Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Psychiatry ; 29(4): 1063-1074, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38326559

ABSTRACT

White matter pathways, typically studied with diffusion tensor imaging (DTI), have been implicated in the neurobiology of obsessive-compulsive disorder (OCD). However, due to limited sample sizes and the predominance of single-site studies, the generalizability of OCD classification based on diffusion white matter estimates remains unclear. Here, we tested classification accuracy using the largest OCD DTI dataset to date, involving 1336 adult participants (690 OCD patients and 646 healthy controls) and 317 pediatric participants (175 OCD patients and 142 healthy controls) from 18 international sites within the ENIGMA OCD Working Group. We used an automatic machine learning pipeline (with feature engineering and selection, and model optimization) and examined the cross-site generalizability of the OCD classification models using leave-one-site-out cross-validation. Our models showed low-to-moderate accuracy in classifying (1) "OCD vs. healthy controls" (Adults, receiver operator characteristic-area under the curve = 57.19 ± 3.47 in the replication set; Children, 59.8 ± 7.39), (2) "unmedicated OCD vs. healthy controls" (Adults, 62.67 ± 3.84; Children, 48.51 ± 10.14), and (3) "medicated OCD vs. unmedicated OCD" (Adults, 76.72 ± 3.97; Children, 72.45 ± 8.87). There was significant site variability in model performance (cross-validated ROC AUC ranges 51.6-79.1 in adults; 35.9-63.2 in children). Machine learning interpretation showed that diffusivity measures of the corpus callosum, internal capsule, and posterior thalamic radiation contributed to the classification of OCD from HC. The classification performance appeared greater than the model trained on grey matter morphometry in the prior ENIGMA OCD study (our study includes subsamples from the morphometry study). Taken together, this study points to the meaningful multivariate patterns of white matter features relevant to the neurobiology of OCD, but with low-to-moderate classification accuracy. The OCD classification performance may be constrained by site variability and medication effects on the white matter integrity, indicating room for improvement for future research.


Subject(s)
Diffusion Tensor Imaging , Machine Learning , Obsessive-Compulsive Disorder , White Matter , Humans , White Matter/pathology , White Matter/diagnostic imaging , Male , Female , Adult , Diffusion Tensor Imaging/methods , Child , Adolescent , Brain/pathology , Brain/diagnostic imaging , Middle Aged , Young Adult
2.
BMC Med ; 22(1): 129, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519887

ABSTRACT

BACKGROUND: There is a growing population of children with in utero HIV exposure who are at risk of poor neurodevelopmental outcomes despite avoiding HIV infection. However, the underlying neurobiological pathways are not understood and neuroimaging studies are lacking. We aimed to investigate the cortical brain structure of children who are HIV-exposed and uninfected (HEU) compared to HIV-unexposed (HU) children and to examine the relationship with neurodevelopment. METHODS: The Drakenstein Child Health birth cohort study enrolled pregnant women from a high HIV prevalence area in South Africa with longitudinal follow-up of mother-child pairs. High-resolution magnetic resonance imaging scans from 162 children (70 HEU; 92 HU) were acquired at 2-3 years of age. All HEU children were born to mothers taking antiretroviral therapy. Measures of brain structure (cortical thickness and surface area) in the prefrontal cortex regions were extracted from T1-weighted images and compared between groups using multivariate analysis of variance and linear regression. Child development, assessed using the Bayley Scales of Infant and Toddler Development-III, was correlated with cortical structure, and mediation analyses were performed. RESULTS: Analyses demonstrated an association between HIV exposure and cortical thickness across the prefrontal cortex (p = 0.035). Children who were HEU had thicker cortices in prefrontal regions, with significantly greater cortical thickness in the medial orbitofrontal cortex (mOFC) bilaterally compared to HU children (3.21 mm versus 3.14 mm, p = 0.009, adjusted effect size 0.44 [95% CI 0.12 to 0.75]). Estimates held across multiple sensitivity analyses. There were no group differences in cortical surface area. Language scores, which were lower in HEU versus HU children (81.82 versus 86.25, p = 0.011, effect size - 0.44 [95% CI - 0.78 to - 0.09]), negatively correlated with prefrontal cortical thickness in both groups. Cortical thickness in the mOFC mediated the relationship between HIV exposure and poor language outcomes (Sobel test p = 0.032). CONCLUSIONS: In this cohort study, exposure to HIV during pregnancy was associated with altered cortical structure in early life. Our findings indicate that differences in cortical thickness development in the prefrontal region in children who are HEU may be a pathway leading to language impairment. Longitudinal studies are needed to determine the lasting impact.


Subject(s)
HIV Infections , Pregnancy Complications, Infectious , Infant , Humans , Pregnancy , Female , Pregnancy Complications, Infectious/diagnostic imaging , Pregnancy Complications, Infectious/epidemiology , HIV Infections/complications , HIV Infections/epidemiology , Cohort Studies , South Africa/epidemiology , Prospective Studies , Brain/diagnostic imaging
3.
J Neurosci Res ; 102(2): e25308, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38361421

ABSTRACT

Childhood trauma (CT) may influence brain white matter microstructure; however, few studies have examined the differential impact of distinct CT types on white matter microstructure in psychiatrically healthy adults living in a developing country. In adults without significant medical or psychiatric disorders, we investigated the association(s) between CT, including abuse and neglect, and fractional anisotropy (FA) of limbic tracts previously shown to be associated with CT. Participants underwent diffusion tensor imaging and completed the Childhood Trauma Questionnaire. Multivariate analysis of variance models were used to test the effects of total overall CT, as well as CT subtypes, on FA in six fronto-limbic tracts, adjusting for age, sex, and educational level. The final sample included 69 adults (age 47 ± 17 years; 70% female). Overall, CT had a significant main effect on FA for tracts of interest (p < .001). Greater CT severity was associated with lower FA for the bilateral and left stria terminalis (uncorrected) as well as the bilateral, left, and right anterior limb of the internal capsule (ALIC; corrected). Exposure to total non-violent/deprivational trauma specifically was associated with lower FA of the bilateral, left, and right ALIC, suggesting that distinct types of CT are associated with differential white matter changes in apparently healthy adults. The ALIC predominantly carries fibers connecting the thalamus with prefrontal cortical regions. Microstructural alterations in the ALIC may be associated with functional brain changes, which may be adaptive or increase the risk of accelerated age-related cognitive decline, maladaptive behaviors, and subsyndromal psychiatric symptoms.


Subject(s)
Adverse Childhood Experiences , Psychological Tests , Self Report , White Matter , Adult , Humans , Female , Child , Middle Aged , Male , Diffusion Tensor Imaging/methods , White Matter/diagnostic imaging , Brain , Anisotropy
4.
J Neurovirol ; 29(3): 272-282, 2023 06.
Article in English | MEDLINE | ID: mdl-37179258

ABSTRACT

We have previously shown accelerated ageing in adolescents perinatally infected with HIV (PHIV +), based on discrepancies between epigenetic and chronological age. The current study examines follow-up longitudinal patterns of epigenetic ageing and the association of epigenetic ageing with cognition as well as whole brain structure changes in PHIV + and healthy controls enrolled in the Cape Town Adolescent Antiretroviral Cohort Study (CTAAC). The Illumina EPIC array was used to generate blood DNA methylation data from 60 PHIV + adolescents and 36 age-matched controls aged 9-12 years old at baseline and again at a 36-month follow-up. Epigenetic clock software estimated two measures of epigenetic age acceleration: extrinsic epigenetic accelerated ageing (EEAA) and age acceleration difference (AAD) at both time points. At follow-up, each participant completed neuropsychological testing, structural magnetic resonance imaging, and diffusion tensor imaging. At follow-up, PHIV infection remains associated with increased EEAA and AAD. Accelerated epigenetic ageing remained positively associated with viral load and negatively associated with CD4 ratio. EEAA was positively associated with whole brain grey matter volume and alterations in whole brain white matter integrity. AAD and EEAA were not associated with cognitive function within the PHIV + group. Measures of epigenetic ageing, as detected in DNA methylation patterns, remain increased in PHIV + adolescents across a 36-month period. Associations between epigenetic ageing measures, viral biomarkers, and alterations in brain micro- and macrostructure also persist at 36-month follow-up. Further study should determine if epigenetic age acceleration is associated with cognitive functional changes due to brain alterations in later life.


Subject(s)
Diffusion Tensor Imaging , HIV Infections , Humans , Adolescent , Child , Cohort Studies , HIV Infections/genetics , HIV Infections/complications , South Africa , Aging/genetics , Epigenesis, Genetic
5.
Hum Brain Mapp ; 43(1): 470-499, 2022 01.
Article in English | MEDLINE | ID: mdl-33044802

ABSTRACT

For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.


Subject(s)
Biological Variation, Population/physiology , Brain/anatomy & histology , Brain/diagnostic imaging , Human Development/physiology , Magnetic Resonance Imaging , Neuroimaging , Sex Characteristics , Brain Cortical Thickness , Cerebral Cortex/anatomy & histology , Cerebral Cortex/diagnostic imaging , Female , Humans , Male
6.
J Neurovirol ; 28(2): 208-216, 2022 04.
Article in English | MEDLINE | ID: mdl-33554325

ABSTRACT

We recently demonstrated that adolescents perinatally infected with HIV-1 (PHIV+) have accelerated aging as measured by a highly accurate epigenetic biomarker of aging known as the epigenetic clock. However, whether epigenetic age acceleration in PHIV+ impacts brain development at the macro- and microstructural levels of brain anatomy has not been studied. We report on a cross-sectional study of PHIV+ enrolled in the Cape Town Adolescent Antiretroviral Cohort (CTAAC). The Illumina Infinium Methylation EPIC array was used to generate DNA methylation data from the blood samples of 180 PHIV+ aged 9 to 12 years. The epigenetic clock software and method was used to estimate two measures, epigenetic age acceleration (AgeAccelerationResidual) and extrinsic epigenetic age acceleration (EEAA). Each participant underwent T1 structural magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). In order to investigate the associations of chronological age, sex, epigenetic age acceleration and treatment variables (CNS penetration effectiveness score (CPE)) of antiretroviral regimen on brain structure in PHIV+, we developed stepwise multiple regression models in R (version 3.4.3, 2017) including grey and white matter volumes, cortical thickness, cortical surface area and DTI measures of white matter microstructural integrity. The mean DNAm age (16.01 years) of the participants was higher than their mean chronological age (10.77 years). Epigenetic age acceleration contributed more to regional alterations of brain volumes, cortical thickness, cortical surface areas and neuronal microstructure than chronological age, in a range of regions. CPE positively contributed to volume of the brain stem. Understanding the drivers of epigenetic age acceleration could lead to valuable insights into structural brain alterations, and the persistence of neurocognitive disorders in seen in PHIV+ .


Subject(s)
Diffusion Tensor Imaging , HIV Infections , Adolescent , Aging/genetics , Brain/diagnostic imaging , Cross-Sectional Studies , Epigenesis, Genetic , HIV Infections/complications , HIV Infections/diagnostic imaging , HIV Infections/drug therapy , Humans , South Africa
7.
Brain ; 143(2): 684-700, 2020 02 01.
Article in English | MEDLINE | ID: mdl-32040561

ABSTRACT

Brain structural covariance networks reflect covariation in morphology of different brain areas and are thought to reflect common trajectories in brain development and maturation. Large-scale investigation of structural covariance networks in obsessive-compulsive disorder (OCD) may provide clues to the pathophysiology of this neurodevelopmental disorder. Using T1-weighted MRI scans acquired from 1616 individuals with OCD and 1463 healthy controls across 37 datasets participating in the ENIGMA-OCD Working Group, we calculated intra-individual brain structural covariance networks (using the bilaterally-averaged values of 33 cortical surface areas, 33 cortical thickness values, and six subcortical volumes), in which edge weights were proportional to the similarity between two brain morphological features in terms of deviation from healthy controls (i.e. z-score transformed). Global networks were characterized using measures of network segregation (clustering and modularity), network integration (global efficiency), and their balance (small-worldness), and their community membership was assessed. Hub profiling of regional networks was undertaken using measures of betweenness, closeness, and eigenvector centrality. Individually calculated network measures were integrated across the 37 datasets using a meta-analytical approach. These network measures were summated across the network density range of K = 0.10-0.25 per participant, and were integrated across the 37 datasets using a meta-analytical approach. Compared with healthy controls, at a global level, the structural covariance networks of OCD showed lower clustering (P < 0.0001), lower modularity (P < 0.0001), and lower small-worldness (P = 0.017). Detection of community membership emphasized lower network segregation in OCD compared to healthy controls. At the regional level, there were lower (rank-transformed) centrality values in OCD for volume of caudate nucleus and thalamus, and surface area of paracentral cortex, indicative of altered distribution of brain hubs. Centrality of cingulate and orbito-frontal as well as other brain areas was associated with OCD illness duration, suggesting greater involvement of these brain areas with illness chronicity. In summary, the findings of this study, the largest brain structural covariance study of OCD to date, point to a less segregated organization of structural covariance networks in OCD, and reorganization of brain hubs. The segregation findings suggest a possible signature of altered brain morphometry in OCD, while the hub findings point to OCD-related alterations in trajectories of brain development and maturation, particularly in cingulate and orbitofrontal regions.


Subject(s)
Brain/physiopathology , Cerebral Cortex/physiopathology , Neural Pathways/physiopathology , Obsessive-Compulsive Disorder/physiopathology , Adult , Brain/pathology , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Obsessive-Compulsive Disorder/pathology
8.
Neuroimage ; 219: 116846, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32304884

ABSTRACT

Magnetic resonance imaging (MRI) is an indispensable tool for investigating brain development in young children and the neurobiological mechanisms underlying developmental risk and resilience. Sub-Saharan Africa has the highest proportion of children at risk of developmental delay worldwide, yet in this region there is very limited neuroimaging research focusing on the neurobiology of such impairment. Furthermore, paediatric MRI imaging is challenging in any setting due to motion sensitivity. Although sedation and anesthesia are routinely used in clinical practice to minimise movement in young children, this may not be ethical in the context of research. Our study aimed to investigate the feasibility of paediatric multimodal MRI at age 2-3 years without sedation, and to explore the relationship between cortical structure and neurocognitive development at this understudied age in a sub-Saharan African setting. A total of 239 children from the Drakenstein Child Health Study, a large observational South African birth cohort, were recruited for neuroimaging at 2-3 years of age. Scans were conducted during natural sleep utilising locally developed techniques. T1-MEMPRAGE and T2-weighted structural imaging, resting state functional MRI, diffusion tensor imaging and magnetic resonance spectroscopy sequences were included. Child neurodevelopment was assessed using the Bayley-III Scales of Infant and Toddler Development. Following 23 pilot scans, 216 children underwent scanning and T1-weighted images were obtained from 167/216 (77%) of children (median age 34.8 months). Furthermore, we found cortical surface area and thickness within frontal regions were associated with cognitive development, and in temporal and frontal regions with language development (beta coefficient ≥0.20). Overall, we demonstrate the feasibility of carrying out a neuroimaging study of young children during natural sleep in sub-Saharan Africa. Our findings indicate that dynamic morphological changes in heteromodal association regions are associated with cognitive and language development at this young age. These proof-of-concept analyses suggest similar links between the brain and cognition as prior literature from high income countries, enhancing understanding of the interplay between cortical structure and function during brain maturation.


Subject(s)
Brain/diagnostic imaging , Child Development/physiology , Cognition/physiology , Brain/physiology , Child, Preschool , Cohort Studies , Female , Humans , Magnetic Resonance Imaging , Male , Neuroimaging , South Africa
9.
J Neurovirol ; 26(1): 60-69, 2020 02.
Article in English | MEDLINE | ID: mdl-31482439

ABSTRACT

There is evidence of HIV affecting cognitive functioning across age groups, with adult studies showing related deficits in frontostriatal and hippocampal regional activity. Additionally, delayed initiation of antiretroviral treatment (ART) has been associated with poorer cognitive outcomes in HIV-infected youth. Little is known, however, of the neural correlates underlying such cognitive deficits in youth populations. We investigated maintenance working memory-related brain activity in South African HIV-infected youth and controls, and the effect of ART initiation age on underlying structures. Sixty-four perinatally infected youth (ages 9-12) and 20 controls (ages 9-13) underwent functional magnetic resonance imaging (fMRI) while completing 1-back and 0-back blocks of the N-back task. At an uncorrected p value threshold of 0.001, the HIV-infected group showed decreased activation in the left superior temporal gyrus, pre- and postcentral gyri, insula, and putamen as well as bilateral hippocampus, and mid cingulum. The HIV patients with delayed ART initiation showed less activation during processing conditions in the mid cingulum; left inferior parietal gyrus; and right inferior frontal, bilateral thalamic, and superior temporal regions. When these regions were tested for structural differences, the mid cingulum and right inferior frontal gyrus, insula, and thalamus were found to have less cortical thickness, surface area, or volume in the group with delayed ART initiation. Regional differences between HIV-infected youth and controls noted in the N-back task are consistent with impairments in structures involved in maintenance working memory. These data support earlier ART initiation in perinatally infected individuals.


Subject(s)
Anti-HIV Agents/therapeutic use , Brain/drug effects , Brain/physiopathology , HIV Infections/drug therapy , HIV Infections/physiopathology , Memory, Short-Term/drug effects , Child , Female , HIV Infections/transmission , Humans , Infectious Disease Transmission, Vertical , Magnetic Resonance Imaging , Male , Memory, Short-Term/physiology
11.
Metab Brain Dis ; 35(8): 1287-1298, 2020 12.
Article in English | MEDLINE | ID: mdl-32671535

ABSTRACT

The relationship between cognitive performance, macro and microstructural brain anatomy and accelerated aging as measured by a highly accurate epigenetic biomarker of aging known as the epigenetic clock in healthy adolescents has not been studied. Healthy adolescents enrolled in the Cape Town Adolescent Antiretroviral Cohort Study were studied cross sectionally. The Illumina Infinium Methylation EPIC array was used to generate DNA methylation data from the blood samples of 44 adolescents aged 9 to 12 years old. The epigenetic clock software and method was used to estimate two measures, epigenetic age acceleration residual (AAR) and extrinsic epigenetic age acceleration (EEAA). Each participant underwent neurocognitive testing, T1 structural magnetic resonance imaging (MRI), and diffusion tensor imaging (DTI). Correlation tests were run between the two epigenetic aging measures and 10 cognitive functioning domains, to assess for differences in cognitive performance as epigenetic aging increases. In order to investigate the associations of epigenetic age acceleration on brain structure, we developed stepwise multiple regression models in R (version 3.4.3, 2017) including grey and white matter volumes, cortical thickness, and cortical surface area, as well as DTI measures of white matter microstructural integrity. In addition to negatively affecting two cognitive domains, visual memory (p = .026) and visual spatial acuity (p = .02), epigenetic age acceleration was associated with alterations of brain volumes, cortical thickness, cortical surface areas and abnormalities in neuronal microstructure in a range of regions. Stress was a significant predictor (p = .029) of AAR. Understanding the drivers of epigenetic age acceleration in adolescents could lead to valuable insights into the development of neurocognitive impairment in adolescents.


Subject(s)
Adolescent Development/physiology , Aging/metabolism , Brain/growth & development , Brain/metabolism , Epigenesis, Genetic/physiology , Poverty/trends , Adolescent , Aging/genetics , Aging/psychology , Brain/diagnostic imaging , Child , Cohort Studies , Cross-Sectional Studies , Diffusion Tensor Imaging/trends , Female , Humans , Longitudinal Studies , Male , Mental Status and Dementia Tests , Poverty/psychology
12.
J Neurovirol ; 25(2): 254-262, 2019 04.
Article in English | MEDLINE | ID: mdl-30617850

ABSTRACT

Rapid maturation of major white matter pathways occurs in the first 2 years of life, indicating a critical neuronal developmental period. The impact of initiating antiretroviral therapy (ART) in children perinatally infected with HIV-1, after the age of 2 years on neurocognitive functioning and white matter development in adolescence has not been studied. Forty-six adolescents who initiated ART during the first 2 years of life (< 2 years) and 79 adolescents who initiated ART after 2 years of age (> 2 years), with perinatally acquired HIV were enrolled in the Cape Town Adolescent Antiretroviral Cohort. Adolescents completed a comprehensive neurocognitive battery testing a number of cognitive domains. Diffusion tensor imaging (DTI) was done to determine fractional anisotropy (FA), mean diffusivity (MD), axial diffusion (AD), and radial diffusion (RD) in a region of interest analysis. Neurocognitive performance was similar between adolescents who initiated ART < 2 years or > 2 years. There was a trend towards attention (p = .07) and working memory (p = .05) being poorer in the group who initiated ART > 2 years. FA was lower in the > 2-year group in the superior corona radiata (p = .03), and the external capsule (p = .04). MD was higher in the > 2-year group in the cerebral peduncle (p = .02), the superior corona radiata (p = .01), and the superior fronto-occipital fasciculus (p = .03). RD was higher in the > 2-year group in the superior corona radiata (p = .02), the cerebral peduncle (p = .01), and the superior fronto-occipital fasciculus (p = .01). However, the higher AD in the > 2-year group in the superior corona radiata was not in the expected direction (p = .01). Initiation of ART after the neuronal development period of the second postnatal year is associated with white matter alterations on neuroimaging.


Subject(s)
Anti-HIV Agents/therapeutic use , Brain Stem/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Cognitive Dysfunction/drug therapy , HIV Infections/drug therapy , White Matter/diagnostic imaging , Antiretroviral Therapy, Highly Active , Attention/drug effects , Attention/physiology , Brain Stem/physiopathology , Brain Stem/virology , Cerebral Cortex/physiopathology , Cerebral Cortex/virology , Child , Child, Preschool , Cognition/drug effects , Cognition/physiology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/virology , Diffusion Tensor Imaging , Female , HIV Infections/diagnostic imaging , HIV Infections/physiopathology , HIV Infections/virology , Humans , Infant , Male , Memory, Short-Term/drug effects , Memory, Short-Term/physiology , Neuroimaging , Neuropsychological Tests , Prospective Studies , Psychomotor Performance/drug effects , Psychomotor Performance/physiology , South Africa , Time Factors , White Matter/physiopathology , White Matter/virology
13.
J Neurovirol ; 25(6): 783-791, 2019 12.
Article in English | MEDLINE | ID: mdl-31165369

ABSTRACT

Neurotoxicity associated with the antiretroviral efavirenz (EFV) has been documented in HIV-infected adults, but there are no data on the impact of EFV on brain function in adolescents. We investigated potential alterations in fronto-striatal function associated with EFV use in adolescents. A total of 86 adolescents underwent a Stop Signal Anticipation Task (SSAT) during functional MRI (fMRI), 39 HIV+ adolescents receiving EFV, 27 HIV+ adolescents on antiretroviral therapy without EFV (matched on age, gender, education, CD4 cell count and HIV viral load) and 20 HIV- matched controls (matched on age and gender). The task required participants to give timed GO responses with occasional STOP signals at fixed probabilities. Reactive inhibition was modelled as a correct STOP response and proactive inhibition was modelled after response slowing as the STOP probability increases. A priori mask-based regions associated with reactive and proactive inhibition were entered into two respective multivariate ANOVAs. The EFV treatment group showed significantly blunted proactive inhibitory behavioural responses compared to HIV+ adolescents not receiving EFV. There was no difference in reactive inhibition between treatment groups. We also demonstrated a significant effect of EFV treatment on BOLD signal in proactive inhibition regions. There was no difference in regions involved in reactive inhibition. We found no differences between adolescents not receiving EFV and HIV- controls, showing that functional and behavioural differences were unique to the EFV group. Here, we demonstrate for the first time a potential adverse impact of EFV on higher cortical function in young HIV+ adolescents.


Subject(s)
Benzoxazines/adverse effects , Brain/drug effects , HIV Infections/drug therapy , Reverse Transcriptase Inhibitors/adverse effects , Alkynes , Child , Cyclopropanes , Female , Humans , Magnetic Resonance Imaging , Male
14.
Metab Brain Dis ; 33(2): 545-557, 2018 04.
Article in English | MEDLINE | ID: mdl-29396631

ABSTRACT

Multiple sclerosis (MS) is a disorder related to myelin damage, which can be investigated by neuroimaging techniques such as fractional anisotropy (FA), a measure of microstructural white matter properties. The objectives of this study were to investigate (1) the relationship between FA and disability using an extremes of outcome approach, and (2) whether blood iron parameters were associated with FA and/or disability. Patients diagnosed with MS (n = 107; 14 males and 93 females) had iron parameter tests and disability determinations using the Expanded Disability Status Scale (EDSS). FA was recorded in 48 white matter tracts in 11 of the female patients with MS and 12 female controls. RESULTS: In patients with high disability scores the mean FA was significantly lower (0.34 ± 0.067) than in the control group (0.45 ± 0.036; p = 0.04), while patients with low disability had mean FA values (0.44 ± 0.014) similar to controls (p = 0.5). Positive associations were found between FA and the iron parameters serum iron, ferritin and percentage transferrin saturation (%Tfsat) in all the white matter tracts. For % Tfsat, the associations were highly significant in 14 tracts (p < 0.01; r-values 0.74-0.84) and p < 0.001 (r = 0.83) in the superior fronto occipital fasciculus (LH). In the whole patient group a trend was found towards an inverse association between the EDSS and the %Tfsat (r = -0.26, p = 0.05) after excluding male gender and smoking as confounders, suggesting reduced disability in the presence of higher blood iron parameters. Additionally, significant inverse associations between disease duration and haemoglobin (p = 0.04) as well as %Tfsat (p = 0.02) suggested that patients with MS may experience a decrease in blood iron concentrations over time.


Subject(s)
Anisotropy , Iron/blood , Multiple Sclerosis/blood , White Matter/physiopathology , Adult , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Female , Humans , Male , Middle Aged , Multiple Sclerosis/physiopathology , White Matter/metabolism
15.
Neuroimage ; 145(Pt B): 389-408, 2017 01 15.
Article in English | MEDLINE | ID: mdl-26658930

ABSTRACT

In this review, we discuss recent work by the ENIGMA Consortium (http://enigma.ini.usc.edu) - a global alliance of over 500 scientists spread across 200 institutions in 35 countries collectively analyzing brain imaging, clinical, and genetic data. Initially formed to detect genetic influences on brain measures, ENIGMA has grown to over 30 working groups studying 12 major brain diseases by pooling and comparing brain data. In some of the largest neuroimaging studies to date - of schizophrenia and major depression - ENIGMA has found replicable disease effects on the brain that are consistent worldwide, as well as factors that modulate disease effects. In partnership with other consortia including ADNI, CHARGE, IMAGEN and others1, ENIGMA's genomic screens - now numbering over 30,000 MRI scans - have revealed at least 8 genetic loci that affect brain volumes. Downstream of gene findings, ENIGMA has revealed how these individual variants - and genetic variants in general - may affect both the brain and risk for a range of diseases. The ENIGMA consortium is discovering factors that consistently affect brain structure and function that will serve as future predictors linking individual brain scans and genomic data. It is generating vast pools of normative data on brain measures - from tens of thousands of people - that may help detect deviations from normal development or aging in specific groups of subjects. We discuss challenges and opportunities in applying these predictors to individual subjects and new cohorts, as well as lessons we have learned in ENIGMA's efforts so far.


Subject(s)
Brain Diseases , Genome-Wide Association Study , Mental Disorders , Multicenter Studies as Topic , Brain Diseases/diagnostic imaging , Brain Diseases/genetics , Brain Diseases/pathology , Brain Diseases/physiopathology , Humans , Mental Disorders/diagnostic imaging , Mental Disorders/genetics , Mental Disorders/pathology , Mental Disorders/physiopathology
16.
Br J Psychiatry ; 210(1): 67-74, 2017 01.
Article in English | MEDLINE | ID: mdl-27198485

ABSTRACT

BACKGROUND: There is accumulating evidence for the role of fronto-striatal and associated circuits in obsessive-compulsive disorder (OCD) but limited and conflicting data on alterations in cortical thickness. AIMS: To investigate alterations in cortical thickness and subcortical volume in OCD. METHOD: In total, 412 patients with OCD and 368 healthy adults underwent magnetic resonance imaging scans. Between-group analysis of covariance of cortical thickness and subcortical volumes was performed and regression analyses undertaken. RESULTS: Significantly decreased cortical thickness was found in the OCD group compared with controls in the superior and inferior frontal, precentral, posterior cingulate, middle temporal, inferior parietal and precuneus gyri. There was also a group × age interaction in the parietal cortex, with increased thinning with age in the OCD group relative to controls. CONCLUSIONS: Our findings are partially consistent with earlier work, suggesting that group differences in grey matter volume and cortical thickness could relate to the same underlying pathology of OCD. They partially support a frontostriatal model of OCD, but also suggest that limbic, temporal and parietal regions play a role in the pathophysiology of the disorder. The group × age interaction effects may be the result of altered neuroplasticity.


Subject(s)
Cerebral Cortex/pathology , Hippocampus/pathology , Obsessive-Compulsive Disorder/pathology , Adult , Cerebral Cortex/diagnostic imaging , Female , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Obsessive-Compulsive Disorder/diagnostic imaging
17.
Hum Brain Mapp ; 37(6): 2055-67, 2016 06.
Article in English | MEDLINE | ID: mdl-26936688

ABSTRACT

BACKGROUND: Methamphetamine (MA) use may lead to white matter injury and to a range of behavioral problems and psychiatric disorders, including psychosis. The present study sought to assess white matter microstructural impairment as well as impulsive behavior in MA dependence and MA-associated psychosis (MAP). METHODS: Thirty patients with a history of MAP, 39 participants with MA dependence and 40 healthy controls underwent diffusion tensor imaging (DTI). Participants also completed the UPPS-P impulsive behavior questionnaire. We applied tract-based spatial statistics (TBSS) to investigate group differences in mean diffusivity (MD), fractional anisotropy (FA), axial (λ‖ ) and radial diffusivity (λ⊥ ), and their association with impulsivity scores and psychotic symptoms. RESULTS: The MAP group displayed widespread higher MD, λ‖ and λ⊥ levels compared to both controls and the MA group, and lower FA in extensive white matter areas relative to controls. MD levels correlated positively with negative psychotic symptoms in MAP. No significant DTI group differences were found between the MA group and controls. Both clinical groups showed high levels of impulsivity, and this dysfunction was associated with DTI measures in frontal white matter tracts. CONCLUSIONS: MAP patients show distinct patterns of impaired white matter integrity of global nature relative to controls and the MA group. Future work to investigate the precise nature and timing of alterations in MAP is needed. The results are further suggestive of frontal white matter pathology playing a role in impulsivity in MA dependence and MAP. Hum Brain Mapp 37:2055-2067, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Amphetamine-Related Disorders/diagnostic imaging , Amphetamine-Related Disorders/psychology , Brain/diagnostic imaging , Impulsive Behavior , Psychoses, Substance-Induced/diagnostic imaging , White Matter/diagnostic imaging , Adolescent , Adult , Amphetamine-Related Disorders/complications , Brain/drug effects , Central Nervous System Stimulants/administration & dosage , Central Nervous System Stimulants/adverse effects , Diffusion Tensor Imaging , Female , Follow-Up Studies , Humans , Image Processing, Computer-Assisted , Male , Methamphetamine/administration & dosage , Methamphetamine/adverse effects , Pattern Recognition, Automated , Psychiatric Status Rating Scales , Psychoses, Substance-Induced/psychology , Surveys and Questionnaires , White Matter/drug effects , Young Adult
18.
Br J Psychiatry ; 208(1): 34-41, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26338992

ABSTRACT

BACKGROUND: Early-life adversity is a risk for obsessive-compulsive disorder (OCD), but the impact at the neural level is less clear. AIMS: To investigate the association between brain volumes and early-life adversity in individuals with a diagnosis of OCD only. METHOD: The Childhood Trauma Questionnaire (CTQ-28) was used to assess early-life adversity in 21 participants with OCD and 25 matched healthy controls. The relationship between global and regional brain volume and early-life adversity was measured using voxel-based morphometry (VBM). All data were corrected for multiple comparisons using family-wise error (FWE) at P<0.05. RESULTS: In the OCD group, correlations with total CTQ scores were positively associated with a larger right orbitofrontal cortex volume. Physical neglect was higher in the OCD group than in controls and was positively associated with larger right cerebellum volume in the OCD group only. CONCLUSIONS: Larger brain volumes may reflect underlying developmental neuropathology in adults with OCD who also have experience of childhood trauma.


Subject(s)
Adult Survivors of Child Adverse Events/psychology , Brain Mapping/methods , Brain/pathology , Obsessive-Compulsive Disorder/diagnosis , Adult , Case-Control Studies , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Psychiatric Status Rating Scales , Regression Analysis , South Africa , Surveys and Questionnaires , Young Adult
19.
Alcohol Clin Exp Res ; 40(1): 113-21, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26727529

ABSTRACT

BACKGROUND: Children exposed to alcohol in utero demonstrate reduced white matter microstructural integrity. While early evidence suggests altered functional brain connectivity in the lateralization of motor networks in school-age children with prenatal alcohol exposure (PAE), the specific effects of alcohol exposure on the establishment of intrinsic connectivity in early infancy have not been explored. METHODS: Sixty subjects received functional imaging at 2 to 4 weeks of age for 6 to 8 minutes during quiet natural sleep. Thirteen alcohol-exposed (PAE) and 14 age-matched control (CTRL) participants with usable data were included in a multivariate model of connectivity between sensorimotor intrinsic functional connectivity networks. Seed-based analyses of group differences in interhemispheric connectivity of intrinsic motor networks were also conducted. The Dubowitz neurological assessment was performed at the imaging visit. RESULTS: Alcohol exposure was associated with significant increases in connectivity between somatosensory, motor networks, brainstem/thalamic, and striatal intrinsic networks. Reductions in interhemispheric connectivity of motor and somatosensory networks did not reach significance. CONCLUSIONS: Although results are preliminary, findings suggest PAE may disrupt the temporal coherence in blood oxygenation utilization in intrinsic networks underlying motor performance in newborn infants. Studies that employ longitudinal designs to investigate the effects of in utero alcohol exposure on the evolving resting-state networks will be key in establishing the distribution and timing of connectivity disturbances already described in older children.


Subject(s)
Alcohol Drinking/physiopathology , Brain/physiopathology , Pregnancy Complications/physiopathology , Prenatal Exposure Delayed Effects/physiopathology , Brain Stem/physiopathology , Case-Control Studies , Cohort Studies , Female , Functional Laterality/physiology , Functional Neuroimaging , Humans , Infant, Newborn , Magnetic Resonance Imaging , Male , Multivariate Analysis , Neostriatum/physiopathology , Neural Pathways , Pregnancy , Thalamus/physiopathology
20.
Metab Brain Dis ; 31(1): 53-62, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26671551

ABSTRACT

Chronic methamphetamine (MA) use can lead to white matter (WM) changes and increased levels of aggression. While previous studies have examined WM abnormalities relating to cognitive impairment, associations between WM integrity and aggression in MA dependence remain unclear. Diffusion Tensor Imaging (DTI) was used to investigate WM changes in 40 individuals with MA dependence and 40 matched healthy controls. A region of interest (ROI) approach using tract based spatial statistics (TBSS) in FSL was performed. We compared fractional anisotropy (FA), mean diffusivity (MD), parallel diffusivity (λ║) and perpendicular diffusivity (λ┴) in WM tracts of the frontal brain. A relationship of WM with aggression scores from the Buss & Perry Questionnaire was investigated. Mean scores for anger (p < 0.001), physical aggression (p = 0.032) and total aggression (p = 0.021) were significantly higher in the MA group relative to controls. ROI analysis showed increased MD (U = 439.5, p = 0.001) and λ┴ (U = 561.5, p = 0.021) values in the genu of the corpus callosum, and increased MD (U = 541.5, p = 0.012) values in the right cingulum in MA dependence. None of the WM changes were significantly associated with aggression scores. This study provides evidence of frontal WM changes and increased levels of aggression in individuals with MA dependence. The lack of significant associations between WM and aggressive behaviour may reflect methodological issues in measuring such behaviour, or may indicate that the neurobiology of aggression is not simply correlated with WM damage but is more complex.


Subject(s)
Aggression/psychology , Amphetamine-Related Disorders/pathology , Amphetamine-Related Disorders/psychology , Central Nervous System Stimulants , Frontal Lobe/pathology , Methamphetamine , White Matter/pathology , Adolescent , Adult , Aggression/drug effects , Anger/drug effects , Corpus Callosum/pathology , Diagnostic and Statistical Manual of Mental Disorders , Diffusion Tensor Imaging , Female , Frontal Lobe/drug effects , Humans , Male , White Matter/drug effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL