Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Magn Reson Med ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647191

ABSTRACT

PURPOSE: To investigate whether parallel imaging-imposed geometric coil constraints can be relaxed when using a deep learning (DL)-based image reconstruction method as opposed to a traditional non-DL method. THEORY AND METHODS: Traditional and DL-based MR image reconstruction approaches operate in fundamentally different ways: Traditional methods solve a system of equations derived from the image data whereas DL methods use data/target pairs to learn a generalizable reconstruction model. Two sets of head coil profiles were evaluated: (1) 8-channel and (2) 32-channel geometries. A DL model was compared to conjugate gradient SENSE (CG-SENSE) and L1-wavelet compressed sensing (CS) through quantitative metrics and visual assessment as coil overlap was increased. RESULTS: Results were generally consistent between experiments. As coil overlap increased, there was a significant (p < 0.001) decrease in performance in most cases for all methods. The decrease was most pronounced for CG-SENSE, and the DL models significantly outperformed (p < 0.001) their non-DL counterparts in all scenarios. CS showed improved robustness to coil overlap and signal-to-noise ratio (SNR) versus CG-SENSE, but had quantitatively and visually poorer reconstructions characterized by blurriness as compared to DL. DL showed virtually no change in performance across SNR and very small changes across coil overlap. CONCLUSION: The DL image reconstruction method produced images that were robust to coil overlap and of higher quality than CG-SENSE and CS. This suggests that geometric coil design constraints can be relaxed when using DL reconstruction methods.

2.
Alzheimers Dement ; 20(5): 3687-3695, 2024 May.
Article in English | MEDLINE | ID: mdl-38574400

ABSTRACT

INTRODUCTION: Cerebral small vessel disease (SVD) and amyloid beta (Aß) pathology frequently co-exist. The impact of concurrent pathology on the pattern of hippocampal atrophy, a key substrate of memory impacted early and extensively in dementia, remains poorly understood. METHODS: In a unique cohort of mixed Alzheimer's disease and moderate-severe SVD, we examined whether total and regional neuroimaging measures of SVD, white matter hyperintensities (WMH), and Aß, as assessed by 18F-AV45 positron emission tomography, exert additive or synergistic effects on hippocampal volume and shape. RESULTS: Frontal WMH, occipital WMH, and Aß were independently associated with smaller hippocampal volume. Frontal WMH had a spatially distinct impact on hippocampal shape relative to Aß. In contrast, hippocampal shape alterations associated with occipital WMH spatially overlapped with Aß-vulnerable subregions. DISCUSSION: Hippocampal degeneration is differentially sensitive to SVD and Aß pathology. The pattern of hippocampal atrophy could serve as a disease-specific biomarker, and thus guide clinical diagnosis and individualized treatment strategies for mixed dementia.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cerebral Small Vessel Diseases , Hippocampus , Positron-Emission Tomography , Humans , Hippocampus/pathology , Hippocampus/diagnostic imaging , Cerebral Small Vessel Diseases/pathology , Cerebral Small Vessel Diseases/diagnostic imaging , Male , Aged , Female , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , White Matter/pathology , White Matter/diagnostic imaging , Atrophy/pathology , Magnetic Resonance Imaging , Aged, 80 and over , Neuroimaging , Cohort Studies
3.
J Neurol Neurosurg Psychiatry ; 94(3): 227-235, 2023 03.
Article in English | MEDLINE | ID: mdl-36517039

ABSTRACT

BACKGROUND: Quantitative susceptibility mapping (QSM) is an MRI technique that is a potential biomarker for concussion. We performed QSM in children following concussion or orthopaedic injury (OI), to assess QSM performance as a diagnostic and prognostic biomarker. METHODS: Children aged 8-17 years with either concussion (N=255) or OI (N=116) were recruited from four Canadian paediatric emergency departments and underwent QSM postacutely (2-33 days postinjury) using 3 Tesla MRI. QSM Z-scores within nine regions of interest (ROI) were compared between groups. QSM Z-scores were also compared with the 5P score, the current clinical benchmark for predicting persistent postconcussion symptoms (PPCS), at 4 weeks postinjury, with PPCS defined using reliable change methods based on both participant and parent reports. RESULTS: Concussion and OI groups did not differ significantly in QSM Z-scores for any ROI. Higher QSM Z-scores within frontal white matter (WM) independently predicted PPCS based on parent ratings of cognitive symptoms (p=0.001). The combination of frontal WM QSM Z-score and 5P score was better at predicting PPCS than 5P score alone (p=0.004). The area under the curve was 0.72 (95% CI 0.63 to 0.81) for frontal WM susceptibility, 0.69 (95% CI 0.59 to 0.79) for the 5P score and 0.74 (95% CI 0.65 to 0.83) for both. CONCLUSION: The findings suggest that QSM is a potential MRI biomarker that can help predict PPCS in children with concussion, over and above the current clinical benchmark, and thereby aid in clinical management. They also suggest a frontal lobe substrate for PPCS, highlighting the potential for QSM to clarify the neurophysiology of paediatric concussion.


Subject(s)
Brain Concussion , Post-Concussion Syndrome , Humans , Child , Canada , Brain Concussion/diagnostic imaging , Post-Concussion Syndrome/diagnostic imaging , Biomarkers , Magnetic Resonance Imaging
4.
J Neurol Neurosurg Psychiatry ; 94(3): 193-200, 2023 03.
Article in English | MEDLINE | ID: mdl-36379713

ABSTRACT

OBJECTIVE: To identify structural and neurochemical properties that underlie functional connectivity impairments of the primary motor cortex (PMC) and how these relate to clinical findings in amyotrophic lateral sclerosis (ALS). METHODS: 52 patients with ALS and 52 healthy controls, matched for age and sex, were enrolled from 5 centres across Canada for the Canadian ALS Neuroimaging Consortium study. Resting-state functional MRI, diffusion tensor imaging and magnetic resonance spectroscopy data were acquired. Functional connectivity maps, diffusion metrics and neurometabolite ratios were obtained from the analyses of the acquired multimodal data. A clinical assessment of foot tapping (frequency) was performed to examine upper motor neuron function in all participants. RESULTS: Compared with healthy controls, the primary motor cortex in ALS showed reduced functional connectivity with sensory (T=5.21), frontal (T=3.70), temporal (T=3.80), putaminal (T=4.03) and adjacent motor (T=4.60) regions. In the primary motor cortex, N-acetyl aspartate (NAA, a neuronal marker) ratios and diffusion metrics (mean, axial and radial diffusivity, fractional anisotropy (FA)) were altered. Within the ALS cohort, foot tapping frequency correlated with NAA (r=0.347) and white matter FA (r=0.537). NAA levels showed associations with disturbed functional connectivity of the motor cortex. CONCLUSION: In vivo neurochemistry may represent an effective imaging marker of impaired motor cortex functional connectivity in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Cortex , Neurochemistry , Humans , Diffusion Tensor Imaging/methods , Canada , Magnetic Resonance Imaging/methods
5.
Alzheimers Dement ; 19(4): 1503-1517, 2023 04.
Article in English | MEDLINE | ID: mdl-36047604

ABSTRACT

It remains unclear to what extent cerebrovascular burden relates to amyloid beta (Aß) deposition, neurodegeneration, and cognitive dysfunction in mixed disease populations with small vessel disease and Alzheimer's disease (AD) pathology. In 120 subjects, we investigated the association of vascular burden (white matter hyperintensity [WMH] volumes) with cognition. Using mediation analyses, we tested the indirect effects of WMH on cognition via Aß deposition (18 F-AV45 positron emission tomography [PET]) and neurodegeneration (cortical thickness or 18 F fluorodeoxyglucose PET) in AD signature regions. We observed that increased total WMH volume was associated with poorer performance in all tested cognitive domains, with the strongest effects observed for semantic fluency. These relationships were mediated mainly via cortical thinning, particularly of the temporal lobe, and to a lesser extent serially mediated via Aß and cortical thinning of AD signature regions. WMH volumes differentially impacted cognition depending on lobar location and Aß status. In summary, our study suggests mainly an amyloid-independent pathway in which vascular burden affects cognitive function via localized neurodegeneration. HIGHLIGHTS: Alzheimer's disease often co-exists with vascular pathology. We studied a unique cohort enriched for high white matter hyperintensities (WMH). High WMH related to cognitive impairment of semantic fluency and executive function. This relationship was mediated via temporo-parietal atrophy rather than metabolism. This relationship was, to lesser extent, serially mediated via amyloid beta and atrophy.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , White Matter , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Cerebral Cortical Thinning/pathology , Magnetic Resonance Imaging , Cognition , Cognitive Dysfunction/metabolism , Positron-Emission Tomography , Amyloid/metabolism , Atrophy/pathology , White Matter/pathology
6.
Neuroimage ; 260: 119488, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35878725

ABSTRACT

Quantitative imaging biomarkers (QIBs) can be defined as objective measures that are sensitive and specific to changes in tissue physiology. Provided the acquired QIBs are not affected by scanner changes, they could play an important role in disease diagnosis, prognosis, management, and treatment monitoring. The precision of selected QIBs was assessed from data collected on a 3-T scanner in four healthy participants over a 5-year period. Inevitable scanner changes and acquisition protocol revisions occurred during this time. Standard and custom processing pipelines were used to calculate regional brain volume, cortical thickness, T2, T2*, quantitative susceptibility, cerebral blood flow, axial, radial and mean diffusivity, peak width of skeletonized mean diffusivity, and fractional anisotropy from the acquired images. Coefficient of variation (CoV) and intra-class correlation (ICC) indices were determined in the short-term (i.e., repeatable over three acquisitions within 4 weeks) and in the long-term (i.e., reproducible over four acquisition sessions in 5 years). Precision indices varied based on acquisition technique, processing pipeline, and anatomical region. Good repeatability (average CoV=2.40% and ICC=0.78) and reproducibility (average CoV=8.86 % and ICC=0.72) were found over all QIBs. The best performance indices were obtained for diffusion derived biomarkers (CoV∼0.96% and ICCs=0.87); conversely, the poorest indices were found for the cerebral blood flow biomarker (CoV>10% and ICC<0.5). These results demonstrate that changes in protocol, along with hardware and software upgrades, did not affect the estimates of the selected biomarkers and their precision. Further characterization of the QIB is necessary to understand meaningful changes in the biomarkers in longitudinal studies of normal brain aging and translation to clinical research.


Subject(s)
Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging , Biomarkers , Diffusion Magnetic Resonance Imaging/methods , Humans , Longitudinal Studies , Reproducibility of Results
7.
Hum Brain Mapp ; 43(5): 1519-1534, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34908212

ABSTRACT

Progressive cerebral degeneration in amyotrophic lateral sclerosis (ALS) remains poorly understood. Here, three-dimensional (3D) texture analysis was used to study longitudinal gray and white matter cerebral degeneration in ALS from routine T1-weighted magnetic resonance imaging (MRI). Participants were included from the Canadian ALS Neuroimaging Consortium (CALSNIC) who underwent up to three clinical assessments and MRI at four-month intervals, up to 8 months after baseline (T0 ). Three-dimensional maps of the texture feature autocorrelation were computed from T1-weighted images. One hundred and nineteen controls and 137 ALS patients were included, with 81 controls and 84 ALS patients returning for at least one follow-up. At baseline, texture changes in ALS patients were detected in the motor cortex, corticospinal tract, insular cortex, and bilateral frontal and temporal white matter compared to controls. Longitudinal comparison of texture maps between T0 and Tmax (last follow-up visit) within ALS patients showed progressive texture alterations in the temporal white matter, insula, and internal capsule. Additionally, when compared to controls, ALS patients had greater texture changes in the frontal and temporal structures at Tmax than at T0 . In subgroup analysis, slow progressing ALS patients had greater progressive texture change in the internal capsule than the fast progressing patients. Contrastingly, fast progressing patients had greater progressive texture changes in the precentral gyrus. These findings suggest that the characteristic longitudinal gray matter pathology in ALS is the progressive involvement of frontotemporal regions rather than a worsening pathology within the motor cortex, and that phenotypic variability is associated with distinct progressive spatial pathology.


Subject(s)
Amyotrophic Lateral Sclerosis , White Matter , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Brain/diagnostic imaging , Brain/pathology , Canada , Humans , Magnetic Resonance Imaging/methods , White Matter/diagnostic imaging , White Matter/pathology
8.
Magn Reson Med ; 87(3): 1561-1573, 2022 03.
Article in English | MEDLINE | ID: mdl-34708417

ABSTRACT

PURPOSE: To develop a deep-learning model that leverages the spatial and temporal information from dynamic contrast-enhanced magnetic resonance (DCE MR) brain imaging in order to automatically estimate a vascular function (VF) for quantitative pharmacokinetic (PK) modeling. METHODS: Patients with glioblastoma multiforme were scanned post-resection approximately every 2 months using a high spatial and temporal resolution DCE MR imaging sequence ( ≈5 s and ≈2 cm3 ). A region over the transverse sinus was manually drawn in the dynamic T1-weighted images to provide a ground truth VF. The manual regions and their resulting VF curves were used to train a deep-learning model based on a 3D U-net architecture. The model concurrently utilized the spatial and temporal information in DCE MR images to predict the VF. In order to analyze the contribution of the spatial and temporal terms, different weighted combinations were examined. The manual and deep-learning predicted regions and VF curves were compared. RESULTS: Forty-three patients were enrolled in this study and 155 DCE MR scans were processed. The 3D U-net was trained using a loss function that combined the spatial and temporal information with different weightings. The best VF curves were obtained when both spatial and temporal information were considered. The predicted VF curve was similar to the manual ground truth VF curves. CONCLUSION: The use of spatial and temporal information improved VF curve prediction relative to when only the spatial information is used. The method generalized well for unseen data and can be used to automatically estimate a VF curve suitable for quantitative PK modeling. This method allows for a more efficient clinical pipeline and may improve automation of permeability mapping.


Subject(s)
Glioblastoma , Magnetic Resonance Imaging , Automation , Brain/diagnostic imaging , Contrast Media , Glioblastoma/diagnostic imaging , Humans , Magnetic Resonance Spectroscopy
9.
NMR Biomed ; 35(11): e4788, 2022 11.
Article in English | MEDLINE | ID: mdl-35704837

ABSTRACT

Iron concentration in the human brain plays a crucial role in several neurodegenerative diseases and can be monitored noninvasively using quantitative susceptibility mapping (QSM) and effective transverse relaxation rate (R2 *) mapping from multiecho T2 *-weighted images. Large population studies enable better understanding of pathologies and can benefit from pooling multisite data. However, reproducibility may be compromised between sites and studies using different hardware and sequence protocols. This work investigates QSM and R2 * reproducibility at 3 T using locally optimized sequences from three centers and two vendors, and investigates possible reduction of cross-site variability through postprocessing approaches. Twenty-four healthy subjects traveled between three sites and were scanned twice at each site. Scan-rescan measurements from seven deep gray matter regions were used for assessing within-site and cross-site reproducibility using intraclass correlation coefficient (ICC) and within-subject standard deviation (SDw) measures. In addition, multiple QSM and R2 * postprocessing options were investigated with the aim to minimize cross-site sequence-related variations, including: mask generation approach, echo-timing selection, harmonizing spatial resolution, field map estimation, susceptibility inversion method, and linear field correction for magnitude images. The same-subject cross-site region of interest measurements for QSM and R2 * were highly correlated (R2 ≥ 0.94) and reproducible (mean ICC of 0.89 and 0.82 for QSM and R2 *, respectively). The mean cross-site SDw was 4.16 parts per billion (ppb) for QSM and 1.27 s-1 for R2 *. For within-site measurements of QSM and R2 *, the mean ICC was 0.97 and 0.87 and mean SDw was 2.36 ppb and 0.97 s-1 , respectively. The precision level is regionally dependent and is reduced in the frontal lobe, near brain edges, and in white matter regions. Cross-site QSM variability (mean SDw) was reduced up to 46% through postprocessing approaches, such as masking out less reliable regions, matching available echo timings and spatial resolution, avoiding the use of the nonconsistent magnitude contrast between scans in field estimation, and minimizing streaking artifacts.


Subject(s)
Gray Matter , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain Mapping , Gray Matter/diagnostic imaging , Humans , Iron , Magnetic Resonance Imaging/methods , Reproducibility of Results
10.
Radiology ; 300(2): 410-420, 2021 08.
Article in English | MEDLINE | ID: mdl-34100683

ABSTRACT

Background Advances in sub-Nyquist-sampled dynamic contrast-enhanced (DCE) MRI enable monitoring of brain tumors with millimeter resolution and whole-brain coverage. Such undersampled quantitative methods need careful characterization regarding achievable test-retest reproducibility. Purpose To demonstrate a fully automated high-resolution whole-brain DCE MRI pipeline with 30-fold sparse undersampling and estimate its reproducibility on the basis of reference regions of stable tissue types during multiple posttreatment time points by using longitudinal clinical images of high-grade glioma. Materials and Methods Two methods for sub-Nyquist-sampled DCE MRI were extended with automatic estimation of vascular input functions. Continuously acquired three-dimensional k-space data with ramped-up flip angles were partitioned to yield high-resolution, whole-brain tracer kinetic parameter maps with matched precontrast-agent T1 and M0 maps. Reproducibility was estimated in a retrospective study in participants with high-grade glioma, who underwent three consecutive standard-of-care examinations between December 2016 and April 2019. Coefficients of variation and reproducibility coefficients were reported for histogram statistics of the tracer kinetic parameters plasma volume fraction and volume transfer constant (Ktrans) on five healthy tissue types. Results The images from 13 participants (mean age ± standard deviation, 61 years ± 10; nine women) with high-grade glioma were evaluated. In healthy tissues, the protocol achieved a coefficient of variation less than 57% for median Ktrans, if Ktrans was estimated consecutively. The maximum reproducibility coefficient for median Ktrans was estimated to be at 0.06 min-1 for large or low-enhancing tissues and to be as high as 0.48 min-1 in smaller or strongly enhancing tissues. Conclusion A fully automated, sparsely sampled DCE MRI reconstruction with patient-specific vascular input function offered high spatial and temporal resolution and whole-brain coverage; in healthy tissues, the protocol estimated median volume transfer constant with maximum reproducibility coefficient of 0.06 min-1 in large, low-enhancing tissue regions and maximum reproducibility coefficient of less than 0.48 min-1 in smaller or more strongly enhancing tissue regions. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Lenkinski in this issue.


Subject(s)
Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain Neoplasms/pathology , Contrast Media , Female , Glioma/pathology , Humans , Image Enhancement/methods , Male , Middle Aged , Neoplasm Grading , Reproducibility of Results
11.
Magn Reson Med ; 86(4): 2234-2249, 2021 10.
Article in English | MEDLINE | ID: mdl-34036658

ABSTRACT

PURPOSE: To develop and evaluate an efficient precontrast T1 mapping technique suitable for quantitative high-resolution whole-brain dynamic contrast-enhanced-magnetic resonance imaging (DCE-MRI). METHODS: Variable flip angle (VFA) T1 mapping was considered that provides 1 × 1 × 2 mm3 resolution to match a recent high-resolution whole-brain DCE-MRI protocol. Seven FAs were logarithmically spaced from 1.5° to 15°. T1 and M0 maps were estimated using model-based reconstruction. This approach was evaluated using an anatomically realistic brain tumor digital reference object (DRO) with noise-mimicking 3T neuroimaging and fully sampled data acquired from one healthy volunteer. Methods were also applied on fourfold prospectively undersampled VFA data from 13 patients with high-grade gliomas. RESULTS: T1 -mapping precision decreased with undersampling factor R, althoughwhereas bias remained small before a critical R. In the noiseless DRO, T1 bias was <25 ms in white matter (WM) and <11 ms in brain tumor (BT). T1 standard deviation (SD) was <119.5 ms in WM (coefficient of variation [COV] ~11.0%) and <253.2 ms in BT (COV ~12.7%). In the noisy DRO, T1 bias was <50 ms in WM and <30 ms in BT. For R ≤ 10, T1 SD was <107.1 ms in WM (COV ~9.9%) and <240.9 ms in BT (COV ~12.1%). In the healthy subject, T1 bias was <30 ms for R ≤ 16. At R = 4, T1 SD was 171.4 ms (COV ~13.0%). In the prospective brain tumor study, T1 values were consistent with literature values in WM and BT. CONCLUSION: High-resolution whole-brain VFA T1 mapping is feasible with sparse sampling, supporting its use for quantitative DCE-MRI.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Humans , Neuroimaging , Prospective Studies , Reproducibility of Results
12.
Can J Neurol Sci ; 48(6): 799-806, 2021 11.
Article in English | MEDLINE | ID: mdl-33504400

ABSTRACT

OBJECTIVE: To describe the neuroimaging and other methods for assessing vascular contributions to neurodegeneration in the Comprehensive Assessment of Neurodegeneration and Dementia (COMPASS-ND) study, a Canadian multi-center, prospective longitudinal cohort study, including reliability and feasibility in the first 200 participants. METHODS: COMPASS-ND includes persons with Alzheimer's disease (AD; n = 150), Parkinson's disease (PD) and Lewy body dementias (LBDs) (200), mixed dementia (200), mild cognitive impairment (MCI; 400), subcortical ischemic vascular MCI (V-MCI; 200), subjective cognitive impairment (SCI; 300), and cognitively intact elderly controls (660). Magnetic resonance imaging (MRI) was acquired according to the validated Canadian Dementia Imaging Protocol and visually reviewed by either of two experienced readers blinded to clinical characteristics. Other relevant assessments include history of vascular disease and risk factors, blood pressure, height and weight, cholesterol, glucose, and hemoglobin A1c. RESULTS: Analyzable data were obtained in 197/200 of whom 18 of whom were clinically diagnosed with V-MCI or mixed dementia. The overall prevalence of infarcts was 24.9%, microbleeds was 24.6%, and high white matter hyperintensity (WMH) was 31.0%. MRI evidence of a potential vascular contribution to neurodegeneration was seen in 12.9%-40.0% of participants clinically diagnosed with another condition such as AD. Inter-rater reliability was good to excellent. CONCLUSION: COMPASS-ND will be a useful platform to study vascular brain injury and its association with risk factors, biomarkers, and cognitive and functional decline across multiple age-related neurodegenerative diseases. Initial findings show that MRI-defined vascular brain injury is common in all cognitive syndromes and is under-recognized clinically.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Alzheimer Disease/epidemiology , Canada , Cognitive Dysfunction/epidemiology , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Prospective Studies , Reproducibility of Results
13.
Cereb Cortex ; 29(8): 3282-3293, 2019 07 22.
Article in English | MEDLINE | ID: mdl-30137246

ABSTRACT

The phenomenon of cortical thinning with age has been well established; however, the measured rate of change varies between studies. The source of this variation could be image acquisition techniques including hardware and vendor specific differences. Databases are often consolidated to increase the number of subjects but underlying differences between these datasets could have undesired effects. We explore differences in cerebral cortex thinning between 4 databases, totaling 1382 subjects. We investigate several aspects of these databases, including: 1) differences between databases of cortical thinning rates versus age, 2) correlation of cortical thinning rates between regions for each database, and 3) regression bootstrapping to determine the effect of the number of subjects included. We also examined the effect of different databases on age prediction modeling. Cortical thinning rates were significantly different between databases in all 68 parcellated regions (ANCOVA, P < 0.001). Subtle differences were observed in correlation matrices and bootstrapping convergence. Age prediction modeling using a leave-one-out cross-validation approach showed varying prediction performance (0.64 < R2 < 0.82) between databases. When a database was used to calibrate the model and then applied to another database, prediction performance consistently decreased. We conclude that there are indeed differences in the measured cortical thinning rates between these large-scale databases.


Subject(s)
Aging/pathology , Cerebral Cortex/diagnostic imaging , Datasets as Topic , Adolescent , Adult , Aged , Aged, 80 and over , Cerebral Cortex/pathology , Databases, Factual , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Organ Size , Regression Analysis , Reproducibility of Results , Young Adult
14.
Alzheimers Dement ; 15(6): 840-858, 2019 06.
Article in English | MEDLINE | ID: mdl-31031101

ABSTRACT

Cerebral small vessel disease (cSVD) comprises pathological processes of the small vessels in the brain that may manifest clinically as stroke, cognitive impairment, dementia, or gait disturbance. It is generally accepted that endothelial dysfunction, including blood-brain barrier (BBB) failure, is pivotal in the pathophysiology. Recent years have seen increasing use of imaging, primarily dynamic contrast-enhanced magnetic resonance imaging, to assess BBB leakage, but there is considerable variability in the approaches and findings reported in the literature. Although dynamic contrast-enhanced magnetic resonance imaging is well established, challenges emerge in cSVD because of the subtle nature of BBB impairment. The purpose of this work, authored by members of the HARNESS Initiative, is to provide an in-depth review and position statement on magnetic resonance imaging measurement of subtle BBB leakage in clinical research studies, with aspects requiring further research identified. We further aim to provide information and consensus recommendations for new investigators wishing to study BBB failure in cSVD and dementia.


Subject(s)
Blood-Brain Barrier/pathology , Cerebral Small Vessel Diseases/pathology , Magnetic Resonance Imaging , Blood-Brain Barrier/physiopathology , Cerebral Small Vessel Diseases/physiopathology , Dementia/etiology , Dementia/physiopathology , Humans , Image Processing, Computer-Assisted , Stroke/etiology , Stroke/pathology
15.
Stroke ; 49(8): 1899-1905, 2018 08.
Article in English | MEDLINE | ID: mdl-29986931

ABSTRACT

Background and Purpose- Cerebral microinfarcts are small ischemic lesions that are found in cerebral amyloid angiopathy (CAA) patients at autopsy. The current study aimed to detect cortical microinfarcts (CMI) on in vivo 3 Tesla (3T) magnetic resonance imaging (MRI) in CAA patients, to study the progression of CMI over a 1-year period, and to correlate CMI with markers of CAA-related vascular brain injury and cognitive functioning. Methods- Thirty-five CAA patients (mean age, 74.2±7.6 years), 13 Alzheimer disease (AD) patients (67.0±5.8 years), and 26 healthy controls (67.2±9.5 years) participated in the study. All participants underwent a standardized clinical and neuropsychological assessment as well as 3T MRI. CMI were rated according to standardized criteria. Results- CMI were present in significantly more CAA patients (57.1%; median number: 1, range 1-9) than in Alzheimer disease (7.7%) or in healthy controls (11.5%; P<0.001). Incident CMI were observed after a 1-year follow-up. CMI did not correlate with any other MRI marker of CAA nor with cognitive function. Conclusions- In vivo CMI are a frequent finding on 3T MRI in CAA patients, and incident CMI are observable after 1-year follow-up. CMI can be regarded as a new MRI marker of CAA, potentially distinct from other well-established markers. Future larger cohort studies with longitudinal follow-up are needed to elucidate the relationship between CMI and possible causes and clinical outcomes in CAA.


Subject(s)
Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Amyloid Angiopathy/epidemiology , Cerebral Cortex/diagnostic imaging , Cerebral Infarction/diagnostic imaging , Cerebral Infarction/epidemiology , Cognition , Magnetic Resonance Imaging/methods , Aged , Aged, 80 and over , Cognition/physiology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prospective Studies
16.
Neuroimage ; 170: 482-494, 2018 04 15.
Article in English | MEDLINE | ID: mdl-28807870

ABSTRACT

This paper presents an open, multi-vendor, multi-field strength magnetic resonance (MR) T1-weighted volumetric brain imaging dataset, named Calgary-Campinas-359 (CC-359). The dataset is composed of images of older healthy adults (29-80 years) acquired on scanners from three vendors (Siemens, Philips and General Electric) at both 1.5 T and 3 T. CC-359 is comprised of 359 datasets, approximately 60 subjects per vendor and magnetic field strength. The dataset is approximately age and gender balanced, subject to the constraints of the available images. It provides consensus brain extraction masks for all volumes generated using supervised classification. Manual segmentation results for twelve randomly selected subjects performed by an expert are also provided. The CC-359 dataset allows investigation of 1) the influences of both vendor and magnetic field strength on quantitative analysis of brain MR; 2) parameter optimization for automatic segmentation methods; and potentially 3) machine learning classifiers with big data, specifically those based on deep learning methods, as these approaches require a large amount of data. To illustrate the utility of this dataset, we compared to the results of a supervised classifier, the results of eight publicly available skull stripping methods and one publicly available consensus algorithm. A linear mixed effects model analysis indicated that vendor (p-value<0.001) and magnetic field strength (p-value<0.001) have statistically significant impacts on skull stripping results.


Subject(s)
Brain/diagnostic imaging , Consensus , Datasets as Topic , Image Processing, Computer-Assisted/methods , Machine Learning , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Adult , Aged , Aged, 80 and over , Female , Humans , Magnetic Fields , Male , Middle Aged , Skull/diagnostic imaging , Software
17.
BMC Geriatr ; 18(1): 163, 2018 07 16.
Article in English | MEDLINE | ID: mdl-30012102

ABSTRACT

BACKGROUND: Late-life cognitive decline, caused by progressive neuronal loss leading to brain atrophy years before symptoms are detected, is expected to double in Canada over the next two decades. Cognitive impairment in late life is attributed to vascular and lifestyle related risk factors in mid-life in a substantial proportion of cases (50%), thereby providing an opportunity for effective prevention of cognitive decline if incipient disease is detected earlier. Patients presenting with transient ischemic attack (TIA) commonly display some degree of cognitive impairment and are at a 4-fold increased risk of dementia. In the Predementia Neuroimaging of Transient Ischemic Attack (PREVENT) study, we will address what disease processes (i.e., Alzheimer's vs. vascular disease) lead to neurodegeneration, brain atrophy, and cognitive decline, and whether imaging measurements of brain iron accumulation using quantitative susceptibility mapping predicts subsequent brain atrophy and cognitive decline. METHODS: A total of 440 subjects will be recruited for this study with 220 healthy subjects and 220 TIA patients. Early Alzheimer's pathology will be determined by cerebrospinal fluid samples (including tau, a marker of neuronal injury, and amyloid ß1-42) and by MR measurements of iron accumulation, a marker for Alzheimer's-related neurodegeneration. Small vessel disease will be identified by changes in white matter lesion volume. Predictors of advanced rates of cerebral and hippocampal atrophy at 1 and 3 years will include in vivo Alzheimer's disease pathology markers, and MRI measurements of brain iron accumulation and small vessel disease. Clinical and cognitive function will be assessed annually post-baseline for a period of 5-years using a clinical questionnaire and a battery of neuropsychological tests, respectively. DISCUSSION: The PREVENT study expects to demonstrate that TIA patients have increased early progressive rates of cerebral brain atrophy after TIA, before cognitive decline can be clinically detected. By developing and optimizing high-level machine learning models based on clinical data, image-based (quantitative susceptibility mapping, regional brain, and white matter lesion volumes) features, and cerebrospinal fluid biomarkers, PREVENT will provide a timely opportunity to identify individuals at greatest risk of late-life cognitive decline early in the course of disease, supporting future therapeutic strategies for the promotion of healthy aging.


Subject(s)
Cognitive Dysfunction/etiology , Ischemic Attack, Transient/diagnostic imaging , Ischemic Attack, Transient/psychology , Magnetic Resonance Imaging , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/psychology , Aged , Atrophy/pathology , Brain/pathology , Canada , Cognition , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/psychology , Female , Humans , Ischemic Attack, Transient/pathology , Longitudinal Studies , Male , Middle Aged , Neurodegenerative Diseases/pathology , Neuroimaging , Neuropsychological Tests , Risk Factors
18.
NMR Biomed ; 30(4)2017 Apr.
Article in English | MEDLINE | ID: mdl-26887659

ABSTRACT

Quantitative susceptibility mapping (QSM) is fast becoming a routine clinical tool in the evaluation and assessment of neurological diseases. Unfortunately, there is currently no established standard scanning protocol, and it is uncertain whether different acquisition strategies alter the derived estimates of magnetic susceptibility. Here, we compare some key deep grey matter susceptibility values in healthy adults acquired from various QSM sequences using either unipolar or bipolar readout gradients, accelerated imaging or not, and gradient-warp correction or not. Four healthy adult volunteers were scanned three times each within 4 days at 3 T. The eight different QSM combinations were acquired in different randomised order for each session, and then co-registered to an anatomical atlas. The average and standard deviations of magnetic susceptibilities in the caudate, putamen, red nucleus, internal and external globus pallidus were used in a linear mixed effects model to determine the influence of the various acquisition parameters. Gradient-warp correction was the only statistically significant fixed effect (p < 0.01), but its impact was small (~5% change) compared with the overall fixed effects. The random effects coefficients (i.e. the various tissues) were statistically significant. Based on our limited multiple observations in healthy adult volunteers, the susceptibilities in deep grey matter are statistically equivalent when QSM source data are acquired with or without accelerated imaging using either unipolar or bipolar readout gradients. There is, however, a statistically meaningful, but small, difference if gradient-warp correction is used or not. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Algorithms , Brain Chemistry , Brain/anatomy & histology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Aged , Female , Humans , Image Enhancement/methods , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
19.
Neuroradiology ; 59(4): 361-365, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28265722

ABSTRACT

PURPOSE: We propose a magnetic resonance (MR) imaging protocol for the characterization of carotid web morphology, composition, and vessel wall dynamics. The purpose of this case series was to determine the feasibility of imaging carotid webs with MR imaging. METHODS: Five patients diagnosed with carotid web on CT angiography were recruited to undergo a 30-min MR imaging session. MR angiography (MRA) images of the carotid artery bifurcation were acquired. Multi-contrast fast spin echo (FSE) images were acquired axially about the level of the carotid web. Two types of cardiac phase resolved sequences (cineFSE and cine phase contrast) were acquired to visualize the elasticity of the vessel wall affected by the web. RESULTS: Carotid webs were identified on MRA in 5/5 (100%) patients. Multi-contrast FSE revealed vessel wall thickening and cineFSE demonstrated regional changes in distensibility surrounding the webs in these patients. CONCLUSION: Our MR imaging protocol enables an in-depth evaluation of patients with carotid webs: morphology (by MRA), composition (by multi-contrast FSE), and wall dynamics (by cineFSE).


Subject(s)
Carotid Artery Diseases/diagnostic imaging , Magnetic Resonance Angiography/methods , Computed Tomography Angiography , Contrast Media , Female , Humans , Image Interpretation, Computer-Assisted , Middle Aged , Organometallic Compounds , Prospective Studies
20.
Stroke ; 47(8): 2010-6, 2016 08.
Article in English | MEDLINE | ID: mdl-27338926

ABSTRACT

BACKGROUND AND PURPOSE: Autopsy studies suggest that cerebral amyloid angiopathy (CAA) is associated with cognitive impairment and risk for dementia. We analyzed neuropsychological test data from a prospective cohort study of patients with CAA to identify the prevalence of cognitive impairment and its associations with brain magnetic resonance imaging features and the apolipoprotein E genotype. METHODS: Data were analyzed from 34 CAA, 16 Alzheimer's disease, 69 mild cognitive impairment, and 27 ischemic stroke participants. Neuropsychological test results were expressed as z scores in relation to normative data provided by the test manuals and then grouped into domains of memory, executive function, and processing speed. RESULTS: Mean test scores in CAA participants were significantly lower than norms for memory (-0.44±1.03; P=0.02), executive function (-1.14±1.07; P<0.001), and processing speed (-1.06±1.12; P<0.001). Twenty-seven CAA participants (79%) had mild cognitive impairment based on low cognitive performance accompanied by cognitive concerns. CAA participants had similarly low executive function scores as Alzheimer's disease, but relatively preserved memory. CAA participants' scores were lower than those of ischemic stroke controls for executive function and processing speed. Lower processing speed scores in CAA were associated with higher magnetic resonance imaging white matter hyperintensity volume. There were no associations with the apolipoprotein E ε4 allele. CONCLUSIONS: Mild cognitive impairment is very prevalent in CAA. The overall cognitive profile of CAA is more similar to that seen in vascular cognitive impairment rather than Alzheimer's disease. White matter ischemic lesions may underlie some of the impaired processing speed in CAA.


Subject(s)
Brain/diagnostic imaging , Cerebral Amyloid Angiopathy/complications , Cognition/physiology , Cognitive Dysfunction/etiology , Executive Function/physiology , Aged , Aged, 80 and over , Alleles , Apolipoproteins E/genetics , Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Amyloid Angiopathy/genetics , Cerebral Amyloid Angiopathy/psychology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/psychology , Female , Humans , Magnetic Resonance Imaging , Male , Memory/physiology , Middle Aged , Neuropsychological Tests , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL