GM) volume. RESULTS: In DS, total WMHs arose at age 43 and showed stronger associations with age than in controls. WMH volume increased along the AD continuum, particularly in periventricular regions, and frontal, parietal, and occipital lobes. Associations were found with CSF biomarkers and temporo-parietal GM volumes. DISCUSSION: WMHs increase 10 years before AD symptom onset in DS and are closely linked with AD biomarkers and neurodegeneration. This suggests a direct connection to AD pathophysiology, independent of vascular risks. HIGHLIGHTS: White matter hyperintensities (WMHs) increased 10 years before Alzheimer's disease symptom onset in Down syndrome (DS). WMHs were strongly associated in DS with the neurofilament light chain biomarker. WMHs were more associated in DS with gray matter volume in parieto-temporal areas.

9.
Alzheimers Dement ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096164

ABSTRACT

INTRODUCTION: We developed a multimarker blood test result interpretation tool for the clinical dementia practice, including phosphorylated (P-)tau181, amyloid-beta (Abeta)42/40, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL). METHODS: We measured the plasma biomarkers with Simoa (n = 1199), applied LASSO regression for biomarker selection and receiver operating characteristics (ROC) analyses to determine diagnostic accuracy. We validated our findings in two independent cohorts and constructed a visualization approach. RESULTS: P-tau181, GFAP, and NfL were selected. This combination had area under the curve (AUC) = 83% to identify amyloid positivity in pre-dementia stages, AUC = 87%-89% to differentiate Alzheimer's or controls from frontotemporal dementia, AUC = 74%-76% to differentiate Alzheimer's or controls from dementia with Lewy bodies. Highly reproducible AUCs were obtained in independent cohorts. The resulting visualization tool includes UpSet plots to visualize the stand-alone biomarker results and density plots to visualize the biomarker results combined. DISCUSSION: Our multimarker blood test interpretation tool is ready for testing in real-world clinical dementia settings. HIGHLIGHTS: We developed a multimarker blood test interpretation tool for clinical dementia practice. Our interpretation tool includes plasma biomarkers P-tau, GFAP, and NfL. Our tool is particularly useful for Alzheimer's and frontotemporal dementia diagnosis.

10.
Neuropathol Appl Neurobiol ; 49(1): e12879, 2023 02.
Article in English | MEDLINE | ID: mdl-36702749

ABSTRACT

AIMS: Amyloid precursor protein (APP) 𝛽-C-terminal fragment (𝛽CTF) may have a neurotoxic role in Alzheimer's disease (AD). 𝛽CTF accumulates in the brains of patients with sporadic (SAD) and genetic forms of AD. Synapses degenerate early during the pathogenesis of AD. We studied whether the 𝛽CTF accumulates in synapses in SAD, autosomal dominant AD (ADAD) and Down syndrome (DS). METHODS: We used array tomography to determine APP at synapses in human AD tissue. We measured 𝛽CTF, A𝛽40, A𝛽42 and phosphorylated tau181 (p-tau181) concentrations in brain homogenates and synaptosomes of frontal and temporal cortex of SAD, ADAD, DS and controls. RESULTS: APP colocalised with pre- and post-synaptic markers in human AD brains. APP 𝛽CTF was enriched in AD synaptosomes. CONCLUSIONS: We demonstrate that 𝛽CTF accumulates in synapses in SAD, ADAD and DS. This finding might suggest a role for 𝛽CTF in synapse degeneration. Therapies aimed at mitigating 𝛽CTF accumulation could be potentially beneficial in AD.


Subject(s)
Alzheimer Disease , Down Syndrome , Humans , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/metabolism , Down Syndrome/metabolism , Brain/pathology , Synapses/pathology , Amyloid beta-Peptides/metabolism
11.
Clin Chem Lab Med ; 61(9): 1580-1589, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37083158

ABSTRACT

OBJECTIVES: Alzheimer's disease (AD) is considered the most common cause of dementia in older people. Recently, blood-based markers (BBM) Aß1-42, Aß1-40, and phospho Tau181 (p-Tau181) have demonstrated the potential to transform the diagnosis and prognostic assessment of AD. Our aim was to investigate the effect of different storage conditions on the quantification of these BBM and to evaluate the interchangeability of plasma and serum samples. METHODS: Forty-two individuals with some degree of cognitive impairment were studied. Thirty further patients were retrospectively selected. Aß1-42, Aß1-40, and p-Tau181 were quantified using the LUMIPULSE-G600II automated platform. To assess interchangeability between conditions, correction factors for magnitudes that showed strong correlations were calculated, followed by classification consistency studies. RESULTS: Storing samples at 4 °C for 8-9 days was associated with a decrease in Aß fractions but not when stored for 1-2 days. Using the ratio partially attenuated the pre-analytical effects. For p-Tau181, samples stored at 4 °C presented lower concentrations, whereas frozen samples presented higher ones. Concerning classification consistency in comparisons that revealed strong correlations (p-Tau181), the percentage of total agreement was greater than 90 % in a large number of the tested cut-offs values. CONCLUSIONS: Our findings provide relevant information for the standardization of sample collection and storage in the analysis of AD BBM in an automated platform. This knowledge is crucial to ensure their introduction into clinical settings.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/diagnosis , tau Proteins , Amyloid beta-Peptides , Retrospective Studies , Biomarkers
12.
Article in English | MEDLINE | ID: mdl-37898567

ABSTRACT

Core Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers have shown incomplete agreement with amyloid-positron emission tomography (PET). Our goal was to analyze the agreement between AD CSF biomarkers and amyloid-PET in a multicenter study. Retrospective multicenter study (5 centers). Participants who underwent both CSF biomarkers and amyloid-PET scan within 18 months were included. Clinical diagnoses were made according to latest diagnostic criteria by the attending clinicians. CSF Amyloid Beta1-42 (Aß1-42, A), phosphorliated tau 181 (pTau181, T) and total tau (tTau, N) biomarkers were considered normal (-) or abnormal ( +) according to cutoffs of each center. Amyloid-PET was visually classified as positive/negative. Agreement between CSF biomarkers and amyloid-PET was analyzed by overall percent agreement (OPA). 236 participants were included (mean age 67.9 years (SD 9.1), MMSE score 24.5 (SD 4.1)). Diagnoses were mild cognitive impairment or dementia due to AD (49%), Lewy body dementia (22%), frontotemporal dementia (10%) and others (19%). Mean time between tests was 5.1 months (SD 4.1). OPA between single CSF biomarkers and amyloid-PET was 74% for Aß1-42, 75% for pTau181, 73% for tTau. The use of biomarker ratios improved OPA: 87% for Aß1-42/Aß1-40 (n = 155), 88% for pTau181/Aß1-42 (n = 94) and 82% for tTau/Aß1-42 (n = 160). A + T + N + cases showed the highest agreement between CSF biomarkers and amyloid-PET (96%), followed by A-T-N- cases (89%). Aß1-42/Aß1-40 was a better marker of cerebral amyloid deposition, as identified by amyloid tracers, than Aß1-42 alone. Combined biomarkers in CSF predicted amyloid-PET result better than single biomarkers.

13.
Alzheimers Dement ; 19(9): 3916-3925, 2023 09.
Article in English | MEDLINE | ID: mdl-37038748

ABSTRACT

BACKGROUND: Down syndrome (DS) is a genetic form of Alzheimer's disease (AD). However, clinical diagnosis is difficult, and experts emphasize the need for detecting intra-individual cognitive decline. OBJECTIVE: To compare the performance of baseline and longitudinal neuropsychological assessments for the diagnosis of symptomatic AD in DS. METHODS: Longitudinal cohort study of adults with DS. Individuals were classified as asymptomatic, prodromal AD, or AD dementia. We performed receiver operating characteristic curve analyses to compare baseline and longitudinal changes of CAMCOG-DS and mCRT. RESULTS: We included 562 adults with DS. Baseline assessments showed good to excellent diagnostic performance for AD dementia (AUCs between 0.82 and 0.99) and prodromal AD, higher than the 1-year intra-individual cognitive decline (area under the ROC curve between 0.59 and 0.79 for AD dementia, lower for prodromal AD). Longer follow-ups increased the diagnostic performance of the intra-individual cognitive decline. DISCUSSION: Baseline cognitive assessment outperforms the 1-year intra-individual cognitive decline in adults with DS.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Down Syndrome , Adult , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/psychology , Down Syndrome/complications , Down Syndrome/diagnosis , Down Syndrome/genetics , Longitudinal Studies , Cross-Sectional Studies , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/psychology , Neuropsychological Tests , Cognition
14.
Alzheimers Dement ; 19(11): 4817-4827, 2023 11.
Article in English | MEDLINE | ID: mdl-37021589

ABSTRACT

BACKGROUND: Basal forebrain (BF) degeneration occurs in Down syndrome (DS)-associated Alzheimer's disease (AD). However, the dynamics of BF atrophy with age and disease progression, its impact on cognition, and its relationship with AD biomarkers have not been studied in DS. METHODS: We included 234 adults with DS (150 asymptomatic, 38 prodromal AD, and 46 AD dementia) and 147 euploid controls. BF volumes were extracted from T-weighted magnetic resonance images using a stereotactic atlas in SPM12. We assessed BF volume changes with age and along the clinical AD continuum and their relationship to cognitive performance, cerebrospinal fluid (CSF) and plasma amyloid/tau/neurodegeneration biomarkers, and hippocampal volume. RESULTS: In DS, BF volumes decreased with age and along the clinical AD continuum and significantly correlated with amyloid, tau, and neurofilament light chain changes in CSF and plasma, hippocampal volume, and cognitive performance. DISCUSSION: BF atrophy is a potentially valuable neuroimaging biomarker of AD-related cholinergic neurodegeneration in DS.


Subject(s)
Alzheimer Disease , Basal Forebrain , Down Syndrome , Humans , Adult , Alzheimer Disease/pathology , Down Syndrome/diagnostic imaging , Down Syndrome/complications , Atrophy/pathology , Biomarkers/cerebrospinal fluid
15.
J Neurosci Res ; 100(10): 1862-1875, 2022 10.
Article in English | MEDLINE | ID: mdl-35766328

ABSTRACT

The most frequent genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) is the hexanucleotide repeat expansion in C9orf72. An important neuropathological hallmark associated with this mutation is the accumulation of the phosphorylated form of TAR (trans-activation response element) DNA-binding protein 43 (pTDP-43). Glia plays a crucial role in the neurodegeneration observed in C9orf72-associated disorders. However, less is known about the role of oligodendrocytes (OLs). Here, we applied digital neuropathological methods to compare the expression pattern of glial cells in the frontal cortex (FrCx) of human post-mortem samples from patients with C9-FTLD and C9-FTLD/ALS, sporadic FTLD (sFTLD), and healthy controls (HCs). We also compared MBP levels in CSF from an independent clinical FTD cohort. We observed an increase in GFAP, and Iba1 immunoreactivity in C9 and sFTLD compared to controls in the gray matter (GM) of the FrCx. We observed a decrease in MBP immunoreactivity in the GM and white matter (WM) of the FrCx of C9, compared to HC and sFTLD. There was a negative correlation between MBP and pTDP-43 in C9 in the WM of the FrCx. We observed an increase in CSF MBP concentrations in C9 and sFTLD compared to HC. In conclusion, the C9 expansion is associated with myelin loss in the frontal cortex. This loss of MBP may be a result of oligodendroglial dysfunction due to the expansion or the presence of pTDP-43 in OLs. Understanding these biological processes will help to identify specific pathways associated with the C9orf72 expansion.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Myelin Sheath , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , DNA Repeat Expansion , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/pathology , Humans , Myelin Sheath/pathology
16.
Neuropathol Appl Neurobiol ; 48(3): e12781, 2022 04.
Article in English | MEDLINE | ID: mdl-34825396

ABSTRACT

We report the neuropathological examination of a patient with Alzheimer's disease (AD) treated for 38 months with low doses of the BACE-1 inhibitor verubecestat. Brain examination showed small plaque size, reduced dystrophic neurites around plaques and reduced synaptic-associated Aß compared with a group of age-matched untreated sporadic AD (SAD) cases. Our findings suggest that BACE-1 inhibition has an impact on synaptic soluble Aß accumulation and neuritic derangement in AD.


Subject(s)
Alzheimer Disease , Thiadiazines , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/pathology , Cyclic S-Oxides/therapeutic use , Humans , Plaque, Amyloid/drug therapy , Plaque, Amyloid/pathology , Thiadiazines/therapeutic use
17.
Ann Neurol ; 90(3): 407-416, 2021 09.
Article in English | MEDLINE | ID: mdl-34309066

ABSTRACT

OBJECTIVE: The purpose of this study was to examine the Alzheimer's disease metabolite signature through magnetic resonance spectroscopy in adults with Down syndrome and its relation with Alzheimer's disease biomarkers and cortical thickness. METHODS: We included 118 adults with Down syndrome from the Down Alzheimer Barcelona Imaging Initiative and 71 euploid healthy controls from the Sant Pau Initiative on Neurodegeneration cohort. We measured the levels of myo-inositol (a marker of neuroinflammation) and N-acetyl-aspartate (a marker of neuronal integrity) in the precuneus using magnetic resonance spectroscopy. We investigated the changes with age and along the disease continuum (asymptomatic, prodromal Alzheimer's disease, and Alzheimer's disease dementia stages). We assessed the relationship between these metabolites and Aß42 /Aß40 ratio, phosphorylated tau-181, neurofilament light (NfL), and YKL-40 cerebrospinal fluid levels as well as amyloid positron emission tomography uptake using Spearman correlations controlling for multiple comparisons. Finally, we computed the relationship between cortical thickness and metabolite levels using Freesurfer. RESULTS: Asymptomatic adults with Down syndrome had a 27.5% increase in the levels of myo-inositol, but equal levels of N-acetyl-aspartate compared to euploid healthy controls. With disease progression, myo-inositol levels increased, whereas N-acetyl-aspartate levels decreased in symptomatic stages of the disease. Myo-inositol was associated with amyloid, tau, and neurodegeneration markers, mainly at symptomatic stages of the disease, whereas N-acetyl-aspartate was related to neurodegeneration biomarkers in symptomatic stages. Both metabolites were significantly associated with cortical thinning, mainly in symptomatic participants. INTERPRETATION: Magnetic resonance spectroscopy detects Alzheimer's disease related inflammation and neurodegeneration, and could be a good noninvasive disease-stage biomarker in Down syndrome. ANN NEUROL 2021;90:407-416.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Down Syndrome/diagnostic imaging , Down Syndrome/metabolism , Metabolomics/methods , Adult , Alzheimer Disease/epidemiology , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Biomarkers/metabolism , Cross-Sectional Studies , Down Syndrome/epidemiology , Female , Humans , Inositol/metabolism , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Male , Middle Aged , Positron-Emission Tomography/methods
18.
Acta Neuropathol ; 144(5): 821-842, 2022 11.
Article in English | MEDLINE | ID: mdl-36066633

ABSTRACT

Amyloid-beta 42 (Aß42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aß42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aß42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.


Subject(s)
Alzheimer Disease , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Apolipoproteins E/genetics , Biomarkers/cerebrospinal fluid , Cell Cycle Proteins , Humans , Peptide Fragments/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , tau Proteins/genetics
19.
Mol Psychiatry ; 26(12): 7813-7822, 2021 12.
Article in English | MEDLINE | ID: mdl-34588623

ABSTRACT

Noninvasive biomarkers of early neuronal injury may help identify cognitively normal individuals at risk of developing Alzheimer's disease (AD). A recent diffusion-weighted imaging (DWI) method allows assessing cortical microstructure via cortical mean diffusivity (cMD), suggested to be more sensitive than macrostructural neurodegeneration. Here, we aimed to investigate the association of cMD with amyloid-ß and tau pathology in older adults, and whether cMD predicts longitudinal cognitive decline, neurodegeneration and clinical progression. The study sample comprised n = 196 cognitively normal older adults (mean[SD] 72.5 [9.4] years; 114 women [58.2%]) from the Harvard Aging Brain Study. At baseline, all participants underwent structural MRI, DWI, 11C-Pittsburgh compound-B-PET, 18F-flortaucipir-PET imaging, and cognitive assessments. Longitudinal measures of Preclinical Alzheimer Cognitive Composite-5 were available for n = 186 individuals over 3.72 (1.96)-year follow-up. Prospective clinical follow-up was available for n = 163 individuals over 3.2 (1.7) years. Surface-based image analysis assessed vertex-wise relationships between cMD, global amyloid-ß, and entorhinal and inferior-temporal tau. Multivariable regression, mixed effects models and Cox proportional hazards regression assessed longitudinal cognition, brain structural changes and clinical progression. Tau, but not amyloid-ß, was positively associated with cMD in AD-vulnerable regions. Correcting for baseline demographics and cognition, increased cMD predicted steeper cognitive decline, which remained significant after correcting for amyloid-ß, thickness, and entorhinal tau; there was a synergistic interaction between cMD and both amyloid-ß and tau on cognitive slope. Regional cMD predicted hippocampal atrophy rate, independently from amyloid-ß, tau, and thickness. Elevated cMD predicted progression to mild cognitive impairment. Cortical microstructure is a noninvasive biomarker that independently predicts subsequent cognitive decline, neurodegeneration and clinical progression, suggesting utility in clinical trials.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid beta-Peptides , Cognitive Dysfunction/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Positron-Emission Tomography , Prospective Studies , tau Proteins
20.
J Neural Transm (Vienna) ; 129(2): 231-237, 2022 02.
Article in English | MEDLINE | ID: mdl-35169889

ABSTRACT

INTRODUCTION: Blood biomarkers represent a major advance for improving the management, diagnosis, and monitoring of Alzheimer's disease (AD). However, their context of use in relation to routine cerebrospinal fluid (CSF) analysis for the quantification of amyloid peptides and tau proteins remains to be determined. METHODS: We studied in two independent cohorts, the performance of blood biomarkers in detecting "nonpathological" (A-/T-/N-), amyloid (A+) or neurodegenerative (T+ /N+) CSF profiles. RESULTS: Plasma Aß1-42/Aß1-40 ratio and phosphorylated tau (p-tau(181)) were independent and complementary predictors of the different CSF profile and in particular of the nonpathological (A-/T-/N-) profile with a sensitivity and specificity close to 85%. These performances and the corresponding biomarker thresholds were significantly different from those related to AD detection. CONCLUSION: The use of blood biomarkers to identify patients who may benefit from secondary CSF testing represents an attractive stratification strategy in the clinical management of patients visiting memory clinics. This could reduce the need for lumbar puncture and foreshadow the use of blood testing on larger populations.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Humans , Peptide Fragments/cerebrospinal fluid , Sensitivity and Specificity , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL