Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nat Med ; 29(1): 180-189, 2023 01.
Article in English | MEDLINE | ID: mdl-36658419

ABSTRACT

Pregnancy loss and perinatal death are devastating events for families. We assessed 'genomic autopsy' as an adjunct to standard autopsy for 200 families who had experienced fetal or newborn death, providing a definitive or candidate genetic diagnosis in 105 families. Our cohort provides evidence of severe atypical in utero presentations of known genetic disorders and identifies novel phenotypes and disease genes. Inheritance of 42% of definitive diagnoses were either autosomal recessive (30.8%), X-linked recessive (3.8%) or autosomal dominant (excluding de novos, 7.7%), with risk of recurrence in future pregnancies. We report that at least ten families (5%) used their diagnosis for preimplantation (5) or prenatal diagnosis (5) of 12 pregnancies. We emphasize the clinical importance of genomic investigations of pregnancy loss and perinatal death, with short turnaround times for diagnostic reporting and followed by systematic research follow-up investigations. This approach has the potential to enable accurate counseling for future pregnancies.


Subject(s)
Abortion, Spontaneous , Perinatal Death , Pregnancy , Humans , Female , Perinatal Death/etiology , Autopsy , Abortion, Spontaneous/genetics , Prenatal Diagnosis , Genomics
2.
Nat Genet ; 52(10): 1046-1056, 2020 10.
Article in English | MEDLINE | ID: mdl-32989326

ABSTRACT

In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent-offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two (TUBA1A and CTNNB1) met genome-wide significance. We identified two novel monogenic etiologies, FBXO31 and RHOB, and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in a Drosophila reverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy.


Subject(s)
Cerebral Palsy/genetics , F-Box Proteins/genetics , Tubulin/genetics , Tumor Suppressor Proteins/genetics , beta Catenin/genetics , Animals , Cerebral Palsy/pathology , Cyclin D/genetics , Cytoskeleton/genetics , Drosophila/genetics , Exome/genetics , Extracellular Matrix/genetics , Female , Focal Adhesions/genetics , Genetic Predisposition to Disease , Genome, Human/genetics , Humans , Male , Mutation/genetics , Neurites/metabolism , Neurites/pathology , Risk Factors , Sequence Analysis, DNA , Signal Transduction/genetics , Exome Sequencing , rhoB GTP-Binding Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL