Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
Add more filters

Publication year range
1.
Nature ; 575(7783): 505-511, 2019 11.
Article in English | MEDLINE | ID: mdl-31723265

ABSTRACT

Chronic liver disease due to alcohol-use disorder contributes markedly to the global burden of disease and mortality1-3. Alcoholic hepatitis is a severe and life-threatening form of alcohol-associated liver disease. The gut microbiota promotes ethanol-induced liver disease in mice4, but little is known about the microbial factors that are responsible for this process. Here we identify cytolysin-a two-subunit exotoxin that is secreted by Enterococcus faecalis5,6-as a cause of hepatocyte death and liver injury. Compared with non-alcoholic individuals or patients with alcohol-use disorder, patients with alcoholic hepatitis have increased faecal numbers of E. faecalis. The presence of cytolysin-positive (cytolytic) E. faecalis correlated with the severity of liver disease and with mortality in patients with alcoholic hepatitis. Using humanized mice that were colonized with bacteria from the faeces of patients with alcoholic hepatitis, we investigated the therapeutic effects of bacteriophages that target cytolytic E. faecalis. We found that these bacteriophages decrease cytolysin in the liver and abolish ethanol-induced liver disease in humanized mice. Our findings link cytolytic E. faecalis with more severe clinical outcomes and increased mortality in patients with alcoholic hepatitis. We show that bacteriophages can specifically target cytolytic E. faecalis, which provides a method for precisely editing the intestinal microbiota. A clinical trial with a larger cohort is required to validate the relevance of our findings in humans, and to test whether this therapeutic approach is effective for patients with alcoholic hepatitis.


Subject(s)
Bacteriophages/physiology , Enterococcus faecalis/pathogenicity , Enterococcus faecalis/virology , Gastrointestinal Microbiome , Hepatitis, Alcoholic/microbiology , Hepatitis, Alcoholic/therapy , Phage Therapy , Alcoholism/complications , Alcoholism/microbiology , Animals , Enterococcus faecalis/isolation & purification , Ethanol/adverse effects , Fatty Liver/complications , Fatty Liver/microbiology , Feces/microbiology , Female , Germ-Free Life , Hepatitis, Alcoholic/complications , Hepatitis, Alcoholic/mortality , Hepatocytes/drug effects , Hepatocytes/pathology , Humans , Liver/drug effects , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Perforin/metabolism
2.
Hepatology ; 77(6): 2073-2083, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36631002

ABSTRACT

BACKGROUND AND AIMS: The prevalence of alcohol use disorder (AUD) and metabolic dysfunction-associated fatty liver disease (MAFLD) are increasing worldwide, leading to the increasing likelihood of both etiologies contributing to a patient's liver disease. However, the effects of modest alcohol use in NAFLD are controversial and more studies are needed. We compared the intestinal viromes of patients with AUD and NAFLD in order to evaluate the effect of alcohol consumption on the intestinal viromes of NAFLD patients by extracting virus-like particles and performing metagenomic sequencing. APPROACH AND RESULTS: Viral nucleic acids were extracted from fecal samples and subjected to metagenomic sequencing. We demonstrate significant differences in the intestinal viromes of NAFLD and AUD patients, and that alcohol use in NAFLD patients reclassified to MAFLD accounted for significant differences in the intestinal viromes. The relative abundance of several Lactococcus phages was more similar between AUD patients and alcohol-consuming MAFLD patients than non-alcohol-consuming MAFLD patients and control subjects, and multivariate modeling using the most discriminating Lactococcus phages could better predict alcohol use in the MAFLD population than the alcohol-associated liver disease/NAFLD Index. Significant differences in the viral composition and diversity were also seen between MAFLD patients with low and moderate alcohol consumption compared with no alcohol consumption. CONCLUSIONS: The intestinal virome of MAFLD patients who consume low to moderate amounts of alcohol are significantly different from those who do not, and many features of the intestinal virome of alcohol-consuming MAFLD patients resemble that of AUD patients.


Subject(s)
Alcoholism , Liver Diseases, Alcoholic , Non-alcoholic Fatty Liver Disease , Humans , Virome , Alcohol Drinking/adverse effects , Ethanol
3.
J Clin Microbiol ; 61(7): e0019923, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37338371

ABSTRACT

Escherichia coli sequence type 131 (ST131) is a globally dominant multidrug-resistant clone, although its clinical impact on patients with bloodstream infection (BSI) is incompletely understood. This study aims to further define the risk factors, clinical outcomes, and bacterial genetics associated with ST131 BSI. A prospectively enrolled cohort study of adult inpatients with E. coli BSI was conducted from 2002 to 2015. Whole-genome sequencing was performed with the E. coli isolates. Of the 227 patients with E. coli BSI in this study, 88 (39%) were infected with ST131. Patients with E. coli ST131 BSI and those with non-ST131 BSI did not differ with respect to in-hospital mortality (17/82 [20%] versus 26/145 [18%]; P = 0.73). However, in patients with BSI from a urinary tract source, ST131 was associated with a numerically higher in-hospital mortality than patients with non-ST131 BSI (8/42 [19%] versus 4/63 [6%]; P = 0.06) and increased mortality in an adjusted analysis (odds ratio of 5.85; 95% confidence interval of 1.44 to 29.49; P = 0.02). Genomic analyses showed that ST131 isolates primarily had an H4:O25 serotype, had a higher number of prophages, and were associated with 11 flexible genomic islands as well as virulence genes involved in adhesion (papA, kpsM, yfcV, and iha), iron acquisition (iucC and iutA), and toxin production (usp and sat). In patients with E. coli BSI from a urinary tract source, ST131 was associated with increased mortality in an adjusted analysis and contained a distinct repertoire of genes influencing pathogenesis. These genes could contribute to the higher mortality observed in patients with ST131 BSI.


Subject(s)
Escherichia coli Infections , Sepsis , Urinary Tract Infections , Urinary Tract , Adult , Humans , Escherichia coli/genetics , Cohort Studies , Escherichia coli Infections/microbiology , Urinary Tract Infections/microbiology , Anti-Bacterial Agents , beta-Lactamases/genetics
4.
BMC Infect Dis ; 23(1): 556, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37641085

ABSTRACT

BACKGROUND: Colistin is one of the last resort therapeutic options for treating carbapenemase-producing Enterobacterales, which are resistant to a broad range of beta-lactam antibiotics. However, the increased use of colistin in clinical and livestock farming settings in Thailand and China, has led to the inevitable emergence of colistin resistance. To better understand the rise of colistin-resistant strains in each of these settings, we characterized colistin-resistant Enterobacterales isolated from farmers, swine, and hospitalized patients in Thailand. METHODS: Enterobacterales were isolated from 149 stool samples or rectal swabs collected from farmers, pigs, and hospitalized patients in Thailand between November 2014-December 2017. Confirmed colistin-resistant isolates were sequenced. Genomic analyses included species identification, multilocus sequence typing, and detection of antimicrobial resistance determinants and plasmids. RESULTS: The overall colistin-resistant Enterobacterales colonization rate was 26.2% (n = 39/149). The plasmid-mediated colistin-resistance gene (mcr) was detected in all 25 Escherichia coli isolates and 9 of 14 (64.3%) Klebsiella spp. isolates. Five novel mcr allelic variants were also identified: mcr-2.3, mcr-3.21, mcr-3.22, mcr-3.23, and mcr-3.24, that were only detected in E. coli and Klebsiella spp. isolates from farmed pigs. CONCLUSION: Our data confirmed the presence of colistin-resistance genes in combination with extended spectrum beta-lactamase genes in bacterial isolates from farmers, swine, and patients in Thailand. Differences between the colistin-resistance mechanisms of Escherichia coli and Klebsiella pneumoniae in hospitalized patients were observed, as expected. Additionally, we identified mobile colistin-resistance mcr-1.1 genes from swine and patient isolates belonging to plasmids of the same incompatibility group. This supported the possibility that horizontal transmission of bacterial strains or plasmid-mediated colistin-resistance genes occurs between humans and swine.


Subject(s)
Colistin , Farmers , Humans , Animals , Swine , Colistin/pharmacology , Thailand/epidemiology , Escherichia coli , Genomics , Klebsiella
5.
J Hepatol ; 76(4): 788-799, 2022 04.
Article in English | MEDLINE | ID: mdl-34896404

ABSTRACT

BACKGROUND & AIMS: Studies investigating the gut-liver axis have largely focused on bacteria, whereas little is known about commensal fungi. We characterized fecal fungi in patients with non-alcoholic fatty liver disease (NAFLD) and investigated their role in a fecal microbiome-humanized mouse model of Western diet-induced steatohepatitis. METHODS: We performed fungal internal transcribed spacer 2 sequencing using fecal samples from 78 patients with NAFLD, 16 controls and 73 patients with alcohol use disorder. Anti-Candida albicans (C. albicans) IgG was measured in blood samples from 17 controls and 79 patients with NAFLD. Songbird, a novel multinominal regression tool, was used to investigate mycobiome changes. Germ-free mice were colonized with feces from patients with non-alcoholic steatohepatitis (NASH), fed a Western diet for 20 weeks and treated with the antifungal amphotericin B. RESULTS: The presence of non-obese NASH or F2-F4 fibrosis was associated with a distinct fecal mycobiome signature. Changes were characterized by an increased log-ratio for Mucor sp./Saccharomyces cerevisiae (S. cerevisiae) in patients with NASH and F2-F4 fibrosis. The C. albicans/S. cerevisiae log-ratio was significantly higher in non-obese patients with NASH when compared with non-obese patients with NAFL or controls. We observed a different fecal mycobiome composition in patients with NAFLD and advanced fibrosis compared to those with alcohol use disorder and advanced fibrosis. Plasma anti-C. albicans IgG was increased in patients with NAFLD and advanced fibrosis. Gnotobiotic mice, colonized with human NASH feces and treated with amphotericin B were protected from Western diet-induced steatohepatitis. CONCLUSIONS: Non-obese patients with NAFLD and more advanced disease have a different fecal mycobiome composition to those with mild disease. Antifungal treatment ameliorates diet-induced steatohepatitis in mice. Intestinal fungi could be an attractive target to attenuate NASH. LAY SUMMARY: Non-alcoholic fatty liver disease is one of the most common chronic liver diseases and is associated with changes in the fecal bacterial microbiome. We show that patients with non-alcoholic fatty liver disease and more severe disease stages have a specific composition of fecal fungi and an increased systemic immune response to Candida albicans. In a fecal microbiome-humanized mouse model of Western diet-induced steatohepatitis, we show that treatment with antifungals reduces liver damage.


Subject(s)
Gastrointestinal Microbiome , Mycobiome , Non-alcoholic Fatty Liver Disease , Animals , Feces/microbiology , Humans , Liver , Mice , Non-alcoholic Fatty Liver Disease/etiology , Saccharomyces cerevisiae
6.
Antimicrob Agents Chemother ; 66(5): e0179021, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35435707

ABSTRACT

Multidrug-resistant (MDR) Pseudomonas aeruginosa infections are a major clinical challenge. Many isolates are carbapenem resistant, which severely limits treatment options; thus, novel therapeutic combinations, such as imipenem-relebactam (IMI/REL), ceftazidime-avibactam (CAZ/AVI), ceftolozane-tazobactam (TOL/TAZO), and meropenem-vaborbactam (MEM/VAB) were developed. Here, we studied two extensively drug-resistant (XDR) P. aeruginosa isolates, collected in the United States and Mexico, that demonstrated resistance to IMI/REL. Whole-genome sequencing (WGS) showed that both isolates contained acquired GES ß-lactamases, intrinsic PDC and OXA ß-lactamases, and disruptions in the genes encoding the OprD porin, thereby inhibiting uptake of carbapenems. In one isolate (ST17), the entire C terminus of OprD deviated from the expected amino acid sequence after amino acid G388. In the other (ST309), the entire oprD gene was interrupted by an ISPa1328 insertion element after amino acid D43, rendering this porin nonfunctional. The poor inhibition by REL of the GES ß-lactamases (GES-2, -19, and -20; apparent Ki of 19 ± 2 µM, 23 ± 2 µM, and 21 ± 2 µM, respectively) within the isolates also contributed to the observed IMI/REL-resistant phenotype. Modeling of REL binding to the active site of GES-20 suggested that the acylated REL is positioned in an unstable conformation as a result of a constrained Ω-loop.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Amino Acids , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Drug Combinations , Humans , Imipenem/pharmacology , Imipenem/therapeutic use , Microbial Sensitivity Tests , Porins/genetics , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , United States , beta-Lactamases/metabolism
7.
Appl Environ Microbiol ; 88(3): e0148621, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34818102

ABSTRACT

Staphylococcus aureus is an opportunistic pathogen that causes a wide range of infections and food poisoning in humans with antibiotic resistance, specifically to methicillin, compounding the problem. Bacteriophages (phages) provide an alternative treatment strategy, but these only infect a limited number of circulating strains and may quickly become ineffective due to bacterial resistance. To overcome these obstacles, engineered phages have been proposed, but new methods are needed for the efficient transformation of large DNA molecules into S. aureus to "boot-up" (i.e., rescue) infectious phages. We presented a new, efficient, and reproducible DNA transformation method, NEST (non-electroporation Staphylococcus transformation), for S. aureus to boot-up purified phage genomic DNA (at least 150 kb in length) and whole yeast-assembled synthetic phage genomes. This method was a powerful new tool for the transformation of DNA in S. aureus and will enable the rapid development of engineered therapeutic phages and phage cocktails against Gram-positive pathogens. IMPORTANCE The continued emergence of antibiotic-resistant bacterial pathogens has heightened the urgency for alternative antibacterial strategies. Phages provide an alternative treatment strategy but are difficult to optimize. Synthetic biology approaches have been successfully used to construct and rescue genomes of model phages but only in a limited number of highly transformable host species. In this study, we used a new, reproducible, and efficient transformation method to reconstitute a functional nonmodel Siphophage from a constructed synthetic genome. This method will facilitate the engineering of Staphylococcus and Enterococcus phages for therapeutic applications and the engineering of Staphylococcus strains by enabling transformation of higher molecular weight DNA to introduce more complex modifications.


Subject(s)
Staphylococcus Phages , Staphylococcus aureus , DNA, Viral/genetics , Humans , Staphylococcal Infections/microbiology , Staphylococcal Infections/virology , Staphylococcus Phages/genetics , Staphylococcus aureus/virology
8.
J Hepatol ; 75(6): 1465-1475, 2021 12.
Article in English | MEDLINE | ID: mdl-34437908

ABSTRACT

Humans harbour a large quantity of microbes in the intestinal tract and have evolved symbiotic relationships with many of them. However, several specific bacterial pathobionts are associated with liver disease pathogenesis. Although bacteriophages (phages) and eukaryotic viruses (collectively known as "the virome") outnumber bacteria and fungi in the intestine, little is known about the intestinal virome in patients with liver disease. As natural predators of bacteria, phages can precisely edit the bacterial microbiota. Hence, there is interest in using them to target bacterial pathobionts in several diseases, including those of the liver. Herein, we will summarise changes in the faecal virome associated with fatty liver diseases and cirrhosis, and describe the therapeutic potential of phages and potential challenges to their clinical application.


Subject(s)
Bacteriophages/metabolism , Gastrointestinal Tract/metabolism , Liver Diseases/drug therapy , Virome/physiology , Bacteriophages/pathogenicity , Gastrointestinal Tract/drug effects , Humans , Liver Diseases/physiopathology , Virome/drug effects , Virome/immunology
9.
Gastroenterology ; 159(5): 1839-1852, 2020 11.
Article in English | MEDLINE | ID: mdl-32652145

ABSTRACT

BACKGROUND & AIMS: Alterations in the gut microbiome have been associated with the severity of nonalcoholic fatty liver disease (NAFLD). Previous studies focused exclusively on the bacteria in the microbiome; we investigated changes in the viral microbiome (virome) in patients with NAFLD. METHODS: In a prospective, cross-sectional, observational study, we extracted RNA and DNA virus-like particles from fecal samples from 73 patients with NAFLD: 29 patients had an NAFLD Activity Score (NAS) of 0-4, 44 patients had an NAS of 5-8 or liver cirrhosis (LCI), 37 patients had F0-F1 fibrosis, and 36 patients had F2-F4 fibrosis. As controls, 9 individuals without liver disease and 13 patients with mild primary biliary cholangitis were included in the analysis. We performed shotgun metagenomic sequencing of virus-like particles. RESULTS: Patients with NAFLD and NAS 5-8/LCI had a significant decrease in intestinal viral diversity compared with patients with NAFLD and NAS 0-4 or control individuals. The presence of more advanced NAFLD was associated with a significant reduction in the proportion of bacteriophages compared with other intestinal viruses. Using multivariate logistic regression analysis with leave-1-out cross validation, we developed a model, including a viral diversity index and simple clinical variables, that identified patients with NAS 5-8/LCI with an area under the curve of 0.95 (95% confidence interval, 0.91-0.99) and F2-F4 fibrosis with an area under the curve of 0.88 (95% confidence interval, 0.80-0.95). Addition of data on viral diversity significantly improved multivariate models, including those based on only clinical parameters or bacterial diversity. CONCLUSIONS: In a study of fecal viromes from patients with NAFLD and control individuals, we associated histologic markers of NAFLD severity with significant decreases in viral diversity and proportion of bacteriophages. We developed a model based on fecal viral diversity and clinical data that identifies patients with severe NAFLD and fibrosis more accurately than models based only on clinical or bacterial data.


Subject(s)
Gastrointestinal Microbiome , Intestines/virology , Liver Cirrhosis/virology , Non-alcoholic Fatty Liver Disease/virology , Virome , Adult , Aged , Case-Control Studies , Cross-Sectional Studies , Feces/virology , Female , Humans , Liver Cirrhosis/diagnosis , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/diagnosis , Prospective Studies , Severity of Illness Index , Young Adult
10.
J Antimicrob Chemother ; 76(8): 2017-2023, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33942093

ABSTRACT

BACKGROUND: Recent studies indicated that the monosubstituted deoxystreptamine aminoglycoside apramycin is a potent antibiotic against a wide range of MDR Gram-negative pathogens. OBJECTIVES: To evaluate the in vitro activity of apramycin against carbapenem-resistant Klebsiella pneumoniae (CRKp) isolates from New York and New Jersey, and to explore mechanisms of apramycin resistance. METHODS: Apramycin MICs were determined by broth microdilution for 155 CRKp bloodstream isolates collected from 2013 to 2018. MLST STs, wzi capsular types and apramycin resistance gene aac(3')-IV were examined by PCR and Sanger sequencing. Selected isolates were further characterized by conjugation experiments and WGS. RESULTS: Apramycin MIC50/90 values were 8 and >128 mg/L for CRKp isolates, which are much higher than previously reported. Twenty-four isolates (15.5%) were apramycin resistant (MIC ≥64 mg/L) and they were all from the K. pneumoniae ST258 background. The 24 apramycin-resistant K. pneumoniae ST258 strains belonged to six different capsular types and 91.7% of them harboured the apramycin resistance gene aac(3')-IV. Sequencing analysis showed that different ST258 capsular type strains shared a common non-conjugative IncR plasmid, co-harbouring aac(3')-IV and blaKPC. A novel IncR and IncX3 cointegrate plasmid, p59494-RX116.1, was also identified in an ST258 strain, demonstrating how apramycin resistance can be spread from a non-conjugative plasmid through cointegration. CONCLUSIONS: We described a high apramycin resistance rate in clinical CRKp isolates in the New York/New Jersey region, mainly among the epidemic K. pneumoniae ST258 strains. The high resistance rate in an epidemic K. pneumoniae clone raises concern regarding the further optimization and development of apramycin and apramycin-like antibiotics.


Subject(s)
Epidemics , Klebsiella Infections , Anti-Bacterial Agents/pharmacology , Carbapenems , Humans , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/genetics , Multilocus Sequence Typing , Nebramycin/analogs & derivatives
11.
Hepatology ; 71(2): 522-538, 2020 02.
Article in English | MEDLINE | ID: mdl-31228214

ABSTRACT

Chronic alcohol consumption causes increased intestinal permeability and changes in the intestinal microbiota composition, which contribute to the development and progression of alcohol-related liver disease. In this setting, little is known about commensal fungi in the gut. We studied the intestinal mycobiota in a cohort of patients with alcoholic hepatitis, patients with alcohol use disorder, and nonalcoholic controls using fungal-specific internal transcribed spacer amplicon sequencing of fecal samples. We further measured serum anti-Saccharomyces cerevisiae antibodies (ASCA) as a systemic immune response to fungal products or fungi. Candida was the most abundant genus in the fecal mycobiota of the two alcohol groups, whereas genus Penicillium dominated the mycobiome of nonalcoholic controls. We observed a lower diversity in the alcohol groups compared with controls. Antibiotic or steroid treatment was not associated with a lower diversity. Patients with alcoholic hepatitis had significantly higher ASCA levels compared to patients with alcohol use disorder and to nonalcoholic controls. Within the alcoholic hepatitis cohort, patients with levels of at least 34 IU/mL had a significantly lower 90-day survival (59%) compared with those with ASCA levels less than 34 IU/mL (80%) with an adjusted hazard ratio of 3.13 (95% CI, 1.11-8.82; P = 0.031). Conclusion: Patients with alcohol-associated liver disease have a lower fungal diversity with an overgrowth of Candida compared with controls. Higher serum ASCA was associated with increased mortality in patients with alcoholic hepatitis. Intestinal fungi may serve as a therapeutic target to improve survival, and ASCA may be useful to predict the outcome in patients with alcoholic hepatitis.


Subject(s)
Dysbiosis/etiology , Dysbiosis/immunology , Hepatitis, Alcoholic/complications , Hepatitis, Alcoholic/immunology , Intestines/microbiology , Mycobiome , Adult , Aged , Antibodies, Fungal/blood , Candida/immunology , Cohort Studies , Dysbiosis/blood , Female , Hepatitis, Alcoholic/blood , Humans , Immune System Phenomena , Male , Middle Aged , Saccharomyces cerevisiae/immunology
12.
Hepatology ; 72(6): 2182-2196, 2020 12.
Article in English | MEDLINE | ID: mdl-32654263

ABSTRACT

BACKGROUND AND AIMS: Alcoholic hepatitis (AH) is a severe manifestation of alcohol-associated liver disease (ALD) with high mortality. Although gut bacteria and fungi modulate disease severity, little is known about the effects of the viral microbiome (virome) in patients with ALD. APPROACH AND RESULTS: We extracted virus-like particles from 89 patients with AH who were enrolled in a multicenter observational study, 36 with alcohol use disorder (AUD), and 17 persons without AUD (controls). Virus-like particles from fecal samples were fractionated using differential filtration techniques, and metagenomic sequencing was performed to characterize intestinal viromes. We observed an increased viral diversity in fecal samples from patients with ALD, with the most significant changes in samples from patients with AH. Escherichia-, Enterobacteria-, and Enterococcus phages were over-represented in fecal samples from patients with AH, along with significant increases in mammalian viruses such as Parvoviridae and Herpesviridae. Antibiotic treatment was associated with higher viral diversity. Specific viral taxa, such as Staphylococcus phages and Herpesviridae, were associated with increased disease severity, indicated by a higher median Model for End-Stage Liver Disease score, and associated with increased 90-day mortality. CONCLUSIONS: In conclusion, intestinal viral taxa are altered in fecal samples from patients with AH and associated with disease severity and mortality. Our study describes an intestinal virome signature associated with AH.


Subject(s)
End Stage Liver Disease/virology , Hepatitis, Alcoholic/virology , Intestinal Mucosa/virology , Liver Cirrhosis/virology , Virome/genetics , Adult , Aged , Animals , Bacteriophages/genetics , Bacteriophages/isolation & purification , Case-Control Studies , DNA, Viral/isolation & purification , End Stage Liver Disease/diagnosis , End Stage Liver Disease/mortality , End Stage Liver Disease/therapy , Feces/virology , Female , Hepatitis, Alcoholic/diagnosis , Hepatitis, Alcoholic/mortality , Hepatitis, Alcoholic/therapy , Herpesviridae/genetics , Herpesviridae/isolation & purification , Humans , Liver/pathology , Liver Cirrhosis/diagnosis , Liver Cirrhosis/mortality , Liver Cirrhosis/therapy , Male , Metagenomics , Middle Aged , Parvoviridae/genetics , Parvoviridae/isolation & purification , RNA, Viral/isolation & purification , Severity of Illness Index , Survival Rate
13.
BMC Infect Dis ; 21(1): 142, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33541274

ABSTRACT

BACKGROUND: Infections caused by carbapenemase-producing Enterobacteriaceae (CPE) have continually grown as a global public health threat, with significant mortality rates observed across the world. We examined the clinical data from patients with CPE infections and their outcomes, concentrating on Klebsiella pneumoniae isolates. We analysed the clinical information, performed antimicrobial susceptibility testing, and conducted molecular epidemiological and genomic analyses on the isolates to identify patterns in the data. METHODS: The clinical characteristics of 33 hospitalised patients with confirmed CPE, including patient-related factors associated with the development of CPE infections, were examined. Patients were divided according to whether they were "colonised" or "infected" with CPE and by the timing and frequency of their rectal swab collections, from which 45 swabs were randomly selected for analysis. CPE isolates were purified, and antimicrobial susceptibility tests performed. Whole genome sequences of these isolates were determined and analysed to compute bacterial multilocus sequence types and plasmid replicon types, infer phylogenetic relationships, and identify antimicrobial resistance and virulence genes. RESULTS: Altogether, 88.9% (40/45) of the CPE isolates were K. pneumoniae. The most abundant carbapenemase gene family in the K. pneumoniae isolates (33/39) was blaOXA-232, with blaNDM-1 additionally identified in 19 of them. All CPE isolates carrying either blaOXA-232 or blaNDM-1 were resistant to meropenem, but only 40 from 45 were susceptible to colistin. Among the CPE-infected patients (n = 18) and CPE-colonised patients who developed CPE infections during the study (n = 3), all but one received standard colistin-based combination therapy. Phylogenetic analysis revealed the polyclonal spread of carbapenemase-producing K. pneumoniae (CPKP) within the patient population, with the following two major subclades identified: ST16 (n = 15) and ST231 (n = 14). CPKP-ST231 had the highest virulence score of 4 and was associated with primary bacteraemia. The siderophores yersiniabactin and aerobactin, considered to be important virulence factors, were only identified in the CPKP-ST231 genomes. CONCLUSIONS: This study has revealed the genomic features of colonising CPE isolates, focusing on antimicrobial resistance and virulence determinants. This type of multi-layered analysis can be further exploited in Thailand and elsewhere to modify the regimes used for empirical antibiotic treatment and improve the management strategies for CPE infections in hospitalised patients.


Subject(s)
Bacterial Proteins/isolation & purification , Carbapenem-Resistant Enterobacteriaceae/genetics , Drug Resistance, Multiple, Bacterial/genetics , Enterobacteriaceae Infections/genetics , Klebsiella pneumoniae/isolation & purification , Multilocus Sequence Typing , Whole Genome Sequencing , beta-Lactamases/isolation & purification , Aged , Aged, 80 and over , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Female , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Molecular Epidemiology , Phylogeny , Plasmids , Thailand/epidemiology , Virulence Factors , beta-Lactamases/genetics
15.
Article in English | MEDLINE | ID: mdl-32152078

ABSTRACT

Plazomicin was tested against 697 recently acquired carbapenem-resistant Klebsiella pneumoniae isolates from the Great Lakes region of the United States. Plazomicin MIC50 and MIC90 values were 0.25 and 1 mg/liter, respectively; 680 isolates (97.6%) were susceptible (MICs of ≤2 mg/liter), 9 (1.3%) intermediate (MICs of 4 mg/liter), and 8 (1.1%) resistant (MICs of >32 mg/liter). Resistance was associated with rmtF-, rmtB-, or armA-encoded 16S rRNA methyltransferases in all except 1 isolate.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/drug effects , Klebsiella pneumoniae/drug effects , Methyltransferases/genetics , Sisomicin/analogs & derivatives , Adult , Aged , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Female , Humans , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Male , Microbial Sensitivity Tests , Middle Aged , Sisomicin/pharmacology , United States , beta-Lactamases/metabolism
16.
J Clin Microbiol ; 58(9)2020 08 24.
Article in English | MEDLINE | ID: mdl-32493786

ABSTRACT

Enterobacter aerogenes was recently renamed Klebsiella aerogenes This study aimed to identify differences in clinical characteristics, outcomes, and bacterial genetics among patients with K. aerogenes versus Enterobacter species bloodstream infections (BSI). We prospectively enrolled patients with K. aerogenes or Enterobacter cloacae complex (Ecc) BSI from 2002 to 2015. We performed whole-genome sequencing (WGS) and pan-genome analysis on all bacteria. Overall, 150 patients with K. aerogenes (46/150 [31%]) or Ecc (104/150 [69%]) BSI were enrolled. The two groups had similar baseline characteristics. Neither total in-hospital mortality (13/46 [28%] versus 22/104 [21%]; P = 0.3) nor attributable in-hospital mortality (9/46 [20%] versus 13/104 [12%]; P = 0.3) differed between patients with K. aerogenes versus Ecc BSI, respectively. However, poor clinical outcome (death before discharge, recurrent BSI, and/or BSI complication) was higher for K. aerogenes than Ecc BSI (32/46 [70%] versus 42/104 [40%]; P = 0.001). In a multivariable regression model, K. aerogenes BSI, relative to Ecc BSI, was predictive of poor clinical outcome (odds ratio 3.3; 95% confidence interval 1.4 to 8.1; P = 0.008). Pan-genome analysis revealed 983 genes in 323 genomic islands unique to K. aerogenes isolates, including putative virulence genes involved in iron acquisition (n = 67), fimbriae/pili/flagella production (n = 117), and metal homeostasis (n = 34). Antibiotic resistance was largely found in Ecc lineage 1, which had a higher rate of multidrug resistant phenotype (23/54 [43%]) relative to all other bacterial isolates (23/96 [24%]; P = 0.03). K. aerogenes BSI was associated with poor clinical outcomes relative to Ecc BSI. Putative virulence factors in K. aerogenes may account for these differences.


Subject(s)
Bacteremia , Enterobacter aerogenes , Sepsis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Enterobacter , Enterobacter aerogenes/genetics , Humans , Sepsis/drug therapy
17.
J Antimicrob Chemother ; 75(10): 2760-2768, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32681170

ABSTRACT

OBJECTIVES: To investigate the genomic context of a novel resistance island (RI) in multiply antibiotic-resistant Acinetobacter baumannii clinical isolates and global isolates. METHODS: Using a combination of long and short reads generated from the Oxford Nanopore and Illumina platforms, contiguous chromosomes and plasmid sequences were determined. BLAST-based analysis was used to identify the RI insertion target. RESULTS: Genomes of four multiply antibiotic-resistant A. baumannii clinical strains, from a US hospital system, belonging to prevalent MLST ST2 (Pasteur scheme) and ST281 (Oxford scheme) clade F isolates were sequenced to completion. A class 1 integron carrying aadB (tobramycin resistance) and aadA2 (streptomycin/spectinomycin resistance) was identified. The class 1 integron was 6.8 kb, bounded by IS26 at both ends, and embedded in a new target location between an α/ß-hydrolase and a reductase. Due to its novel insertion site and unique RI composition, we suggest naming this novel RI AbGRI4. Molecular analysis of global A. baumannii isolates identified multiple AbGRI4 RI variants in non-ST2 clonal lineages, including variations in the resistance gene cassettes, integron backbone and insertion breakpoints at the hydrolase gene. CONCLUSIONS: A novel RI insertion target harbouring a class 1 integron was identified in a subgroup of ST2/ST281 clinical isolates. Variants of the RI suggested evolution and horizontal transfer of the RI across clonal lineages. Long- and short-read hybrid assembly technology completely resolved the genomic context of IS-bounded RIs, which was not possible using short reads alone.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Humans , Integrons , Islands , Multilocus Sequence Typing
18.
Bioinformatics ; 35(6): 1049-1050, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30165579

ABSTRACT

SUMMARY: The JCVI pan-genome pipeline is a collection of programs to run PanOCT and tools that support and extend the capabilities of PanOCT. PanOCT (pan-genome ortholog clustering tool) is a tool for pan-genome analysis of closely related prokaryotic species or strains. The JCVI Pan-Genome Pipeline wrapper invokes command-line utilities that prepare input genomes, invoke third-party tools such as NCBI Blast+, run PanOCT, generate a consensus pan-genome, annotate features of the pan-genome, detect sets of genes of interest such as antimicrobial resistance (AMR) genes and generate figures, tables and html pages to visualize the results. The pipeline can run in a hierarchical mode, lowering the RAM and compute resources used. AVAILABILITY AND IMPLEMENTATION: Source code, demo data, and detailed documentation are freely available at https://github.com/JCVenterInstitute/PanGenomePipeline.


Subject(s)
Genome, Bacterial , Genome, Microbial , Cluster Analysis , Prokaryotic Cells , Software
19.
Alcohol Clin Exp Res ; 44(1): 87-101, 2020 01.
Article in English | MEDLINE | ID: mdl-31710124

ABSTRACT

BACKGROUND: Alcohol-related liver disease is the main cause of liver-related mortality worldwide. The development of novel targeted therapies for patients with advanced forms (i.e., alcoholic hepatitis, AH) is hampered by the lack of suitable animal models. Here, we developed a novel mouse model of acute-on-chronic alcohol liver injury with cholestasis and fibrosis and performed an extensive molecular comparative analysis with human AH. METHODS: For the mouse model of acute-on-chronic liver injury, we used 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC, 0.05% w/w) diet for 8 weeks to establish cholestatic liver fibrosis. After 1-week washout period, male mice were fed intragastrically for 4 weeks with up to 24 g/kg of ethyl alcohol in a high-fat diet. This animal model was phenotyped using histopathology, clinical chemistry, microbiome, and gene expression approaches. Data were compared to the phenotypes of human alcohol-related liver disease, including AH. RESULTS: Mice with cholestatic liver fibrosis and subsequent alcohol exposure (DDC + EtOH) exhibited exacerbated liver fibrosis with a pericellular pattern, increased neutrophil infiltration, and ductular proliferation, all characteristics of human AH. DDC administration had no effect on urine alcohol concentration or liver steatosis. Importantly, DDC- and alcohol-treated mice showed a transcriptomic signature that resembled that of patients with AH. Finally, we show that mice in the DDC + EtOH group had an increased gut barrier dysfunction, mimicking an important pathophysiological mechanism of human AH. CONCLUSIONS: We developed a novel mouse model of acute-on-chronic cholestatic alcoholic liver injury that has considerable translational potential and can be used to test novel therapeutic modalities for AH.


Subject(s)
Cholestasis/pathology , Disease Models, Animal , Ethanol/toxicity , Hepatitis, Alcoholic/pathology , Systems Biology/methods , Acute Disease , Animals , Cholestasis/etiology , Cholestasis/metabolism , Chronic Disease , Diet, High-Fat/adverse effects , Hepatitis, Alcoholic/etiology , Hepatitis, Alcoholic/metabolism , Humans , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , Mice , Mice, Inbred C57BL , Pyridines/toxicity
20.
J Infect Dis ; 220(4): 666-676, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31099835

ABSTRACT

Previously, by targeting penicillin-binding protein 3, Pseudomonas-derived cephalosporinase (PDC), and MurA with ceftazidime-avibactam-fosfomycin, antimicrobial susceptibility was restored among multidrug-resistant (MDR) Pseudomonas aeruginosa. Herein, ceftazidime-avibactam-fosfomycin combination therapy against MDR P. aeruginosa clinical isolate CL232 was further evaluated. Checkerboard susceptibility analysis revealed synergy between ceftazidime-avibactam and fosfomycin. Accordingly, the resistance elements present and expressed in P. aeruginosa were analyzed using whole-genome sequencing and transcriptome profiling. Mutations in genes that are known to contribute to ß-lactam resistance were identified. Moreover, expression of blaPDC, the mexAB-oprM efflux pump, and murA were upregulated. When fosfomycin was administered alone, the frequency of mutations conferring resistance was high; however, coadministration of fosfomycin with ceftazidime-avibactam yielded a lower frequency of resistance mutations. In a murine infection model using a high bacterial burden, ceftazidime-avibactam-fosfomycin significantly reduced the P. aeruginosa colony-forming units (CFUs), by approximately 2 and 5 logs, compared with stasis and in the vehicle-treated control, respectively. Administration of ceftazidime-avibactam and fosfomycin separately significantly increased CFUs, by approximately 3 logs and 1 log, respectively, compared with the number at stasis, and only reduced CFUs by approximately 1 log and 2 logs, respectively, compared with the number in the vehicle-treated control. Thus, the combination of ceftazidime-avibactam-fosfomycin was superior to either drug alone. By employing a "mechanism-based approach" to combination chemotherapy, we show that ceftazidime-avibactam-fosfomycin has the potential to offer infected patients with high bacterial burdens a therapeutic hope against infection with MDR P. aeruginosa that lack metallo-ß-lactamases.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Azabicyclo Compounds/administration & dosage , Ceftazidime/administration & dosage , Drug Resistance, Multiple, Bacterial , Fosfomycin/administration & dosage , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Animals , Drug Combinations , Drug Synergism , Drug Therapy, Combination , Female , Humans , Mice , Microbial Sensitivity Tests , Mutation , Pseudomonas Infections/microbiology , Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL