Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 329
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 34: 539-73, 2016 05 20.
Article in English | MEDLINE | ID: mdl-26927206

ABSTRACT

The immune system is capable of recognizing tumors and eliminates many early malignant cells. However, tumors evolve to evade immune attack, and the tumor microenvironment is immunosuppressive. Immune responses are regulated by a number of immunological checkpoints that promote protective immunity and maintain tolerance. T cell coinhibitory pathways restrict the strength and duration of immune responses, thereby limiting immune-mediated tissue damage, controlling resolution of inflammation, and maintaining tolerance to prevent autoimmunity. Tumors exploit these coinhibitory pathways to evade immune eradication. Blockade of the PD-1 and CTLA-4 checkpoints is proving to be an effective and durable cancer immunotherapy in a subset of patients with a variety of tumor types, and additional combinations are further improving response rates. In this review we discuss the immunoregulatory functions of coinhibitory pathways and their translation to effective immunotherapies for cancer.


Subject(s)
Antibodies, Monoclonal/therapeutic use , B7-H1 Antigen/immunology , CTLA-4 Antigen/immunology , Immunotherapy/methods , Neoplasms/therapy , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/immunology , Animals , Humans , Immunotherapy/trends , Lymphocyte Activation/drug effects , Neoplasms/immunology , Tumor Escape , Tumor Microenvironment
2.
Cell ; 184(5): 1281-1298.e26, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33592174

ABSTRACT

T cells are critical effectors of cancer immunotherapies, but little is known about their gene expression programs in diffuse gliomas. Here, we leverage single-cell RNA sequencing (RNA-seq) to chart the gene expression and clonal landscape of tumor-infiltrating T cells across 31 patients with isocitrate dehydrogenase (IDH) wild-type glioblastoma and IDH mutant glioma. We identify potential effectors of anti-tumor immunity in subsets of T cells that co-express cytotoxic programs and several natural killer (NK) cell genes. Analysis of clonally expanded tumor-infiltrating T cells further identifies the NK gene KLRB1 (encoding CD161) as a candidate inhibitory receptor. Accordingly, genetic inactivation of KLRB1 or antibody-mediated CD161 blockade enhances T cell-mediated killing of glioma cells in vitro and their anti-tumor function in vivo. KLRB1 and its associated transcriptional program are also expressed by substantial T cell populations in other human cancers. Our work provides an atlas of T cells in gliomas and highlights CD161 and other NK cell receptors as immunotherapy targets.


Subject(s)
Glioma/immunology , NK Cell Lectin-Like Receptor Subfamily B/genetics , T-Lymphocytes/immunology , Animals , Antigens, Neoplasm , Disease Models, Animal , Gene Expression Profiling , Glioma/genetics , Killer Cells, Natural/immunology , Lectins, C-Type/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Receptors, Cell Surface/genetics , Single-Cell Analysis , T-Lymphocyte Subsets/immunology , T-Lymphocytes/cytology , Tumor Escape
3.
Immunity ; 57(2): 223-244, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38354702

ABSTRACT

Immune responses must be tightly regulated to ensure both optimal protective immunity and tolerance. Costimulatory pathways within the B7:CD28 family provide essential signals for optimal T cell activation and clonal expansion. They provide crucial inhibitory signals that maintain immune homeostasis, control resolution of inflammation, regulate host defense, and promote tolerance to prevent autoimmunity. Tumors and chronic pathogens can exploit these pathways to evade eradication by the immune system. Advances in understanding B7:CD28 pathways have ushered in a new era of immunotherapy with effective drugs to treat cancer, autoimmune diseases, infectious diseases, and transplant rejection. Here, we discuss current understanding of the mechanisms underlying the coinhibitory functions of CTLA-4, PD-1, PD-L1:B7-1 and PD-L2:RGMb interactions and less studied B7 family members, including HHLA2, VISTA, BTNL2, and BTN3A1, as well as their overlapping and unique roles in regulating immune responses, and the therapeutic potential of these insights.


Subject(s)
Autoimmune Diseases , CD28 Antigens , Humans , CD28 Antigens/metabolism , Friends , T-Lymphocytes , CTLA-4 Antigen/metabolism , Immunotherapy , B7-1 Antigen/metabolism , Immunoglobulins/metabolism , Butyrophilins/metabolism , Antigens, CD/metabolism
4.
Cell ; 174(3): 549-563.e19, 2018 07 26.
Article in English | MEDLINE | ID: mdl-29937226

ABSTRACT

Chromatin regulators play a broad role in regulating gene expression and, when gone awry, can lead to cancer. Here, we demonstrate that ablation of the histone demethylase LSD1 in cancer cells increases repetitive element expression, including endogenous retroviral elements (ERVs), and decreases expression of RNA-induced silencing complex (RISC) components. Significantly, this leads to double-stranded RNA (dsRNA) stress and activation of type 1 interferon, which stimulates anti-tumor T cell immunity and restrains tumor growth. Furthermore, LSD1 depletion enhances tumor immunogenicity and T cell infiltration in poorly immunogenic tumors and elicits significant responses of checkpoint blockade-refractory mouse melanoma to anti-PD-1 therapy. Consistently, TCGA data analysis shows an inverse correlation between LSD1 expression and CD8+ T cell infiltration in various human cancers. Our study identifies LSD1 as a potent inhibitor of anti-tumor immunity and responsiveness to immunotherapy and suggests LSD1 inhibition combined with PD-(L)1 blockade as a novel cancer treatment strategy.


Subject(s)
Endogenous Retroviruses/genetics , Histone Demethylases/metabolism , RNA-Induced Silencing Complex/genetics , Animals , Cell Line, Tumor , Chromatin , Combined Modality Therapy , Gene Expression Regulation/genetics , Histone Demethylases/genetics , Humans , Immunity, Cellular , Immunotherapy , Interferon Type I , MCF-7 Cells , Mice , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , RNA, Double-Stranded/genetics , T-Lymphocytes
5.
Nat Immunol ; 20(10): 1335-1347, 2019 10.
Article in English | MEDLINE | ID: mdl-31527834

ABSTRACT

CD8+ T cell exhaustion is a state of dysfunction acquired in chronic viral infection and cancer, characterized by the formation of Slamf6+ progenitor exhausted and Tim-3+ terminally exhausted subpopulations through unknown mechanisms. Here we establish the phosphatase PTPN2 as a new regulator of the differentiation of the terminally exhausted subpopulation that functions by attenuating type 1 interferon signaling. Deletion of Ptpn2 in CD8+ T cells increased the generation, proliferative capacity and cytotoxicity of Tim-3+ cells without altering Slamf6+ numbers during lymphocytic choriomeningitis virus clone 13 infection. Likewise, Ptpn2 deletion in CD8+ T cells enhanced Tim-3+ anti-tumor responses and improved tumor control. Deletion of Ptpn2 throughout the immune system resulted in MC38 tumor clearance and improved programmed cell death-1 checkpoint blockade responses to B16 tumors. Our results indicate that increasing the number of cytotoxic Tim-3+CD8+ T cells can promote effective anti-tumor immunity and implicate PTPN2 in immune cells as an attractive cancer immunotherapy target.


Subject(s)
Adenocarcinoma/immunology , CD8-Positive T-Lymphocytes/physiology , Colonic Neoplasms/immunology , Immunotherapy/methods , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/physiology , Lymphoid Progenitor Cells/physiology , Melanoma/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Skin Neoplasms/immunology , Animals , Cellular Senescence , Cytotoxicity, Immunologic , Female , Hepatitis A Virus Cellular Receptor 2/metabolism , Immune Tolerance , Interferon Type I/metabolism , Male , Melanoma, Experimental , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Signal Transduction , Signaling Lymphocytic Activation Molecule Family/metabolism
6.
Nature ; 617(7959): 139-146, 2023 05.
Article in English | MEDLINE | ID: mdl-37076617

ABSTRACT

Loss of the PTEN tumour suppressor is one of the most common oncogenic drivers across all cancer types1. PTEN is the major negative regulator of PI3K signalling. The PI3Kß isoform has been shown to play an important role in PTEN-deficient tumours, but the mechanisms underlying the importance of PI3Kß activity remain elusive. Here, using a syngeneic genetically engineered mouse model of invasive breast cancer driven by ablation of both Pten and Trp53 (which encodes p53), we show that genetic inactivation of PI3Kß led to a robust anti-tumour immune response that abrogated tumour growth in syngeneic immunocompetent mice, but not in immunodeficient mice. Mechanistically, PI3Kß inactivation in the PTEN-null setting led to reduced STAT3 signalling and increased the expression of immune stimulatory molecules, thereby promoting anti-tumour immune responses. Pharmacological PI3Kß inhibition also elicited anti-tumour immunity and synergized with immunotherapy to inhibit tumour growth. Mice with complete responses to the combined treatment displayed immune memory and rejected tumours upon re-challenge. Our findings demonstrate a molecular mechanism linking PTEN loss and STAT3 activation in cancer and suggest that PI3Kß controls immune escape in PTEN-null tumours, providing a rationale for combining PI3Kß inhibitors with immunotherapy for the treatment of PTEN-deficient breast cancer.


Subject(s)
Immune Evasion , Mammary Neoplasms, Animal , PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinase , Animals , Mice , Immunotherapy , Phosphatidylinositol 3-Kinase/metabolism , Phosphoinositide-3 Kinase Inhibitors , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics , Signal Transduction , Mammary Neoplasms, Animal/enzymology , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/immunology , Mammary Neoplasms, Experimental/enzymology , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/immunology
7.
Nature ; 617(7960): 377-385, 2023 05.
Article in English | MEDLINE | ID: mdl-37138075

ABSTRACT

The gut microbiota is a crucial regulator of anti-tumour immunity during immune checkpoint inhibitor therapy. Several bacteria that promote an anti-tumour response to immune checkpoint inhibitors have been identified in mice1-6. Moreover, transplantation of faecal specimens from responders can improve the efficacy of anti-PD-1 therapy in patients with melanoma7,8. However, the increased efficacy from faecal transplants is variable and how gut bacteria promote anti-tumour immunity remains unclear. Here we show that the gut microbiome downregulates PD-L2 expression and its binding partner repulsive guidance molecule b (RGMb) to promote anti-tumour immunity and identify bacterial species that mediate this effect. PD-L1 and PD-L2 share PD-1 as a binding partner, but PD-L2 can also bind RGMb. We demonstrate that blockade of PD-L2-RGMb interactions can overcome microbiome-dependent resistance to PD-1 pathway inhibitors. Antibody-mediated blockade of the PD-L2-RGMb pathway or conditional deletion of RGMb in T cells combined with an anti-PD-1 or anti-PD-L1 antibody promotes anti-tumour responses in multiple mouse tumour models that do not respond to anti-PD-1 or anti-PD-L1 alone (germ-free mice, antibiotic-treated mice and even mice colonized with stool samples from a patient who did not respond to treatment). These studies identify downregulation of the PD-L2-RGMb pathway as a specific mechanism by which the gut microbiota can promote responses to PD-1 checkpoint blockade. The results also define a potentially effective immunological strategy for treating patients who do not respond to PD-1 cancer immunotherapy.


Subject(s)
Drug Resistance, Neoplasm , Immunotherapy , Melanoma , Microbiota , Animals , Humans , Mice , Cell Adhesion Molecules, Neuronal , Disease Models, Animal , Down-Regulation , Drug Resistance, Neoplasm/drug effects , Fecal Microbiota Transplantation , Germ-Free Life , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Melanoma/immunology , Melanoma/microbiology , Melanoma/therapy , Protein Binding/drug effects , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
8.
Mol Cell ; 81(11): 2317-2331.e6, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33909988

ABSTRACT

Aberrant energy status contributes to multiple metabolic diseases, including obesity, diabetes, and cancer, but the underlying mechanism remains elusive. Here, we report that ketogenic-diet-induced changes in energy status enhance the efficacy of anti-CTLA-4 immunotherapy by decreasing PD-L1 protein levels and increasing expression of type-I interferon (IFN) and antigen presentation genes. Mechanistically, energy deprivation activates AMP-activated protein kinase (AMPK), which in turn, phosphorylates PD-L1 on Ser283, thereby disrupting its interaction with CMTM4 and subsequently triggering PD-L1 degradation. In addition, AMPK phosphorylates EZH2, which disrupts PRC2 function, leading to enhanced IFNs and antigen presentation gene expression. Through these mechanisms, AMPK agonists or ketogenic diets enhance the efficacy of anti-CTLA-4 immunotherapy and improve the overall survival rate in syngeneic mouse tumor models. Our findings reveal a pivotal role for AMPK in regulating the immune response to immune-checkpoint blockade and advocate for combining ketogenic diets or AMPK agonists with anti-CTLA4 immunotherapy to combat cancer.


Subject(s)
AMP-Activated Protein Kinases/genetics , B7-H1 Antigen/genetics , Breast Neoplasms/genetics , CTLA-4 Antigen/genetics , Colorectal Neoplasms/genetics , Immune Checkpoint Inhibitors , AMP-Activated Protein Kinases/immunology , Allografts , Animals , Antibodies, Neutralizing/pharmacology , Antineoplastic Agents/pharmacology , B7-H1 Antigen/immunology , Biphenyl Compounds/pharmacology , Breast Neoplasms/immunology , Breast Neoplasms/mortality , Breast Neoplasms/therapy , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Cell Line, Tumor , Colorectal Neoplasms/immunology , Colorectal Neoplasms/mortality , Colorectal Neoplasms/therapy , Diet, Ketogenic/methods , Energy Metabolism/drug effects , Energy Metabolism/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/immunology , Female , Gene Expression Regulation, Neoplastic , Humans , Immunotherapy/methods , MARVEL Domain-Containing Proteins/genetics , MARVEL Domain-Containing Proteins/immunology , Mice , Mice, Inbred C57BL , Mice, Nude , Pyrones/pharmacology , Signal Transduction , Survival Analysis , Thiophenes/pharmacology
9.
Immunity ; 50(6): 1498-1512.e5, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31097342

ABSTRACT

Despite compelling rates of durable clinical responses to programmed cell death-1 (PD-1) blockade, advances are needed to extend these benefits to resistant tumors. We found that tumor-bearing mice deficient in the chemokine receptor CXCR3 responded poorly to anti-PD-1 treatment. CXCR3 and its ligand CXCL9 were critical for a productive CD8+ T cell response in tumor-bearing mice treated with anti-PD-1 but were not required for the infiltration of CD8+ T cells into tumors. The anti-PD-1-induced anti-tumor response was facilitated by CXCL9 production from intratumoral CD103+ dendritic cells, suggesting that CXCR3 facilitates dendritic cell-T cell interactions within the tumor microenvironment. CXCR3 ligands in murine tumors and in plasma of melanoma patients were an indicator of clinical response to anti-PD-1, and their induction in non-responsive murine tumors promoted responsiveness to anti-PD-1. Our data suggest that the CXCR3 chemokine system is a biomarker for sensitivity to PD-1 blockade and that augmenting the intratumoral function of this chemokine system could improve clinical outcomes.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Immunomodulation/drug effects , Neoplasms/immunology , Neoplasms/metabolism , Programmed Cell Death 1 Receptor/metabolism , Receptors, CXCR3/metabolism , Animals , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Disease Models, Animal , Epigenesis, Genetic , Humans , Lymphocyte Activation , Mice , Mice, Knockout , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Tumor Microenvironment , Xenograft Model Antitumor Assays
10.
Immunity ; 51(6): 1043-1058.e4, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31810882

ABSTRACT

T cell dysfunction is a characteristic feature of chronic viral infection and cancer. Recent studies in chronic lymphocytic choriomeningitis virus (LCMV) infection have defined a PD-1+ Tcf-1+ CD8+ T cell subset capable of self-renewal and differentiation into more terminally differentiated cells that downregulate Tcf-1 and express additional inhibitory molecules such as Tim3. Here, we demonstrated that expression of the glycoprotein CD101 divides this terminally differentiated population into two subsets. Stem-like Tcf-1+ CD8+ T cells initially differentiated into a transitory population of CD101-Tim3+ cells that later converted into CD101+ Tim3+ cells. Recently generated CD101-Tim3+ cells proliferated in vivo, contributed to viral control, and were marked by an effector-like transcriptional signature including expression of the chemokine receptor CX3CR1, pro-inflammatory cytokines, and granzyme B. PD-1 pathway blockade increased the numbers of CD101-Tim3+ CD8+ T cells, suggesting that these newly generated transitional cells play a critical role in PD-1-based immunotherapy.


Subject(s)
Antigens, CD/metabolism , CD8-Positive T-Lymphocytes/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Programmed Cell Death 1 Receptor/metabolism , Animals , Biomarkers/metabolism , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Female , Granzymes/genetics , Granzymes/metabolism , Hepatitis A Virus Cellular Receptor 2/biosynthesis , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Lymphocytic Choriomeningitis/virology , Male , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/genetics
11.
Nature ; 610(7930): 173-181, 2022 10.
Article in English | MEDLINE | ID: mdl-36171288

ABSTRACT

Combination therapy with PD-1 blockade and IL-2 is highly effective during chronic lymphocytic choriomeningitis virus infection1. Here we examine the underlying basis for this synergy. We show that PD-1 + IL-2 combination therapy, in contrast to PD-1 monotherapy, substantially changes the differentiation program of the PD-1+TCF1+ stem-like CD8+ T cells and results in the generation of transcriptionally and epigenetically distinct effector CD8+ T cells that resemble highly functional effector CD8+ T cells seen after an acute viral infection. The generation of these qualitatively superior CD8+ T cells that mediate viral control underlies the synergy between PD-1 and IL-2. Our results show that the PD-1+TCF1+ stem-like CD8+ T cells, also referred to as precursors of exhausted CD8+ T cells, are not fate-locked into the exhaustion program and their differentiation trajectory can be changed by IL-2 signals. These virus-specific effector CD8+ T cells emerging from the stem-like CD8+ T cells after combination therapy expressed increased levels of the high-affinity IL-2 trimeric (CD25-CD122-CD132) receptor. This was not seen after PD-1 blockade alone. Finally, we show that CD25 engagement with IL-2 has an important role in the observed synergy between IL-2 cytokine and PD-1 blockade. Either blocking CD25 with an antibody or using a mutated version of IL-2 that does not bind to CD25 but still binds to CD122 and CD132 almost completely abrogated the synergistic effects observed after PD-1 + IL-2 combination therapy. There is considerable interest in PD-1 + IL-2 combination therapy for patients with cancer2,3, and our fundamental studies defining the underlying mechanisms of how IL-2 synergizes with PD-1 blockade should inform these human translational studies.


Subject(s)
CD8-Positive T-Lymphocytes , Interleukin-2 , Programmed Cell Death 1 Receptor , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/drug effects , Drug Therapy, Combination , Humans , Interleukin Receptor Common gamma Subunit , Interleukin-2/immunology , Interleukin-2/pharmacology , Interleukin-2/therapeutic use , Interleukin-2 Receptor alpha Subunit , Interleukin-2 Receptor beta Subunit , Lymphocytic Choriomeningitis/drug therapy , Lymphocytic Choriomeningitis/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T Cell Transcription Factor 1
13.
Immunity ; 49(6): 1148-1161.e7, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30552023

ABSTRACT

Anti-PD-1 immune checkpoint blockers can induce sustained clinical responses in cancer but how they function in vivo remains incompletely understood. Here, we combined intravital real-time imaging with single-cell RNA sequencing analysis and mouse models to uncover anti-PD-1 pharmacodynamics directly within tumors. We showed that effective antitumor responses required a subset of tumor-infiltrating dendritic cells (DCs), which produced interleukin 12 (IL-12). These DCs did not bind anti-PD-1 but produced IL-12 upon sensing interferon γ (IFN-γ) that was released from neighboring T cells. In turn, DC-derived IL-12 stimulated antitumor T cell immunity. These findings suggest that full-fledged activation of antitumor T cells by anti-PD-1 is not direct, but rather involves T cell:DC crosstalk and is licensed by IFN-γ and IL-12. Furthermore, we found that activating the non-canonical NF-κB transcription factor pathway amplified IL-12-producing DCs and sensitized tumors to anti-PD-1 treatment, suggesting a therapeutic strategy to improve responses to checkpoint blockade.


Subject(s)
Dendritic Cells/immunology , Interferon-gamma/immunology , Interleukin-12/immunology , Neoplasms/immunology , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/immunology , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Dendritic Cells/metabolism , Female , Humans , Immunotherapy/methods , Interferon-gamma/metabolism , Interleukin-12/administration & dosage , Interleukin-12/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , NF-kappa B/immunology , NF-kappa B/metabolism , Neoplasms/metabolism , Neoplasms/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
14.
Cell ; 148(4): 739-51, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22341446

ABSTRACT

B cells infected by Epstein-Barr virus (EBV), a transforming virus endemic in humans, are rapidly cleared by the immune system, but some cells harboring the virus persist for life. Under conditions of immunosuppression, EBV can spread from these cells and cause life-threatening pathologies. We have generated mice expressing the transforming EBV latent membrane protein 1 (LMP1), mimicking a constitutively active CD40 coreceptor, specifically in B cells. Like human EBV-infected cells, LMP1+ B cells were efficiently eliminated by T cells, and breaking immune surveillance resulted in rapid, fatal lymphoproliferation and lymphomagenesis. The lymphoma cells expressed ligands for a natural killer (NK) cell receptor, NKG2D, and could be targeted by an NKG2D-Fc fusion protein. These experiments indicate a central role for LMP1 in the surveillance and transformation of EBV-infected B cells in vivo, establish a preclinical model for B cell lymphomagenesis in immunosuppressed patients, and validate a new therapeutic approach.


Subject(s)
Disease Models, Animal , Herpesvirus 4, Human , Immunologic Surveillance , Lymphoma/immunology , Lymphoma/therapy , Viral Matrix Proteins/metabolism , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Humans , Immunotherapy , Lymphoma/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , NK Cell Lectin-Like Receptor Subfamily K/immunology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Viral Matrix Proteins/genetics
15.
Immunity ; 46(2): 197-204, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28228279

ABSTRACT

Response to immune checkpoint blockade in mesenchymal tumors is poorly characterized, but immunogenomic dissection of these cancers could inform immunotherapy mediators. We identified a treatment-naive patient who has metastatic uterine leiomyosarcoma and has experienced complete tumor remission for >2 years on anti-PD-1 (pembrolizumab) monotherapy. We analyzed the primary tumor, the sole treatment-resistant metastasis, and germline tissue to explore mechanisms of immunotherapy sensitivity and resistance. Both tumors stained diffusely for PD-L2 and showed sparse PD-L1 staining. PD-1+ cell infiltration significantly decreased in the resistant tumor (p = 0.039). Genomically, the treatment-resistant tumor uniquely harbored biallelic PTEN loss and had reduced expression of two neoantigens that demonstrated strong immunoreactivity with patient T cells in vitro, suggesting long-lasting immunological memory. In this near-complete response to PD-1 blockade in a mesenchymal tumor, we identified PTEN mutations and reduced expression of genes encoding neoantigens as potential mediators of resistance to immune checkpoint therapy.


Subject(s)
Drug Resistance, Neoplasm/genetics , Leiomyosarcoma/pathology , PTEN Phosphohydrolase/genetics , Uterine Neoplasms/pathology , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/therapeutic use , DNA Mutational Analysis , Female , Gene Expression Profiling , Humans , Leiomyosarcoma/drug therapy , Leiomyosarcoma/genetics , Middle Aged , Mutation , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Transcriptome , Uterine Neoplasms/drug therapy , Uterine Neoplasms/genetics
17.
Proc Natl Acad Sci U S A ; 120(6): e2219199120, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36724255

ABSTRACT

Immune checkpoint blockers (ICBs) have failed in all phase III glioblastoma trials. Here, we found that ICBs induce cerebral edema in some patients and mice with glioblastoma. Through single-cell RNA sequencing, intravital imaging, and CD8+ T cell blocking studies in mice, we demonstrated that this edema results from an inflammatory response following antiprogrammed death 1 (PD1) antibody treatment that disrupts the blood-tumor barrier. Used in lieu of immunosuppressive corticosteroids, the angiotensin receptor blocker losartan prevented this ICB-induced edema and reprogrammed the tumor microenvironment, curing 20% of mice which increased to 40% in combination with standard of care treatment. Using a bihemispheric tumor model, we identified a "hot" tumor immune signature prior to losartan+anti-PD1 therapy that predicted long-term survival. Our findings provide the rationale and associated biomarkers to test losartan with ICBs in glioblastoma patients.


Subject(s)
Glioblastoma , Animals , Mice , Glioblastoma/pathology , Losartan/pharmacology , Losartan/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , CD8-Positive T-Lymphocytes , Edema , Tumor Microenvironment
18.
Immunity ; 44(5): 955-72, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27192563

ABSTRACT

Immune responses need to be controlled for optimal protective immunity and tolerance. Coinhibitory pathways in the B7-CD28 family provide critical inhibitory signals that regulate immune homeostasis and defense and protect tissue integrity. These coinhibitory signals limit the strength and duration of immune responses, thereby curbing immune-mediated tissue damage, regulating resolution of inflammation, and maintaining tolerance to prevent autoimmunity. Tumors and microbes that cause chronic infections can exploit these coinhibitory pathways to establish an immunosuppressive microenvironment, hindering their eradication. Advances in understanding T cell coinhibitory pathways have stimulated a new era of immunotherapy with effective drugs to treat cancer, autoimmune and infectious diseases, and transplant rejection. In this review we discuss the current knowledge of the mechanisms underlying the coinhibitory functions of pathways in the B7-CD28 family, the diverse functional consequences of these inhibitory signals on immune responses, and the overlapping and unique functions of these key immunoregulatory pathways.


Subject(s)
Autoimmune Diseases/therapy , B7 Antigens/metabolism , CD28 Antigens/metabolism , Immunotherapy/methods , Infections/therapy , Neoplasms/therapy , T-Lymphocytes/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Autoimmune Diseases/immunology , B7 Antigens/immunology , CD28 Antigens/immunology , Humans , Immune Tolerance , Immunosuppression Therapy , Immunotherapy/trends , Infections/immunology , Lymphocyte Activation , Neoplasms/immunology , Receptor Cross-Talk , Signal Transduction , T-Lymphocytes/transplantation
19.
Immunity ; 44(2): 343-54, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26872698

ABSTRACT

Checkpoint blockade immunotherapies can be extraordinarily effective, but might benefit only the minority of patients whose tumors are pre-infiltrated by T cells. Here, using lung adenocarcinoma mouse models, including genetic models, we show that autochthonous tumors that lacked T cell infiltration and resisted current treatment options could be successfully sensitized to host antitumor T cell immunity when appropriately selected immunogenic drugs (e.g., oxaliplatin combined with cyclophosphamide for treatment against tumors expressing oncogenic Kras and lacking Trp53) were used. The antitumor response was triggered by direct drug actions on tumor cells, relied on innate immune sensing through toll-like receptor 4 signaling, and ultimately depended on CD8(+) T cell antitumor immunity. Furthermore, instigating tumor infiltration by T cells sensitized tumors to checkpoint inhibition and controlled cancer durably. These findings indicate that the proportion of cancers responding to checkpoint therapy can be feasibly and substantially expanded by combining checkpoint blockade with immunogenic drugs.


Subject(s)
Adenocarcinoma/therapy , CD8-Positive T-Lymphocytes/drug effects , Immunotherapy/methods , Lung Neoplasms/therapy , Lymphocytes, Tumor-Infiltrating/drug effects , Adenocarcinoma/immunology , Animals , Cell Line, Tumor , Central Nervous System Sensitization/drug effects , Cyclophosphamide/administration & dosage , Disease Models, Animal , Drug Therapy/methods , Genes, cdc/drug effects , Humans , Immunity, Innate , Lung Neoplasms/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Organoplatinum Compounds/administration & dosage , Oxaliplatin , Toll-Like Receptor 4/metabolism
20.
Nature ; 571(7766): E10, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31270456

ABSTRACT

An Amendment to this paper has been published and can be accessed via a link at the top of the paper. The original Letter has not been corrected.

SELECTION OF CITATIONS
SEARCH DETAIL