Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Ann Bot ; 128(2): 205-215, 2021 07 30.
Article in English | MEDLINE | ID: mdl-33949659

ABSTRACT

BACKGROUND AND AIMS: Dioecy has evolved up to 5000 times in angiosperms, despite the potentially high intrinsic costs to unisexuality. Dioecy prevents inbreeding, which is especially relevant on isolated islands when gene pools are small. Dioecy is also associated with certain dispersal traits, such as fruit size and type. However, the influence of dioecy on other life history traits and island distribution remains poorly understood. Here, we test the effect of dioecy on palm (Arecaceae) speciation rates, fruit size and frequency on islands. METHODS: We used phylogenetic comparative methods to estimate the ancestral state of the sexual system and its impact on speciation rates and fruit size. Frequency of sexual systems, effect of insularity on the probability of being dioecious, and phylogenetic clustering of island dioecious vs. mainland species were inferred. Lastly, we determined the interplay of insularity and sexual system on speciation rates. KEY RESULTS: Palms repeatedly evolved different sexual systems (dioecy, monoecy and polygamy) from a hermaphrodite origin. Differences in speciation rates and fruit size among the different sexual systems were not identified. An effect of islands on the probability of the palms being dioecious was also not found. However, we found a high frequency and phylogenetic clustering of dioecious palms on islands, which were not correlated with higher speciation rates. CONCLUSIONS: The high frequency and phylogenetic clustering may be the result of in situ radiation and suggest an 'island effect' for dioecious palms, which was not explained by differential speciation rates. This island effect also cannot be attributed to long-distance dispersal due to the lack of fruit size difference among sexual systems, and particularly because palm dispersal to islands is highly constrained by the interaction between the sizes of fruit and frugivores. Taken together, we suggest that trait flexibility in sexual system evolution and the in situ radiation of dioecious lineages are the underlying causes of the outstanding distribution of palms on islands.


Subject(s)
Arecaceae , Magnoliopsida , Arecaceae/genetics , Biological Evolution , Islands , Phenotype , Phylogeny , Reproduction
2.
Heredity (Edinb) ; 121(2): 183-195, 2018 08.
Article in English | MEDLINE | ID: mdl-29588509

ABSTRACT

Evolutionary success, as demonstrated by high abundance and a wide geographical range, is related to genetic variation and historical demography. Here we assess how climatic change during the Quaternary influenced the demography and distribution of the Neotropical swamp palm Mauritia flexuosa. Using microsatellite loci and coalescent analyses we examined how demographical dynamics affected genetic diversity, effective population size and connectivity through time and space. Mauritia flexuosa presents significant genetic differentiation between the Amazonian and Cerrado biomes and among different river basins. Amazonian lineages are ancient compared to lineages from the Cerrado, a pattern corroborated using the fossil pollen record, where the species was absent from the Cerrado during the cold and dry periods of the last glacial cycles, then returned during the wet, interglacial phases. Coalescent simulations show that the pattern of observed genetic diversity for M. flexuosa is most likely due to a range retraction during the Last Glacial Maximum, leading to multiple refugia and resulting in high differentiation between Amazonian and Cerrado biomes. Isolation-by-distance and by-environment also shaped the distribution and evolutionary success of M. flexuosa. Our study provides new insights into the historical factors that affected geographical distribution and structure genetic diversity, contributing to long-term evolutionary success.


Subject(s)
Arecaceae/genetics , Biological Evolution , Demography , Genetic Variation , Genetics, Population , Trees/genetics , Arecaceae/classification , Computer Simulation , Haplotypes , Microsatellite Repeats
3.
Sci Rep ; 10(1): 21125, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33273647

ABSTRACT

Isolated islands, due to the reduced interspecific competition compared to mainland habitats, present ecological opportunities for colonizing lineages. As a consequence, island lineages may be expected to experience higher rates of trait evolution than mainland lineages. However, island effects on key life-history traits of vascular plants remain underexplored at broad spatiotemporal scales, even for emblematic island clades such as palms. Here, we used phylogenetic comparative methods to evaluate potential differences in size and macroevolutionary patterns of height and fruit diameter among mainland, continental, and volcanic island palms. Further, phylogenetic beta-diversity was used to determine if lineage turnover supported an adaptive radiation scenario on volcanic islands. Volcanic island palms were taller than their continental island and mainland counterparts, whereas continental island palms exhibited smaller fruit size. Height and fruit size of palms evolved under evolutionary constraints towards an optimal value. However, scenarios of adaptive radiation and niche conservatism were not supported for the height and fruit size of volcanic and mainland palm clades, respectively, as expected. Instead, continental island palms exhibited higher evolutionary rates for height and fruit size. Insular palm assemblages (continental and volcanic) are composed of unique lineages. Beyond representing evolutionary sources of new palm lineages, our results demonstrate that insular habitats are important in shaping palm trait diversity. Also, the higher phenotypic evolutionary rates of continental island palms suggest disparate selection pressures on this habitat type, which can be an important driver of trait diversification over time. Taken together, these results stress the importance of insular habitats for conservation of functional, phylogenetic, and taxonomic diversity of palms.


Subject(s)
Arecaceae/physiology , Biological Evolution , Arecaceae/classification , Biodiversity , Ecosystem , Islands , Phylogeny
4.
Front Plant Sci ; 10: 55, 2019.
Article in English | MEDLINE | ID: mdl-30804955

ABSTRACT

Environmental and geographical variables are known drivers of community assembly, however their influence on phylogenetic structure and phylogenetic beta diversity of lineages within different bioregions is not well-understood. Using Neotropical palms as a model, we investigate how environmental and geographical variables affect the assembly of lineages into bioregions across an evolutionary time scale. We also determine lineage shifts between tropical (TRF) and non-tropical (non-TRF) forests. Our results identify that distance and area explain phylogenetic dissimilarity among bioregions. Lineages in smaller bioregions are a subset of larger bioregions and contribute significantly to the nestedness component of phylogenetic dissimilarity, here interpreted as evidence for a bioregional shift. We found a significant tendency of habitat shifts occurring preferentially between TRF and non-TRF bioregions (31 shifts) than from non-TRF to TRF (24) or from TRF to TRF (11) and non-TRF to non-TRF (9). Our results also present cases where low dissimilarity is found between TRF and non-TRF bioregions. Most bioregions showed phylogenetic clustering and larger bioregions tended to be more clustered than smaller ones, with a higher species turnover component of phylogenetic dissimilarity. However, phylogenetic structure did not differ between TRF and non-TRF bioregions and diversification rates were higher in only two lineages, Attaleinae and Bactridinae, which are widespread and overabundant in both TRF and non-TRF bioregions. Area and distance significantly affected Neotropical palm community assembly and contributed more than environmental variables. Despite palms being emblematic humid forest elements, we found multiple shifts from humid to dry bioregions, showing that palms are also important components of these environments.

SELECTION OF CITATIONS
SEARCH DETAIL