Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Science ; 375(6577): 172-177, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35025630

ABSTRACT

Water-rock interactions are relevant to planetary habitability, influencing mineralogical diversity and the production of organic molecules. We examine carbonates and silicates in the martian meteorite Allan Hills 84001 (ALH 84001), using colocated nanoscale analyses, to characterize the nature of water-rock reactions on early Mars. We find complex refractory organic material associated with mineral assemblages that formed by mineral carbonation and serpentinization reactions. The organic molecules are colocated with nanophase magnetite; both formed in situ during water-rock interactions on Mars. Two potentially distinct mechanisms of abiotic organic synthesis operated on early Mars during the late Noachian period (3.9 to 4.1 billion years ago).

2.
Sci Adv ; 4(10): eaat5118, 2018 10.
Article in English | MEDLINE | ID: mdl-30402538

ABSTRACT

The sources and nature of organic carbon on Mars have been a subject of intense research. Steele et al. (2012) showed that 10 martian meteorites contain macromolecular carbon phases contained within pyroxene- and olivine-hosted melt inclusions. Here, we show that martian meteorites Tissint, Nakhla, and NWA 1950 have an inventory of organic carbon species associated with fluid-mineral reactions that are remarkably consistent with those detected by the Mars Science Laboratory (MSL) mission. We advance the hypothesis that interactions among spinel-group minerals, sulfides, and a brine enable the electrochemical reduction of aqueous CO2 to organic molecules. Although documented here in martian samples, a similar process likely occurs wherever igneous rocks containing spinel-group minerals and/or sulfides encounter brines.

3.
Astrobiology ; 16(2): 169-80, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26848838

ABSTRACT

The utility of nondestructive laser Raman for testing the biogenicity of microfossil-like structures in ancient rocks is promising, yet results from deposits like the ∼3.46 Ga Apex chert remain contentious. The essence of the debate is that associated microstructures, which are not purported to be microfossils, also contain reduced carbon that displays Raman D- and G-band peaks similar to those seen in the purported microfossils. This has led to the hypothesis that all features including reported microfossils are due to compression of nonfossil carbon during crystal growth around quartz spherulites or more angular crystals. In this scenario, the precursor to this macromolecular carbon may or may not have been of biogenic origin, while the arcuate and linear features described would be pseudofossils. To test this hypothesis, we have undertaken 2-D micro-Raman imaging of the Eoleptonema apex holotype and associated features using instrumentation with a high spatial and spectral resolution. In addition to this, we utilized the ratio of two Raman active quartz mode intensities (I129/I461) to assess quartz grain orientation and grain-splitting artifacts. These data lead us to conclude that the holotype of Eoleptonema apex is a sheet-shaped pseudofossil that appears to be a carbon infilled intragranular crack; therefore other holotypes should be carefully reexamined for syngenicity.


Subject(s)
Fossils , Imaging, Three-Dimensional , Quartz/chemistry , Spectrum Analysis, Raman/methods , Time Factors
4.
Astrobiology ; 13(1): 103-13, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23268624

ABSTRACT

The identification of biosignatures in Earth's ancient rock record and detection of extraplanetary life is one of the primary goals in astrobiology. Intrinsic to this goal is the improvement of analytical techniques and protocols used to identify an unambiguous signal of life. Micro Raman spectroscopy is a nondestructive method that allows for in situ identification of a wide range of minerals and compounds. The use of D (∼1350 cm(-1)) and G (∼1580 cm(-1)) band parameters to infer the biogenicity of carbonaceous materials in fossils has become a commonly used analytical tool, but carbonaceous compounds from different sources often share the same spectroscopic characteristics. Microfossil studies do not always take into consideration a nonbiological source for the carbon in their samples and therefore still rely on morphology as the primary mode of identification. Comprehensive studies that consider all carbon sources are typically done on metasediments, coals, or meteorites, and the results are not clearly applicable to microfossil identification. In this study, microfossils from a suite of sedimentary rock samples of various ages were analyzed with micro Raman spectroscopy to investigate the nature and provenance of carbonaceous material. To further constrain D- and G-band carbon characteristics, micro Raman analyses were also performed on well-characterized meteorite samples as abiological controls. The results appear to show a correlation of precursor carbonaceous material with D-band parameters and thermal history with G-band parameters. This systematic study lays the groundwork for improving the use of the G- and D-band trends as useful indicators of the origin of carbon in microfossils. Before unambiguous biosignatures can be established, further work characterizing the carbonaceous material in microfossils of different ages, thermal histories, and host rock compositions is needed.


Subject(s)
Carbon/chemistry , Exobiology/methods , Fossils , Meteoroids , Spectrum Analysis, Raman/methods , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL