Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Cell ; 184(11): 2955-2972.e25, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34019795

ABSTRACT

Natural antibodies (Abs) can target host glycans on the surface of pathogens. We studied the evolution of glycan-reactive B cells of rhesus macaques and humans using glycosylated HIV-1 envelope (Env) as a model antigen. 2G12 is a broadly neutralizing Ab (bnAb) that targets a conserved glycan patch on Env of geographically diverse HIV-1 strains using a unique heavy-chain (VH) domain-swapped architecture that results in fragment antigen-binding (Fab) dimerization. Here, we describe HIV-1 Env Fab-dimerized glycan (FDG)-reactive bnAbs without VH-swapped domains from simian-human immunodeficiency virus (SHIV)-infected macaques. FDG Abs also recognized cell-surface glycans on diverse pathogens, including yeast and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike. FDG precursors were expanded by glycan-bearing immunogens in macaques and were abundant in HIV-1-naive humans. Moreover, FDG precursors were predominately mutated IgM+IgD+CD27+, thus suggesting that they originated from a pool of antigen-experienced IgM+ or marginal zone B cells.


Subject(s)
Antibodies, Neutralizing/immunology , HIV-1/immunology , Immunoglobulin Fab Fragments/immunology , Polysaccharides/immunology , SARS-CoV-2/immunology , Simian Immunodeficiency Virus/immunology , Spike Glycoprotein, Coronavirus/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Dimerization , Epitopes/immunology , Glycosylation , HIV Antibodies/immunology , HIV Infections/immunology , Humans , Immunoglobulin Fab Fragments/chemistry , Macaca mulatta , Polysaccharides/chemistry , Receptors, Antigen, B-Cell/chemistry , Simian Immunodeficiency Virus/genetics , Vaccines/immunology , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics
2.
Immunity ; 54(12): 2859-2876.e7, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34788599

ABSTRACT

Repeat antigens, such as the Plasmodium falciparum circumsporozoite protein (PfCSP), use both sequence degeneracy and structural diversity to evade the immune response. A few PfCSP-directed antibodies have been identified that are effective at preventing malaria infection, including CIS43, but how these repeat-targeting antibodies might be improved has been unclear. Here, we engineered a humanized mouse model in which B cells expressed inferred human germline CIS43 (iGL-CIS43) B cell receptors and used both vaccination and bioinformatic analysis to obtain variant CIS43 antibodies with improved protective capacity. One such antibody, iGL-CIS43.D3, was significantly more potent than the current best-in-class PfCSP-directed antibody. We found that vaccination with a junctional epitope peptide was more effective than full-length PfCSP at recruiting iGL-CIS43 B cells to germinal centers. Structure-function analysis revealed multiple somatic hypermutations that combinatorically improved protection. This mouse model can thus be used to understand vaccine immunogens and to develop highly potent anti-malarial antibodies.


Subject(s)
B-Lymphocyte Subsets/immunology , Epitopes/immunology , Malaria Vaccines/immunology , Malaria/immunology , Plasmodium falciparum/physiology , Protozoan Proteins/immunology , Vaccines, DNA/immunology , Adoptive Transfer , Animals , Antibodies, Protozoan/metabolism , Disease Models, Animal , Epitopes/genetics , Genetic Engineering , Humans , Immune Evasion , Immunogenicity, Vaccine , Mice , Mice, SCID , Protozoan Proteins/genetics , Structure-Activity Relationship , Vaccination
3.
Immunity ; 53(4): 733-744.e8, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32946741

ABSTRACT

Discovering potent human monoclonal antibodies (mAbs) targeting the Plasmodium falciparum circumsporozoite protein (PfCSP) on sporozoites (SPZ) and elucidating their mechanisms of neutralization will facilitate translation for passive prophylaxis and aid next-generation vaccine development. Here, we isolated a neutralizing human mAb, L9 that preferentially bound NVDP minor repeats of PfCSP with high affinity while cross-reacting with NANP major repeats. L9 was more potent than six published neutralizing human PfCSP mAbs at mediating protection against mosquito bite challenge in mice. Isothermal titration calorimetry and multiphoton microscopy showed that L9 and the other most protective mAbs bound PfCSP with two binding events and mediated protection by killing SPZ in the liver and by preventing their egress from sinusoids and traversal of hepatocytes. This study defines the subdominant PfCSP minor repeats as neutralizing epitopes, identifies an in vitro biophysical correlate of SPZ neutralization, and demonstrates that the liver is an important site for antibodies to prevent malaria.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Protozoan/immunology , Antimalarials/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Sporozoites/immunology , Adolescent , Adult , Animals , Cell Line , Cell Line, Tumor , Epitopes/immunology , Female , HEK293 Cells , Hepatocytes/immunology , Hepatocytes/parasitology , Humans , Liver/immunology , Liver/parasitology , Malaria/immunology , Malaria/parasitology , Malaria Vaccines/immunology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Young Adult
4.
N Engl J Med ; 387(5): 397-407, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35921449

ABSTRACT

BACKGROUND: New approaches for the prevention and elimination of malaria, a leading cause of illness and death among infants and young children globally, are needed. METHODS: We conducted a phase 1 clinical trial to assess the safety and pharmacokinetics of L9LS, a next-generation antimalarial monoclonal antibody, and its protective efficacy against controlled human malaria infection in healthy adults who had never had malaria or received a vaccine for malaria. The participants received L9LS either intravenously or subcutaneously at a dose of 1 mg, 5 mg, or 20 mg per kilogram of body weight. Within 2 to 6 weeks after the administration of L9LS, both the participants who received L9LS and the control participants underwent controlled human malaria infection in which they were exposed to mosquitoes carrying Plasmodium falciparum (3D7 strain). RESULTS: No safety concerns were identified. L9LS had an estimated half-life of 56 days, and it had dose linearity, with the highest mean (±SD) maximum serum concentration (Cmax) of 914.2±146.5 µg per milliliter observed in participants who had received 20 mg per kilogram intravenously and the lowest mean Cmax of 41.5±4.7 µg per milliliter observed in those who had received 1 mg per kilogram intravenously; the mean Cmax was 164.8±31.1 in the participants who had received 5 mg per kilogram intravenously and 68.9±22.3 in those who had received 5 mg per kilogram subcutaneously. A total of 17 L9LS recipients and 6 control participants underwent controlled human malaria infection. Of the 17 participants who received a single dose of L9LS, 15 (88%) were protected after controlled human malaria infection. Parasitemia did not develop in any of the participants who received 5 or 20 mg per kilogram of intravenous L9LS. Parasitemia developed in 1 of 5 participants who received 1 mg per kilogram intravenously, 1 of 5 participants who received 5 mg per kilogram subcutaneously, and all 6 control participants through 21 days after the controlled human malaria infection. Protection conferred by L9LS was seen at serum concentrations as low as 9.2 µg per milliliter. CONCLUSIONS: In this small trial, L9LS administered intravenously or subcutaneously protected recipients against malaria after controlled infection, without evident safety concerns. (Funded by the National Institute of Allergy and Infectious Diseases; VRC 614 ClinicalTrials.gov number, NCT05019729.).


Subject(s)
Antibodies, Monoclonal , Malaria , Administration, Cutaneous , Administration, Intravenous , Adult , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Child , Child, Preschool , Humans , Malaria/prevention & control , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Parasitemia/parasitology , Plasmodium falciparum
5.
N Engl J Med ; 385(9): 803-814, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34379916

ABSTRACT

BACKGROUND: Additional interventions are needed to reduce the morbidity and mortality caused by malaria. METHODS: We conducted a two-part, phase 1 clinical trial to assess the safety and pharmacokinetics of CIS43LS, an antimalarial monoclonal antibody with an extended half-life, and its efficacy against infection with Plasmodium falciparum. Part A of the trial assessed the safety, initial side-effect profile, and pharmacokinetics of CIS43LS in healthy adults who had never had malaria. Participants received CIS43LS subcutaneously or intravenously at one of three escalating dose levels. A subgroup of participants from Part A continued to Part B, and some received a second CIS43LS infusion. Additional participants were enrolled in Part B and received CIS43LS intravenously. To assess the protective efficacy of CIS43LS, some participants underwent controlled human malaria infection in which they were exposed to mosquitoes carrying P. falciparum sporozoites 4 to 36 weeks after administration of CIS43LS. RESULTS: A total of 25 participants received CIS43LS at a dose of 5 mg per kilogram of body weight, 20 mg per kilogram, or 40 mg per kilogram, and 4 of the 25 participants received a second dose (20 mg per kilogram regardless of initial dose). No safety concerns were identified. We observed dose-dependent increases in CIS43LS serum concentrations, with a half-life of 56 days. None of the 9 participants who received CIS43LS, as compared with 5 of 6 control participants who did not receive CIS43LS, had parasitemia according to polymerase-chain-reaction testing through 21 days after controlled human malaria infection. Two participants who received 40 mg per kilogram of CIS43LS and underwent controlled human malaria infection approximately 36 weeks later had no parasitemia, with serum concentrations of CIS43LS of 46 and 57 µg per milliliter at the time of controlled human malaria infection. CONCLUSIONS: Among adults who had never had malaria infection or vaccination, administration of the long-acting monoclonal antibody CIS43LS prevented malaria after controlled infection. (Funded by the National Institute of Allergy and Infectious Diseases; VRC 612 ClinicalTrials.gov number, NCT04206332.).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antimalarials/therapeutic use , Malaria, Falciparum/prevention & control , Adult , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Protozoan/blood , Antimalarials/administration & dosage , Antimalarials/adverse effects , Antimalarials/pharmacokinetics , Dose-Response Relationship, Drug , Healthy Volunteers , Humans , Infusions, Intravenous/adverse effects , Injections, Subcutaneous/adverse effects , Middle Aged , Plasmodium falciparum/immunology , Plasmodium falciparum/isolation & purification
6.
N Engl J Med ; 383(16): 1544-1555, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32722908

ABSTRACT

BACKGROUND: Vaccines to prevent coronavirus disease 2019 (Covid-19) are urgently needed. The effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines on viral replication in both upper and lower airways is important to evaluate in nonhuman primates. METHODS: Nonhuman primates received 10 or 100 µg of mRNA-1273, a vaccine encoding the prefusion-stabilized spike protein of SARS-CoV-2, or no vaccine. Antibody and T-cell responses were assessed before upper- and lower-airway challenge with SARS-CoV-2. Active viral replication and viral genomes in bronchoalveolar-lavage (BAL) fluid and nasal swab specimens were assessed by polymerase chain reaction, and histopathological analysis and viral quantification were performed on lung-tissue specimens. RESULTS: The mRNA-1273 vaccine candidate induced antibody levels exceeding those in human convalescent-phase serum, with live-virus reciprocal 50% inhibitory dilution (ID50) geometric mean titers of 501 in the 10-µg dose group and 3481 in the 100-µg dose group. Vaccination induced type 1 helper T-cell (Th1)-biased CD4 T-cell responses and low or undetectable Th2 or CD8 T-cell responses. Viral replication was not detectable in BAL fluid by day 2 after challenge in seven of eight animals in both vaccinated groups. No viral replication was detectable in the nose of any of the eight animals in the 100-µg dose group by day 2 after challenge, and limited inflammation or detectable viral genome or antigen was noted in lungs of animals in either vaccine group. CONCLUSIONS: Vaccination of nonhuman primates with mRNA-1273 induced robust SARS-CoV-2 neutralizing activity, rapid protection in the upper and lower airways, and no pathologic changes in the lung. (Funded by the National Institutes of Health and others.).


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , 2019-nCoV Vaccine mRNA-1273 , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/physiology , CD4 Antigens , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/pathology , Coronavirus Infections/therapy , Disease Models, Animal , Dose-Response Relationship, Immunologic , Immunization, Passive , Lung/pathology , Lung/virology , Macaca mulatta , Pneumonia, Viral/pathology , Pneumonia, Viral/therapy , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes/immunology , Viral Load , Viral Vaccines/administration & dosage , Virus Replication , COVID-19 Serotherapy
7.
PLoS Pathog ; 17(11): e1010042, 2021 11.
Article in English | MEDLINE | ID: mdl-34748617

ABSTRACT

Rare and potent monoclonal antibodies (mAbs) against the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) on infective sporozoites (SPZ) preferentially bind the PfCSP junctional tetrapeptide NPDP or NVDP minor repeats while cross-reacting with NANP central repeats in vitro. The extent to which each of these epitopes is required for protection in vivo is unknown. Here, we assessed whether junction-, minor repeat- and central repeat-preferring human mAbs (CIS43, L9 and 317 respectively) bound and protected against in vivo challenge with transgenic P. berghei (Pb) SPZ expressing either PfCSP with the junction and minor repeats knocked out (KO), or PbCSP with the junction and minor repeats knocked in (KI). In vivo protection studies showed that the junction and minor repeats are necessary and sufficient for CIS43 and L9 to neutralize KO and KI SPZ, respectively. In contrast, 317 required major repeats for in vivo protection. These data establish that human mAbs can prevent malaria infection by targeting three different protective epitopes (NPDP, NVDP, NANP) in the PfCSP repeat region. This report will inform vaccine development and the use of mAbs to passively prevent malaria.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Protozoan/immunology , Epitopes/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Sporozoites/immunology , Animals , Female , Liver/immunology , Liver/metabolism , Liver/parasitology , Liver/pathology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Mice , Mice, Inbred C57BL , Sporozoites/growth & development
8.
PLoS Pathog ; 17(12): e1010133, 2021 12.
Article in English | MEDLINE | ID: mdl-34871332

ABSTRACT

Combinations of monoclonal antibodies (mAbs) against different epitopes on the same antigen synergistically neutralize many viruses. However, there are limited studies assessing whether combining human mAbs against distinct regions of the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) enhances in vivo protection against malaria compared to each mAb alone or whether passive transfer of PfCSP mAbs would improve protection following vaccination against PfCSP. Here, we isolated a panel of human mAbs against the subdominant C-terminal domain of PfCSP (C-CSP) from a volunteer immunized with radiation-attenuated Pf sporozoites. These C-CSP-specific mAbs had limited binding to sporozoites in vitro that was increased by combination with neutralizing human "repeat" mAbs against the NPDP/NVDP/NANP tetrapeptides in the central repeat region of PfCSP. Nevertheless, passive transfer of repeat- and C-CSP-specific mAb combinations did not provide enhanced protection against in vivo sporozoite challenge compared to repeat mAbs alone. Furthermore, combining potent repeat-specific mAbs (CIS43, L9, and 317) that respectively target the three tetrapeptides (NPDP/NVDP/NANP) did not provide additional protection against in vivo sporozoite challenge. However, administration of either CIS43, L9, or 317 (but not C-CSP-specific mAbs) to mice that had been immunized with R21, a PfCSP-based virus-like particle vaccine that induces polyclonal antibodies against the repeat region and C-CSP, provided enhanced protection against sporozoite challenge when compared to vaccine or mAbs alone. Collectively, this study shows that while combining mAbs against the repeat and C-terminal regions of PfCSP provide no additional protection in vivo, repeat mAbs do provide increased protection when combined with vaccine-induced polyclonal antibodies. These data should inform the implementation of PfCSP human mAbs alone or following vaccination to prevent malaria infection.


Subject(s)
Antibodies, Monoclonal/immunology , Immunization, Passive/methods , Malaria Vaccines/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Animals , Antibodies, Protozoan/immunology , Humans , Malaria, Falciparum/prevention & control , Mice , Sporozoites/immunology
9.
PLoS Biol ; 17(6): e3000328, 2019 06.
Article in English | MEDLINE | ID: mdl-31206510

ABSTRACT

Peptide immunogens provide an approach to focus antibody responses to specific neutralizing sites on the HIV envelope protein (Env) trimer or on other pathogens. However, the physical characteristics of peptide immunogens can limit their pharmacokinetic and immunological properties. Here, we have designed synthetic "star" nanoparticles based on biocompatible N-[(2-hydroxypropyl)methacrylamide] (HPMA)-based polymer arms extending from a poly(amidoamine) (PAMAM) dendrimer core. In mice, these star nanoparticles trafficked to lymph nodes (LNs) by 4 hours following vaccination, where they were taken up by subcapsular macrophages and then resident dendritic cells (DCs). Immunogenicity optimization studies revealed a correlation of immunogen density with antibody titers. Furthermore, the co-delivery of Env variable loop 3 (V3) and T-helper peptides induced titers that were 2 logs higher than if the peptides were given in separate nanoparticles. Finally, we performed a nonhuman primate (NHP) study using a V3 glycopeptide minimal immunogen that was structurally optimized to be recognized by Env V3/glycan broadly neutralizing antibodies (bnAbs). When administered with a potent Toll-like receptor (TLR) 7/8 agonist adjuvant, these nanoparticles elicited high antibody binding titers to the V3 site. Similar to human V3/glycan bnAbs, certain monoclonal antibodies (mAbs) elicited by this vaccine were glycan dependent or targeted the GDIR peptide motif. To improve affinity to native Env trimer affinity, nonhuman primates (NHPs) were boosted with various SOSIP Env proteins; however, significant neutralization was not observed. Taken together, this study provides a new vaccine platform for administration of glycopeptide immunogens for focusing immune responses to specific bnAb epitopes.


Subject(s)
AIDS Vaccines/immunology , HIV-1/immunology , Nanoparticles/therapeutic use , Animals , Antibodies, Neutralizing/immunology , Antibody Formation/immunology , Epitopes/immunology , Female , HIV Envelope Protein gp120/chemistry , HIV Infections/immunology , HIV Seropositivity/immunology , Macaca mulatta , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Peptides , Primates
10.
Biomacromolecules ; 20(2): 854-870, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30608149

ABSTRACT

Small molecule Toll-like receptor-7 and -8 agonists (TLR-7/8a) can be used as vaccine adjuvants to induce CD8 T cell immunity but require formulations that prevent systemic toxicity and focus adjuvant activity in lymphoid tissues. Here, we covalently attached TLR-7/8a to polymers of varying composition, chain architecture and hydrodynamic behavior (∼300 nm submicrometer particles, ∼10 nm micelles and ∼4 nm flexible random coils) and evaluated how these parameters of polymer-TLR-7/8a conjugates impact adjuvant activity in vivo. Attachment of TLR-7/8a to any of the polymer compositions resulted in a nearly 10-fold reduction in systemic cytokines (toxicity). Moreover, both lymph node cytokine production and the magnitude of CD8 T cells induced against protein antigen increased with increasing polymer-TLR-7/8a hydrodynamic radius, with the submicrometer particle inducing the highest magnitude responses. Notably, CD8 T cell responses induced by polymer-TLR-7/8a were dependent on CCR2+ monocytes and IL-12, whereas responses by a small molecule TLR-7/8a that unexpectedly persisted in vaccine-site draining lymph nodes (T1/2 = 15 h) had less dependence on monocytes and IL-12 but required Type I IFNs. This study shows how modular properties of synthetic adjuvants can be chemically programmed to alter immunity in vivo through distinct immunological mechanisms.


Subject(s)
Adjuvants, Immunologic/chemistry , CD8-Positive T-Lymphocytes/drug effects , Lymphocyte Activation , Micelles , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Line , Cells, Cultured , Cytokines/metabolism , Female , Hydrodynamics , Mice , Mice, Inbred C57BL , Protein Binding
11.
Bioconjug Chem ; 27(10): 2372-2385, 2016 10 19.
Article in English | MEDLINE | ID: mdl-27583777

ABSTRACT

Structure-based vaccine design has been used to develop immunogens that display conserved neutralization sites on pathogens such as HIV-1, respiratory syncytial virus (RSV), and influenza. Improving the immunogenicity of these designed immunogens with adjuvants will require formulations that do not alter protein antigenicity. Here, we show that nanoparticle-forming thermoresponsive polymers (TRP) allow for co-delivery of RSV fusion (F) protein trimers with Toll-like receptor 7 and 8 agonists (TLR-7/8a) to enhance protective immunity. Although primary amine conjugation of TLR-7/8a to F trimers severely disrupted the recognition of critical neutralizing epitopes, F trimers site-selectively coupled to TRP nanoparticles retained appropriate antigenicity and elicited high titers of prefusion-specific, TH1 isotype anti-RSV F antibodies following vaccination. Moreover, coupling F trimers to TRP delivering TLR-7/8a resulted in ∼3-fold higher binding and neutralizing antibody titers than soluble F trimers admixed with TLR-7/8a and conferred protection from intranasal RSV challenge. Overall, these data show that TRP nanoparticles may provide a broadly applicable platform for eliciting neutralizing antibodies to structure-dependent epitopes on RSV, influenza, HIV-1, or other pathogens.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Nanoparticles/administration & dosage , Polymers/chemistry , Respiratory Syncytial Virus Vaccines/pharmacology , Viral Fusion Proteins/administration & dosage , Animals , Antibodies, Neutralizing , Chemistry Techniques, Synthetic , Drug Delivery Systems/methods , Female , Mice, Inbred Strains , Nanoparticles/chemistry , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/immunology , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/chemistry , Viral Fusion Proteins/chemistry
12.
Cell Rep ; 43(2): 113706, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38294906

ABSTRACT

Viral pandemics and epidemics pose a significant global threat. While macaque models of viral disease are routinely used, it remains unclear how conserved antiviral responses are between macaques and humans. Therefore, we conducted a cross-species analysis of transcriptomic data from over 6,088 blood samples from macaques and humans infected with one of 31 viruses. Our findings demonstrate that irrespective of primate or viral species, there are conserved antiviral responses that are consistent across infection phase (acute, chronic, or latent) and viral genome type (DNA or RNA viruses). Leveraging longitudinal data from experimental challenges, we identify virus-specific response kinetics such as host responses to Coronaviridae and Orthomyxoviridae infections peaking 1-3 days earlier than responses to Filoviridae and Arenaviridae viral infections. Our results underscore macaque studies as a powerful tool for understanding viral pathogenesis and immune responses that translate to humans, with implications for viral therapeutic development and pandemic preparedness.


Subject(s)
Filoviridae , Orthomyxoviridae Infections , Animals , Humans , Immunoinformatics , Macaca , Antiviral Agents
13.
Emerg Microbes Infect ; 13(1): 2294860, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38165394

ABSTRACT

COVID-19 remains a major public health concern. Monoclonal antibodies have received emergency use authorization (EUA) for pre-exposure prophylaxis against COVID-19 among high-risk groups for treatment of mild to moderate COVID-19. In addition to recombinant biologics, engineered synthetic DNA-encoded antibodies (DMAb) are an important strategy for direct in vivo delivery of protective mAb. A DMAb cocktail was synthetically engineered to encode the immunoglobulin heavy and light chains of two different two different Fc-engineered anti-SARS-CoV-2 antibodies. The DMAbs were designed to enhance in vivo expression and delivered intramuscularly to cynomolgus and rhesus macaques with a modified in vivo delivery regimen. Serum levels were detected in macaques, along with specific binding to SARS-CoV-2 spike receptor binding domain protein and neutralization of multiple SARS-CoV-2 variants of concern in pseudovirus and authentic live virus assays. Prophylactic administration was protective in rhesus macaques against signs of SARS-CoV-2 (USA-WA1/2020) associated disease in the lungs. Overall, the data support further study of DNA-encoded antibodies as an additional delivery mode for prevention of COVID-19 severe disease. These data have implications for human translation of gene-encoded mAbs for emerging infectious diseases and low dose mAb delivery against COVID-19.


Subject(s)
COVID-19 , Pre-Exposure Prophylaxis , Animals , Macaca mulatta , COVID-19/prevention & control , SARS-CoV-2/genetics , Antibodies, Viral , Antibodies, Monoclonal , Macaca fascicularis , DNA , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus/genetics
14.
Sci Transl Med ; 16(753): eado2817, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924429

ABSTRACT

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in variants that can escape neutralization by therapeutic antibodies. Here, we describe AZD3152, a SARS-CoV-2-neutralizing monoclonal antibody designed to provide improved potency and coverage against emerging variants. AZD3152 binds to the back left shoulder of the SARS-CoV-2 spike protein receptor binding domain and prevents interaction with the human angiotensin-converting enzyme 2 receptor. AZD3152 potently neutralized a broad panel of pseudovirus variants, including the currently dominant Omicron variant JN.1 but has reduced potency against XBB subvariants containing F456L. In vitro studies confirmed F456L resistance and additionally identified T415I and K458E as escape mutations. In a Syrian hamster challenge model, prophylactic administration of AZD3152 protected hamsters from weight loss and inflammation-related lung pathologies and reduced lung viral load. In the phase 1 sentinel safety cohort of the ongoing SUPERNOVA study (ClinicalTrials.gov: NCT05648110), a single 600-mg intramuscular injection of AZD5156 (containing 300 mg each of AZD3152 and cilgavimab) was well tolerated in adults through day 91. Observed serum concentrations of AZD3152 through day 91 were similar to those observed with cilgavimab and consistent with predictions for AZD7442, a SARS-CoV-2-neutralizing antibody combination of cilgavimab and tixagevimab, in a population pharmacokinetic model. On the basis of its pharmacokinetic characteristics, AZD3152 is predicted to provide durable protection against symptomatic coronavirus disease 2019 caused by susceptible SARS-CoV-2 variants, such as JN.1, in humans.


Subject(s)
Antibodies, Neutralizing , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , SARS-CoV-2/drug effects , Humans , COVID-19/virology , Antibodies, Neutralizing/immunology , Spike Glycoprotein, Coronavirus/metabolism , Cricetinae , COVID-19 Drug Treatment , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacokinetics , Mesocricetus , Female , Male , Adult , Antibodies, Viral/immunology , Mutation/genetics , Antibodies, Monoclonal , Angiotensin-Converting Enzyme 2/metabolism , Viral Load/drug effects
15.
Cell Rep ; 42(7): 112681, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37389992

ABSTRACT

Human monoclonal antibodies (hmAbs) targeting the Plasmodium falciparum circumsporozoite protein (PfCSP) on the sporozoite surface are a promising tool for preventing malaria infection. However, their mechanisms of protection remain unclear. Here, using 13 distinctive PfCSP hmAbs, we provide a comprehensive view of how PfCSP hmAbs neutralize sporozoites in host tissues. Sporozoites are most vulnerable to hmAb-mediated neutralization in the skin. However, rare but potent hmAbs additionally neutralize sporozoites in the blood and liver. Efficient protection in tissues mainly associates with high-affinity and high-cytotoxicity hmAbs inducing rapid parasite loss-of-fitness in the absence of complement and host cells in vitro. A 3D-substrate assay greatly enhances hmAb cytotoxicity and mimics the skin-dependent protection, indicating that the physical stress imposed on motile sporozoites by the skin is crucial for unfolding the protective potential of hmAbs. This functional 3D cytotoxicity assay can thus be useful for downselecting potent anti-PfCSP hmAbs and vaccines.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Animals , Humans , Plasmodium falciparum , Protozoan Proteins , Immunoglobulins , Sporozoites
16.
JCI Insight ; 8(2)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36692019

ABSTRACT

Modifications to vaccine delivery that increase serum antibody longevity are of great interest for maximizing efficacy. We have previously shown that a delayed fractional (DFx) dosing schedule (0-1-6 month) - using AS01B-adjuvanted RH5.1 malaria antigen - substantially improves serum IgG durability as compared with monthly dosing (0-1-2 month; NCT02927145). However, the underlying mechanism and whether there are wider immunological changes with DFx dosing were unclear. Here, PfRH5-specific Ig and B cell responses were analyzed in depth through standardized ELISAs, flow cytometry, systems serology, and single-cell RNA-Seq (scRNA-Seq). Data indicate that DFx dosing increases the magnitude and durability of circulating PfRH5-specific B cells and serum IgG1. At the peak antibody magnitude, DFx dosing was distinguished by a systems serology feature set comprising increased FcRn binding, IgG avidity, and proportion of G2B and G2S2F IgG Fc glycans, alongside decreased IgG3, antibody-dependent complement deposition, and proportion of G1S1F IgG Fc glycan. Concomitantly, scRNA-Seq data show a higher CDR3 percentage of mutation from germline and decreased plasma cell gene expression in circulating PfRH5-specific B cells. Our data, therefore, reveal a profound impact of DFx dosing on the humoral response and suggest plausible mechanisms that could enhance antibody longevity, including improved FcRn binding by serum Ig and a potential shift in the underlying cellular response from circulating short-lived plasma cells to nonperipheral long-lived plasma cells.


Subject(s)
Malaria Vaccines , Humans , Antigens, Protozoan , B-Lymphocytes , Lymphocytes , Immunoglobulin G
17.
PLoS Pathog ; 6(9): e1001098, 2010 Sep 09.
Article in English | MEDLINE | ID: mdl-20844579

ABSTRACT

Many viruses alter expression of proteins on the surface of infected cells including molecules important for immune recognition, such as the major histocompatibility complex (MHC) class I and II molecules. Virus-induced downregulation of surface proteins has been observed to occur by a variety of mechanisms including impaired transcription, blocks to synthesis, and increased turnover. Viral infection or transient expression of the Ebola virus (EBOV) glycoprotein (GP) was previously shown to result in loss of staining of various host cell surface proteins including MHC1 and ß1 integrin; however, the mechanism responsible for this effect has not been delineated. In the present study we demonstrate that EBOV GP does not decrease surface levels of ß1 integrin or MHC1, but rather impedes recognition by steric occlusion of these proteins on the cell surface. Furthermore, steric occlusion also occurs for epitopes on the EBOV glycoprotein itself. The occluded epitopes in host proteins and EBOV GP can be revealed by removal of the surface subunit of GP or by removal of surface N- and O- linked glycans, resulting in increased surface staining by flow cytometry. Importantly, expression of EBOV GP impairs CD8 T-cell recognition of MHC1 on antigen presenting cells. Glycan-mediated steric shielding of host cell surface proteins by EBOV GP represents a novel mechanism for a virus to affect host cell function, thereby escaping immune detection.


Subject(s)
Ebolavirus/immunology , Epitopes/immunology , Hemorrhagic Fever, Ebola/immunology , Histocompatibility Antigens Class I/immunology , Integrin beta1/immunology , Viral Envelope Proteins/immunology , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/metabolism , Blotting, Western , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Membrane/genetics , Cell Membrane/immunology , Cell Membrane/metabolism , Cells, Cultured , Ebolavirus/genetics , Ebolavirus/metabolism , Epitopes/genetics , Epitopes/metabolism , Female , Flow Cytometry , Fluorescent Antibody Technique , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/metabolism , Histocompatibility Antigens Class I/genetics , Humans , Immunoenzyme Techniques , Integrin beta1/genetics , Integrin beta1/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/immunology , Ovarian Neoplasms/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
18.
Proc Natl Acad Sci U S A ; 106(8): 2886-91, 2009 Feb 24.
Article in English | MEDLINE | ID: mdl-19179289

ABSTRACT

Mammalian cells employ numerous innate cellular mechanisms to inhibit viral replication and spread. Tetherin, also known as Bst-2 or CD317, is a recently identified, IFN-induced, cellular response factor that blocks release of HIV-1 and other retroviruses from infected cells. The means by which tetherin retains retroviruses on the cell surface, as well as the mechanism used by the HIV-1 accessory protein Vpu to antagonize tetherin function and promote HIV-1 release, are unknown. Here, we document that tetherin functions as a broadly acting antiviral factor by demonstrating that both human and murine tetherin potently inhibit the release of the filovirus, Ebola, from the surface of cells. Expression of the Ebola glycoprotein (GP) antagonized the antiviral effect of human and murine tetherin and facilitated budding of Ebola particles, as did the HIV-1 Vpu protein. Conversely, Ebola GP could substitute for Vpu to promote HIV-1 virion release from tetherin-expressing cells, demonstrating a common cellular target for these divergent viral proteins. Ebola GP efficiently coimmunoprecipitated with tetherin, suggesting that the viral glycoprotein directly interferes with this host antiviral factor. These results demonstrate that tetherin is a cellular antiviral factor that restricts budding of structurally diverse enveloped viruses. Additionally, Ebola has evolved a highly effective strategy to combat this antiviral response elicited in the host during infection.


Subject(s)
Antigens, CD/physiology , Ebolavirus/physiology , Filoviridae/physiology , Glycoproteins/physiology , Membrane Glycoproteins/physiology , Viral Proteins/physiology , Animals , Antigens, CD/metabolism , Cell Line , Enzyme-Linked Immunosorbent Assay , Filoviridae/growth & development , GPI-Linked Proteins , Glycoproteins/metabolism , Humans , Membrane Glycoproteins/metabolism , Mice , Microscopy, Electron, Scanning , Protein Binding , Viral Proteins/metabolism
19.
Cell Rep ; 38(7): 110367, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35172158

ABSTRACT

L9 is a potent human monoclonal antibody (mAb) that preferentially binds two adjacent NVDP minor repeats and cross-reacts with NANP major repeats of the Plasmodium falciparum circumsporozoite protein (PfCSP) on malaria-infective sporozoites. Understanding this mAb's ontogeny and mechanisms of binding PfCSP will facilitate vaccine development. Here, we isolate mAbs clonally related to L9 and show that this B cell lineage has baseline NVDP affinity and evolves to acquire NANP reactivity. Pairing the L9 kappa light chain (L9κ) with clonally related heavy chains results in chimeric mAbs that cross-link two NVDPs, cross-react with NANP, and more potently neutralize sporozoites in vivo compared with their original light chain. Structural analyses reveal that the chimeric mAbs bound minor repeats in a type-1 ß-turn seen in other repeat-specific antibodies. These data highlight the importance of L9κ in binding NVDP on PfCSP to neutralize sporozoites and suggest that PfCSP-based immunogens might be improved by presenting ≥2 NVDPs.


Subject(s)
Antibodies, Monoclonal/metabolism , Immunoglobulin Light Chains/metabolism , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Protozoan Proteins/metabolism , Repetitive Sequences, Amino Acid , Adolescent , Adult , Amino Acid Motifs , Amino Acid Sequence , Animals , Antibodies, Monoclonal/isolation & purification , Cell Lineage , Culicidae/parasitology , Female , Humans , Immunoglobulin Fab Fragments/metabolism , Mice, Inbred C57BL , Middle Aged , Models, Molecular , Neutralization Tests , Peptides/chemistry , Peptides/metabolism , Plasmodium falciparum/immunology , Protein Binding , Young Adult
20.
J Exp Med ; 219(8)2022 08 01.
Article in English | MEDLINE | ID: mdl-35736810

ABSTRACT

The monoclonal antibody CIS43 targets the Plasmodium falciparum circumsporozoite protein (PfCSP) and prevents malaria infection in humans for up to 9 mo following a single intravenous administration. To enhance the potency and clinical utility of CIS43, we used iterative site-saturation mutagenesis and DNA shuffling to screen precise gene-variant yeast display libraries for improved PfCSP antigen recognition. We identified several mutations that improved recognition, predominately in framework regions, and combined these to produce a panel of antibody variants. The most improved antibody, CIS43_Var10, had three mutations and showed approximately sixfold enhanced protective potency in vivo compared to CIS43. Co-crystal and cryo-electron microscopy structures of CIS43_Var10 with the peptide epitope or with PfCSP, respectively, revealed functional roles for each of these mutations. The unbiased site-directed mutagenesis and screening pipeline described here represent a powerful approach to enhance protective potency and to enable broader clinical use of antimalarial antibodies.


Subject(s)
Antimalarials , Malaria Vaccines , Antibodies, Protozoan , Antimalarials/pharmacology , Cryoelectron Microscopy , Humans , Plasmodium falciparum , Protozoan Proteins , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL