ABSTRACT
Oestrogen receptor α (ERα) is a nuclear receptor that is the driving transcription factor expressed in the majority of breast cancers. Recent studies have demonstrated that the liver receptor homolog-1 (LRH-1), another nuclear receptor, regulates breast cancer cell proliferation and promotes motility and invasion. To determine the mechanisms of LRH-1 action in breast cancer, we performed gene expression microarray analysis following RNA interference for LRH-1. Interestingly, gene ontology (GO) category enrichment analysis of LRH-1-regulated genes identified oestrogen-responsive genes as the most highly enriched GO categories. Remarkably, chromatin immunoprecipitation coupled to massively parallel sequencing (ChIP-seq) to identify genomic targets of LRH-1 showed LRH-1 binding at many ERα binding sites. Analysis of select binding sites confirmed regulation of ERα-regulated genes by LRH-1 through binding to oestrogen response elements, as exemplified by the TFF1/pS2 gene. Finally, LRH-1 overexpression stimulated ERα recruitment, while LRH-1 knockdown reduced ERα recruitment to ERα binding sites. Taken together, our findings establish a key role for LRH-1 in the regulation of ERα target genes in breast cancer cells and identify a mechanism in which co-operative binding of LRH-1 and ERα at oestrogen response elements controls the expression of oestrogen-responsive genes.
Subject(s)
Breast Neoplasms/genetics , Estrogen Receptor alpha/metabolism , Gene Expression Regulation, Neoplastic , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Breast Neoplasms/metabolism , COS Cells , Chlorocebus aethiops , Female , MCF-7 Cells , Response ElementsABSTRACT
RNA interference (RNAi) represents a promising new gene silencing technology for functional genomics and a potential therapeutic strategy for a variety of genetic diseases. RNAi involves the targeted post-transcriptional degradation of messenger RNA thereby inhibiting the synthesis of the desired protein. This effectively leads to silencing of gene expression. The effectors of this process are short interfering RNA (siRNA) duplexes (approximately 21-23nt) that are key intermediaries in the specific degradation of target mRNA following incorporation into the RNA-induced silencing complex (RISC) in the cytosol. However, due to the large molecular weight and negative charge of siRNA duplexes the effective cellular uptake and intracellular delivery appear to represent a major challenge for the widespread use of RNAi in vivo. This review summarises some of the main delivery strategies that have been attempted for the transfection of siRNA to cells in vitro and in vivo.
Subject(s)
Drug Delivery Systems , RNA, Small Interfering/administration & dosage , Administration, Intranasal , Animals , Electroporation , Gene Silencing , Humans , Liposomes , Polymers/administration & dosage , RNA Interference , RNA, Small Interfering/pharmacokinetics , Tissue DistributionABSTRACT
RNA interference (RNAi) is a natural cellular process that effects post-transcriptional gene silencing in eukaryotic systems. Small interfering RNA (siRNA) molecules are the key intermediaries in this process which when exogenously administered can inhibit or "silence" the expression of any given target gene. Thus, siRNA molecules hold great promise as biological tools and as potential therapeutic agents for targeted inhibition of disease-causing genes. However, key challenges to the effective and widespread use of these polyanionic, macromolecular duplexes of RNA are their appropriate design and efficient delivery to cells in vitro and in vivo. This review highlights the current strategies used in the design of effective siRNA molecules and also summarises the main strategies being considered for the exogenous delivery of siRNA for both in vitro and in vivo applications.
Subject(s)
Drug Delivery Systems , Gene Transfer Techniques , RNA Interference , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Animals , Humans , RNA, Small Interfering/chemistryABSTRACT
Gene silencing nucleic acids such as ribozymes, DNA enzymes (DNAzymes), antisense oligonucleotides (ODNs), and small interfering (si)RNA rely on hybridization to accessible sites within target mRNA for activity. However, the accurate prediction of hybridization accessible sites within mRNAs for design of effective gene silencing reagents has been problematic. Here we have evaluated the use of scanning arrays for the effective design of ribozymes, DNAzymes and siRNA sequences targeting the epidermal growth factor receptor (EGFR) mRNA. All three gene silencing nucleic acids designed to be complementary to the same array-defined hybridization accessible-site within EGFR mRNA were effective in inhibiting the growth of EGFR over-expressing A431 cancer cells in a dose dependent manner when delivered using the cationic lipid (Lipofectin) delivery system. Effects on cell growth were correlated in all cases with concomitant dose-dependent reduction in EGFR protein expression. The control sequences did not markedly alter cell growth or EGFR expression. The ribozyme and DNAzyme exhibited similar potency in inhibiting cell growth with IC50 values of around 750 nM. In contrast, siRNA was significantly more potent with an IC50 of about 100 nM when delivered with Lipofectin. The potency of siRNA was further enhanced when Oligofectamine was used to further improve both the cellular uptake and subcellular distribution of fluorescently labelled siRNA. Our studies show that active siRNAs can be designed using hybridization accessibility profiles on scanning arrays and that siRNAs targeting the same array-designed hybridization accessible site in EGFR mRNA and delivered using the same delivery system are more potent than ribozymes and DNAzymes in inhibiting EGFR expression in A431 cells.