Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Am J Bot ; 104(5): 757-771, 2017 May.
Article in English | MEDLINE | ID: mdl-28515078

ABSTRACT

PREMISE OF THE STUDY: The Bahamas archipelago is formed by young, tectonically stable carbonate banks that harbor direct geological evidence of global ice-volume changes. We sought to detect signatures of major changes on gene flow patterns and reconstruct the phylogeographic history of the monophyletic Zamia pumila complex across the Bahamas. METHODS: Nuclear molecular markers with both high and low mutation rates were used to capture two different time scale signatures and test several gene flow and demographic hypotheses. KEY RESULTS: Single-copy nuclear genes unveiled apparent ancestral admixture on Andros, suggesting a significant role of this island as main hub of diversity of the archipelago. We detected demographic and spatial expansion of the Zamia pumila complex on both paleo-provinces around the Piacenzian (Pliocene)/Gelasian (Pleistocene). Populations evidenced signatures of different migration models that have occurred at two different times. Populations on Long Island (Z. lucayana) may either represent a secondary colonization of the Bahamas by Zamia or a rapid and early-divergence event of at least one population on the Bahamas. CONCLUSIONS: Despite changes in migration patterns with global climate, expected heterozygosity with both marker systems remains within the range reported for cycads, but with significant levels of increased inbreeding detected by the microsatellites. This finding is likely associated with reduced gene flow between and within paleo-provinces, accompanied by genetic drift, as rising seas enforced isolation. Our study highlights the importance of the maintenance of the predominant direction of genetic exchange and the role of overseas dispersion among the islands during climate oscillations.


Subject(s)
Biodiversity , Phylogeny , Zamiaceae/genetics , Bahamas , Genetic Variation , Islands , Microsatellite Repeats , Phylogeography
2.
Cladistics ; 31(5): 509-534, 2015 Oct.
Article in English | MEDLINE | ID: mdl-34772273

ABSTRACT

Arecaceae tribe Cocoseae is the most economically important tribe of palms, including both coconut and African oil palm. It is mostly represented in the Neotropics, with one and two genera endemic to South Africa and Madagascar, respectively. Using primers for six single copy WRKY gene family loci, we amplified DNA from 96 samples representing all genera of the palm tribe Cocoseae as well as outgroup tribes Reinhardtieae and Roystoneae. We compared parsimony (MP), maximum likelihood (ML), and Bayesian (B) analysis of the supermatrix with three species-tree estimation approaches. Subtribe Elaeidinae is sister to the Bactridinae in all analyses. Within subtribe Attaleinae, Lytocaryum, previously nested in Syagrus, is now positioned by MP and ML as sister to the former, with high support; B maintains Lytocaryum embedded within Syagrus. Both MP and ML resolve Cocos as sister to Syagrus; B positions Cocos as sister to Attalea. Bactridineae is composed of two sister clades, Bactris and Desmoncus in one, for which there is morphological support, and a second comprising Acrocomia, Astrocaryum, and Aiphanes. Two B and one ML gene tree-species estimation approaches are incongruent with the supermatrix in a few critical intergeneric clades, but resolve the same infrageneric relationships. The biogeographic history of the Cocoseae is dominated by dispersal events. The tribe originated in the late Cretaceous in South America. Evaluated together, the supermatrix and species tree analyses presented in this paper provide the most accurate picture of the evolutionary history of the tribe to date, with more congruence than incongruence among the various methodologies.

3.
Mol Phylogenet Evol ; 77: 216-22, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24747128

ABSTRACT

The taxonomy of the Calanthe alliance (Epidendroideae, Orchidaceae), consisting of Calanthe, Cephalantheropsis, and Phaius, has been difficult for orchidologists to understand because of the presence of common morphological features. In this study, in addition to morphological and geographical analyses, maximum parsimony and Bayesian inference analyses were performed based on nucleotide sequences of the nuclear internal transcribed spacer and cpDNA genes of 88 taxa representing the major clades of the Calanthe alliance in China. The results indicated that Cephalantheropsis is monophyletic, while both Phaius and Calanthe are polyphyletic. In Phaius, a total of three species, P. flavus, P. columnaris, and P. takeoi, were segregated to form a new genus, Paraphaius. In Calanthe, subgenus Preptanthe and sect. Styloglossum were both categorized as distinct genera from Calanthe. Our results also confirm that Calanthe delavayi and C. calanthoides are members of Calanthe. Previous studies assigned C. delavayi to Phaius and C. calanthoides to Ghiesbrechtia. Five sections, namely, Alpinocalanthe, Puberula, Ghiesbrechtia, Tricarinata, and Calanthe, three of which are new taxa, were recognized in Calanthe. Therefore, we propose that the Calanthe alliance is composed of six genera: Calanthe, Cephalantheropsis, Paraphaius, Phaius, Preptanthe and Styloglossum.


Subject(s)
Orchidaceae/genetics , Phylogeny , Bayes Theorem , China , DNA, Plant/genetics , Orchidaceae/anatomy & histology , Sequence Analysis, DNA
4.
Ann Bot ; 112(7): 1263-78, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23997230

ABSTRACT

BACKGROUND AND AIMS: Despite a recent new classification, a stable phylogeny for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study, five single-copy nuclear genes (SCNGs) are applied to the phylogeny of the order Cycadales. The specific aim is to evaluate several gene tree-species tree reconciliation approaches for developing an accurate phylogeny of the order, to contrast them with concatenated parsimony analysis and to resolve the erstwhile problematic phylogenetic position of these three genera. METHODS: DNA sequences of five SCNGs were obtained for 20 cycad species representing all ten genera of Cycadales. These were analysed with parsimony, maximum likelihood (ML) and three Bayesian methods of gene tree-species tree reconciliation, using Cycas as the outgroup. A calibrated date estimation was developed with Bayesian methods, and biogeographic analysis was also conducted. KEY RESULTS: Concatenated parsimony, ML and three species tree inference methods resolve exactly the same tree topology with high support at most nodes. Dioon and Bowenia are the first and second branches of Cycadales after Cycas, respectively, followed by an encephalartoid clade (Macrozamia-Lepidozamia-Encephalartos), which is sister to a zamioid clade, of which Ceratozamia is the first branch, and in which Stangeria is sister to Microcycas and Zamia. CONCLUSIONS: A single, well-supported phylogenetic hypothesis of the generic relationships of the Cycadales is presented. However, massive extinction events inferred from the fossil record that eliminated broader ancestral distributions within Zamiaceae compromise accurate optimization of ancestral biogeographical areas for that hypothesis. While major lineages of Cycadales are ancient, crown ages of all modern genera are no older than 12 million years, supporting a recent hypothesis of mostly Miocene radiations. This phylogeny can contribute to an accurate infrafamilial classification of Zamiaceae.


Subject(s)
Cell Nucleus/genetics , Cycadopsida/classification , Cycadopsida/genetics , Gene Dosage/genetics , Genes, Plant/genetics , Phylogeny , Trees/genetics , Likelihood Functions , Phylogeography , Polymorphism, Genetic , Species Specificity , Time Factors
5.
Am J Bot ; 99(11): 1828-39, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23125434

ABSTRACT

PREMISE OF THE STUDY: This study of Zamia in Puerto Rico is the most intensive population genetics investigation of a cycad to date in terms of number of markers, and one of few microsatellite DNA studies of plants from the highly critical Caribbean biodiversity hotspot. Three distinctive Zamia taxa occur on the island: Z. erosa on the north coast, and Z. portoricensis and Z. pumila, both in the south. Their relationships are largely unknown. We tested three hypotheses about their genetic diversity, including the possibility of multiple introductions. METHODS: We used 31 microsatellite loci across 10 populations and analyzed the data with AMOVA, Bayesian clustering, and ABC coalescent modeling. KEY RESULTS: Puerto Rican zamias exhibit an amalgam of patterns of genetic differentiation that have been reported for cycads. Overall, the taxa are slightly inbred, with high infra-populational variation and little evidence of recent bottlenecks. Zamia erosa exhibits a more than threefold greater degree of population differentiation than the other two taxa. Admixture is evident only between Z. portoricensis and Z. pumila. Zamia portoricensis is inferred to be the youngest taxon on the island, on the basis of estimates of coalescence time and effective population size. A selective sweep may be underway in a small population of Z. erosa in a saline environment. CONCLUSIONS: Zamia erosa may represent an independent introduction into Puerto Rico; Z. portoricensis and Z. pumila fit a scenario of allopatric speciation. This will be explored further in the context of genetic analysis across the entire Caribbean region.


Subject(s)
Genetic Variation , Microsatellite Repeats/genetics , Models, Genetic , Zamiaceae/genetics , Alleles , Analysis of Variance , Bayes Theorem , Cluster Analysis , DNA, Plant/chemistry , DNA, Plant/genetics , Gene Frequency , Geography , Molecular Sequence Data , Phylogeny , Polymorphism, Genetic , Population Density , Population Dynamics , Puerto Rico , Sequence Analysis, DNA , Zamiaceae/classification
6.
J Hered ; 103(4): 557-69, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22563126

ABSTRACT

The Tropical Andes is a diversity hotspot for plants, but there is a scant knowledge about patterns of genetic variation within its constituent species. Phaedranassa tunguraguae is an IUCN endangered plant species endemic to a single valley in the Ecuadorian Andes. We estimate the levels of genetic differentiation across the geographic distribution of P. tunguraguae using 12 microsatellite loci. We discuss factors that might influence the genetic structure of this species. Genetic distance was used to evaluate relationship among populations and geographic patterns. Bayesian methods were used to investigate population structure, migration, evidence of recent bottlenecks, and time of divergence. The 7 populations form 2 genetic clusters. These clusters show highly significant differentiation between them, along with isolation by distance. Allele richness decreases from the most diverse westernmost population to the least diverse easternmost population. The species overall shows an excess of homozygotes, with highest levels of inbreeding in the easternmost population. We found evidence of recent bottleneck events. Migration rates were in general low but were higher between populations within each of the clusters. Time of divergence between populations was related to historical volcanic activity in the area. Based on our results, we propose 2 management units for P. tunguraguae.


Subject(s)
Endangered Species , Liliaceae/genetics , Alleles , Bayes Theorem , DNA, Plant/chemistry , Genetic Variation , Geography , Homozygote , Microsatellite Repeats , Population Dynamics
7.
Am J Bot ; 98(10): 1716-26, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21911453

ABSTRACT

PREMISE OF THE STUDY: We examined the phylogeny and intergeneric relationships among the 12 genera of the palm subtribe Ptychospermatinae. While many of these taxa are familiar, cultivated ornamental palms in warm areas of the world, the monophyly of the subtribe and its component genera required testing. We also examined the biogeographic relationships of this lineage, which has a significant radiation east of Wallace's Line. METHODS: Phylogenetic analyses were based on maximum parsimony and Bayesian analyses of nucleotide sequences of two low-copy nuclear genes: intron 4 of phosphoribulokinase and intron 23 of RNA polymerase II. Biogeographical reconstructions were explored using S-DIVA. KEY RESULTS: The two-gene, combined analysis yielded a monophyletic subtribe with six major clades. The biogeographical analysis suggests that the subtribe originated in New Guinea. CONCLUSIONS: The phylogenetic hypotheses support the monophyly of the subtribe. The genera Drymophloeus, Ponapea, and Veitchia, as presently circumscribed, are not monophyletic. The resurrection and expanded circumscription of the genus Ponapea are supported. A newly discovered species of Adonidia is confirmed as sister species to Adonidia merrillii. Our phylogenetic hypothesis suggests that the Ptychospermatinae diverged into six major clades with repeated radiations into Australia and the western Pacific. The presence of Adonidia to the west of Wallace's Line is likely to be the result of long-distance dispersal. The following new combinations are made to restore monophyly to Veitchia and Ponapea: Veitchia pachyclada, V. subisticha, V. lepidota, and Ponapea hentyi.


Subject(s)
Arecaceae/genetics , Phylogeny , Arecaceae/enzymology , Base Sequence , Geography , New Guinea , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phylogeography , RNA Polymerase II/genetics , Species Specificity
8.
J Hered ; 102(1): 1-10, 2011.
Article in English | MEDLINE | ID: mdl-21172825

ABSTRACT

Pseudophoenix ekmanii is a threatened palm species endemic to the Dominican Republic. Sap from trees is extracted to make a local drink; once they are tapped the individual usually dies. Plants are also illegally harvested for the nursery trade and destroyed by poachers hunting the endemic and threatened Hispaniolan parrot. We used 7 DNA microsatellite markers to assist land managers in developing conservation strategies for this palm. We sampled 4 populations along the known distribution range of this species (3 populations from the mainland and 1 from the small island of Isla Beata), for a total sample of n = 104. We found strong evidence for genetic drift, inbreeding, and moderate gene flow (i.e., all populations had at least 4 loci that were not in Hardy-Weinberg equilibrium, at least 9 loci pairs were in linkage disequilibrium, the pairwise F(ST) values ranged from 0.069 to 0.266, and had positive F(IS) values). Data supported an isolation-by-distance model, and cluster analyses based on genetic distances resolved 2 groups that match a north-south split. The population from Isla Beata had the lowest levels of genetic diversity and was the only one in which we found pairs of individuals with identical shared multilocus genotypes.


Subject(s)
Arecaceae/genetics , Conservation of Natural Resources , Genetic Variation , Genetics, Population , Genome, Plant , Cluster Analysis , DNA, Plant/genetics , Dominican Republic , Gene Flow , Genetic Drift , Genetic Markers , Genotype , Inbreeding , Linkage Disequilibrium , Microsatellite Repeats , Multilocus Sequence Typing/methods
9.
J Plant Res ; 123(1): 57-65, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19760138

ABSTRACT

Phylogenetic analyses of nucleotide sequences of the internal transcribed spacers and 5.8 regions of the nuclear ribosomal DNA and of the trnH-psbA spacer of the chloroplast genome confirm that the three taxa of the Jacquemontia ovalifolia (Choicy) Hallier f. complex (Convolvulaceae) form a monophyletic group. Levels of nucleotide divergence and morphological differentiation among these taxa support the view that each should be recognized as distinct species. These three species display unique intercontinental disjunction, with one species endemic to Hawaii (Jacquemontia sandwicensis A. Gray.), another restricted to eastern Mexico and the Antilles [Jacquemontia obcordata (Millspaugh) House], and the third confined to East and West Africa (J. ovalifolia). The Caribbean and Hawaiian species are sister taxa and are another example of a biogeographical link between the Caribbean Basin and Polynesia. We provide a brief conservation review of the three taxa based on our collective field work and investigations; it is apparent that J. obcordata is highly threatened and declining in the Caribbean.


Subject(s)
Convolvulaceae/genetics , Sequence Homology, Nucleic Acid , Africa , Bayes Theorem , Biological Evolution , Caribbean Region , Consensus Sequence , Convolvulaceae/classification , Endangered Species , Geography , Hawaii , Phylogeny
10.
Ann Bot ; 104(6): 1099-110, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19789174

ABSTRACT

BACKGROUND AND AIMS: The legume flower is highly variable in symmetry and differentiation of petal types. Most papilionoid flowers are zygomorphic with three types of petals: one dorsal, two lateral and two ventral petals. Mimosoids have radial flowers with reduced petals while caesalpinioids display a range from strongly zygomorphic to nearly radial symmetry. The aims are to characterize the petal micromorphology relative to flower morphology and evolution within the family and assess its use as a marker of petal identity (whether dorsal, lateral or ventral) as determined by the expression of developmental genes. METHODS: Petals were analysed using the scanning electron microscope and light microscope. A total of 175 species were studied representing 26 tribes and 89 genera in all three subfamilies of the Leguminosae. KEY RESULTS: The papilionoids have the highest degree of variation of epidermal types along the dorsiventral axis within the flower. In Loteae and genistoids, in particular, it is common for each petal type to have a different major epidermal micromorphology. Papillose conical cells are mainly found on dorsal and lateral petals. Tabular rugose cells are mainly found on lateral petals and tabular flat cells are found only in ventral petals. Caesalpinioids lack strong micromorphological variation along this axis and usually have only a single major epidermal type within a flower, although the type maybe either tabular rugose cells, papillose conical cells or papillose knobby rugose cells, depending on the species. CONCLUSIONS: Strong micromorphological variation between different petals in the flower is exclusive to the subfamily Papilionoideae. Both major and minor epidermal types can be used as micromorphological markers of petal identity, at least in papilionoids, and they are important characters of flower evolution in the whole family. The molecular developmental pathway between specific epidermal micromorphology and the expression of petal identity genes has yet to be established.


Subject(s)
Biological Evolution , Fabaceae/anatomy & histology , Flowers/anatomy & histology , Plant Epidermis/anatomy & histology , Biomarkers/metabolism , Caesalpinia/anatomy & histology , Caesalpinia/cytology , Caesalpinia/ultrastructure , Fabaceae/cytology , Fabaceae/ultrastructure , Flowers/cytology , Flowers/ultrastructure , Indigofera/anatomy & histology , Indigofera/cytology , Indigofera/ultrastructure , Plant Epidermis/cytology , Plant Epidermis/ultrastructure
11.
Am J Bot ; 88(1): 76-91, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11159129

ABSTRACT

Chloroplast gene matK sequence data were used to estimate the phylogeny of 112 species of Crassulaceae sampled from 33 genera and all six recognized subfamilies. Our analyses suggest that five of six subfamilies recognized in the most recent comprehensive classification of the family are not monophyletic. Instead, we recovered a basal split in Crassulaceae between the southern African CRASSULA: clade (Crassuloideae) and the rest of the family (Sedoideae). These results are compatible with recent studies of cpDNA restriction site analyses. Within Sedoideae, four subclades were also recovered: KALANCHOE:, Leucosedum, Acre, and AEONIUM:; evidence also exists for a TELEPHIUM: clade and SEMPERVIVUM: clade. The genus SEDUM: is highly polyphyletic with representatives spread throughout the large Sedoideae clade. Sympetaly and polymerous flowers have arisen multiple times in Crassulaceae and thus are not appropriate characters upon which to base subfamilial limits, as has been done in the past. One floral character, haplostemy, appears to be confined to the well-supported CRASSULA: clade. Our analyses suggest a southern African origin of the family, with subsequent dispersal northward into the Mediterranean region. From there, the family spread to Asia/eastern Europe and northern Europe; two separate lineages of European Crassulaceae subsequently dispersed to North America and underwent substantial diversification. Our analyses also suggest that the original base chromosome number in Crassulaceae is x = 8 and that polyploidy has played an important role in seven clades. Three of these clades are exclusively polyploid (SEMPERVIVUM: clade and two subclades within the KALANCHOE: and AEONIUM: clades), whereas four (Crassula, Telephium, Leucosedum, and ACRE: clades) comprise both diploid and polyploid taxa. Polyploidy is particularly rampant and cytological evolution especially complex in the ACRE: clade.

12.
Am J Bot ; 88(1): 161-169, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11159136

ABSTRACT

The Gonosperminae (Asteraceae) are composed of three genera endemic to the Canary Islands (GONOSPERMUM: Less., and LUGOA: DC.) and southern Africa (INULANTHERA: Källersjö), and they are considered an example of a floristic link between these two regions. Phylogenetic analyses of ITS sequences reveal that the Canarian genera are not sister to INULANTHERA: and do not support the monophyly of the Gonosperminae. These results, coupled with previous phylogenetic studies of other groups, suggest that many of the putative biogeographic links between Macaronesia and southeast Africa need to be evaluated by rigorous phylogenetic analyses. INULANTHERA: forms part of the basal southern African radiation of the Anthemideae, and therefore it is closely related to other taxa from this region. Maximum likelihood and weighted parsimony analyses support a monophyletic group in the Canary Islands, that includes LUGOA:, Gonospermum, and three TANACETUM: species endemic to the island of Gran Canaria. Bootstrap support for the monophyly of this Canarian group is weak, and it collapses in the strict consensus tree based on unweighted parsimony. LUGOA: is nested within Gonospermum, and both interisland colonization among the western islands of La Gomera, El Hierro, La Palma and Tenerife, and radiation on the central island of Gran Canaria have been the major patterns of species diversification for these Canarian endemics.

13.
Mol Ecol Resour ; 14(4): 831-45, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24444413

ABSTRACT

Several individuals of the Caribbean Zamia clade and other cycad genera were used to identify single-copy nuclear genes for phylogeographic and phylogenetic studies in Cycadales. Two strategies were employed to select target loci: (i) a tblastX search of Arabidopsis conserved ortholog sequence (COS) set and (ii) a tblastX search of Arabidopsis-Populus-Vitis-Oryza Shared Single-Copy genes (APVO SSC) against the EST Zamia databases in GenBank. From the first strategy, 30 loci were selected, and from the second, 16 loci. In both cases, the matching GenBank accessions of Zamia were used as a query for retrieving highly similar sequences from Cycas, Picea, Pinus species or Ginkgo biloba. After retrieving and aligning all the sequences in each locus, intron predictions were completed to assist in primer design. PCR was carried out in three rounds to detect paralogous loci. A total of 29 loci were successfully amplified as a single band of which 20 were likely single-copy loci. These loci showed different diversity and divergence levels. A preliminary screening allowed us to select 8 promising loci (40S, ATG2, BG, GroES, GTP, LiSH, PEX4 and TR) for the Zamia pumila complex and 4 loci (COS26, GroES, GTP and HTS) for all other cycad genera.


Subject(s)
Cycadopsida/classification , Cycadopsida/genetics , Genetic Markers , Genetic Variation , Phylogeography , Caribbean Region , Conserved Sequence , DNA, Plant/chemistry , DNA, Plant/genetics , Molecular Sequence Data , Sequence Analysis, DNA
14.
Mol Ecol ; 14(4): 1177-89, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15773944

ABSTRACT

Abstract A molecular phylogenetic study of Bystropogon L'Her. (Lamiaceae) is presented. We performed a cladistic analysis of nucleotide sequences of the internal transcribed spacers (ITS), of the nuclear ribosomal DNA, and of the trnL gene and trnL-trnF intergenic spacer of the chloroplast DNA. Bystropogon odoratissimus is the only species endemic to the Canary Islands that occurs in the three palaeo-islands of Tenerife. This species is not part of an early diverging lineage of Bystropogon and we suggest that it has a recent origin. This phylogenetic pattern is followed by most of the species endemic to the palaeo-islands of Tenerife. The two sections currently recognized in Bystropogon form two monophyletic groups. Taxa belonging to the section Bystropogon clade show interisland colonization limited to the Canary Islands with ecological shifts among three ecological zones. Taxa from the section Canariense clade show interisland colonization both within the Canary Islands and between the Canary Islands and Madeira. Speciation events within this clade are mostly limited to the laurel forest. The genus has followed a colonization route from the Canaries towards Madeira. This route has also been followed by at least five other plant genera with species endemic to Macaronesia. Major incongruences were found between the current infrasectional classification and the molecular phylogeny, because the varieties of Bystropogon origanifolius and Bystropogon canariensis do not form two monophyletic groups. The widespread B. origanifolius appears as progenitor of the other species in section Bystropogon with a more restricted distribution.


Subject(s)
DNA, Chloroplast/genetics , DNA, Ribosomal/genetics , Geography , Lamiaceae/genetics , Phylogeny , DNA, Ribosomal Spacer/genetics , Genetic Variation , Sequence Analysis, DNA
15.
Am J Bot ; 91(7): 1070-85, 2004 Jul.
Article in English | MEDLINE | ID: mdl-21653463

ABSTRACT

A molecular phylogenetic analysis of the Macaronesian endemic species of Convolvulus was undertaken using data from the nuclear ribosomal internal transcribed spacer (ITS) regions. The results of the analysis support two introductions into Macaronesia from distantly related clades within Convolvulus and a subsequent back-colonization to the continent from within one of the clades. Hypothesized relationships between Macaronesian species and New World taxa and between the Canarian endemic C. caput-medusae and the Moroccan C. trabutianus are refuted. Both Macaronesian clades are shown to have Mediterranean sister groups although one is predominantly western Mediterranean and the other predominantly eastern Mediterranean in distribution. The patterns of colonization into Macaronesia demonstrated by Convolvulus and also by other multiple colonizing genera conform to either a pattern of phylogenetic distinctiveness or a checkerboard distribution of island lineages. Both are consistent with the hypothesis that niche preemption is responsible for the limited number of colonizations into the region. A review of sister group relationships demonstrates that, in common with Convolvulus, most Macaronesian groups have sister groups distributed in the near-continent (i.e., western Mediterranean). Disjunct sister group relationships (including Eastern Mediterranean disjunctions) occur in only 18% of groups.

16.
Mol Phylogenet Evol ; 32(1): 123-38, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15186802

ABSTRACT

Molecular phylogenetic analyses of Macaronesian Lotus and related genera were conducted to assess their biogeographic history and taxonomy. Macaronesian Lotus, which are typically classified within one of two subgenera, Lotus subgenus Pedrosia or L. subg. Rhyncholotus, are diagnosed by the presence of a forked or toothed style and differences in corolla morphology. Maximum parsimony and Bayesian analyses of internal transcribed spacer sequences identify a well-supported northwest African-Cape Verde Island clade that includes all members of Lotus subgenus Pedrosia+L. subg. Rhyncholotus. There is modest support for two independently nested clades containing the Canary Island species and two non-Canarian species, Lotus assakensis from Africa and Lotus azoricus endemic to the Azores. Biogeographic reconstruction based on a parsimony topology unequivocally identifies an African origin for the Canary Island group with subsequent back dispersal to the African continent and a single dispersal event to the Azores. A phylogeographic assessment of colonization and diversification patterns suggests that geographic isolation via interisland colonization of ecologically similar habitats is the primary mode of species diversification in Canary Island Lotus.


Subject(s)
Lotus/classification , Lotus/genetics , Africa , Bayes Theorem , Classification , DNA/genetics , DNA, Intergenic , Geography , Likelihood Functions , Phylogeny , Plant Physiological Phenomena
17.
Am J Bot ; 89(3): 518-26, 2002 Mar.
Article in English | MEDLINE | ID: mdl-21665651

ABSTRACT

Tolpis consists of ∼13 species native to Africa, Europe, and Macaronesia, with at least one species endemic to each of the four major archipelagos of the Azores, Madeira Islands, Canary Islands, and Cape Verde Islands. All but two of these species develop woody stems by maturity. Chloroplast DNA restriction site variation was analyzed for all species of Tolpis and four outgroups in order to understand the patterns of island colonization and evolution of woodiness in this genus. Parsimony analyses revealed a strongly supported monophyletic Tolpis. Within the genus, the following three well-supported groups were detected: all species from the Canary Islands and Cape Verde Islands, both Azorean species, and both continental species. The Canary Island/Cape Verde clade was sister to the two continental species, and the Azorean clade was sister to this group. The two Madeiran species of Tolpis occupied the basalmost positions within the genus. When biogeography was mapped onto this phylogeny, nine equally parsimonious reconstructions (five steps each) of dispersal history were detected, which fell into two groups: eight reconstructions implied that Tolpis colonized Madeira from the continent, followed by continental extinction and subsequent continental recolonization, while one reconstruction implied that Tolpis colonized Macaronesia four times. Two of the reconstructions involving continental extinction required the least amount of overall dispersal distance. The cpDNA phylogeny also suggests that woodiness arose in the common ancestor of all extant Tolpis, followed by two independent reversals to an herbaceous habit. Assuming that one of the eight reconstructions favoring continental extinction and recolonization is true, our results suggest that Tolpis may represent the first documented example of a woody plant group in Macaronesia that has recolonized the mainland in herbaceous form.

18.
Am J Bot ; 89(12): 1984-90, 2002 Dec.
Article in English | MEDLINE | ID: mdl-21665627

ABSTRACT

The 14 species of Crambe L. sect. Dendrocrambe DC. (Brassicaceae) form a monophyletic group endemic to the Canary and Madeira archipelagos. Both parsimony and maximum likelihood analyses of sequence data from the two internal transcribed spacer regions of nuclear ribosomal DNA were used to estimate phylogenetic relationships within this section. These analyses support the monophyly of three major clades. No clade is restricted to a single island, and therefore it appears that inter-island colonization has been the main avenue for speciation in these two archipelagos. The two species endemic to Fuerteventura (C. sventenii) and Madeira (C. fruticosa) comprise a clade, providing the first evidence for a floristic link between the Eastern Canary Islands and the archipelago of Madeira. Both maximum likelihood and weighted parsimony analyses show that this clade is sister to the two other clades, although bootstrap support for this relationship is weak. Parsimony optimizations of ecological zones and island distribution suggest a colonization route from the low-altitude areas of the lowland scrub toward the high-elevation areas of the laurel and pine forests. In addition, Tenerife is likely the ancestral island for species endemic to the five westernmost islands of Gran Canaria, La Gomera, El Hierro, La Palma, and Tenerife.

19.
Mol Phylogenet Evol ; 23(3): 293-306, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12099789

ABSTRACT

Sideritis L. (Lamiaceae) comprises approximately 150 species of annuals and perennials distributed chiefly in the Mediterranean region. The majority of the species belong to the continental subgenus Sideritis which is divided into two perennial (Sideritis and Empedoclea) and two annual (Hesiodia and Burgsdorfia) sections. Twenty-three species are woody perennials endemic to the Macaronesian archipelagos of Madeira and the Canary Islands. In an effort to determine the continental origin of the insular group, we constructed independent phylogenies comprising sequence data from both chloroplast and nuclear markers. Sampling included 7 island taxa drawn from the Macaronesian subgenus Marrubiastrum and 25 continental taxa representing all four sections of subgenus Sideritis. Subgenus Marrubiastrum and the two continental perennial sections form well-supported monophyletic groups in both individual and combined analyses. The annual sections are not monophyletic in any analysis; further sampling of annual taxa is needed to resolve these relationships. All analyses identified Sideritis cossoniana, an annual species from Morocco, as the closest continental relative of the Macaronesian group. This contrasts with the hypothesis of earlier workers who suggested that the insular taxa were most closely related to eastern Mediterranean species of the genus. The phylogenies also demonstrate a distinct increase in woodiness among the Macaronesian species relative to their continental congeners, providing further support for the secondary nature of woodiness in island plants.


Subject(s)
Chloroplasts/genetics , Phylogeny , Sideritis/physiology , Biological Evolution , Cell Nucleus/genetics , DNA, Intergenic , DNA, Ribosomal , Genetic Variation , Introns , Portugal , Spain
SELECTION OF CITATIONS
SEARCH DETAIL