Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 594
Filter
Add more filters

Publication year range
1.
Nat Rev Neurosci ; 23(1): 53-66, 2022 01.
Article in English | MEDLINE | ID: mdl-34815562

ABSTRACT

The current conceptualization of Alzheimer disease (AD) is driven by the amyloid hypothesis, in which a deterministic chain of events leads from amyloid deposition and then tau deposition to neurodegeneration and progressive cognitive impairment. This model fits autosomal dominant AD but is less applicable to sporadic AD. Owing to emerging information regarding the complex biology of AD and the challenges of developing amyloid-targeting drugs, the amyloid hypothesis needs to be reconsidered. Here we propose a probabilistic model of AD in which three variants of AD (autosomal dominant AD, APOE ε4-related sporadic AD and APOE ε4-unrelated sporadic AD) feature decreasing penetrance and decreasing weight of the amyloid pathophysiological cascade, and increasing weight of stochastic factors (environmental exposures and lower-risk genes). Together, these variants account for a large share of the neuropathological and clinical variability observed in people with AD. The implementation of this model in research might lead to a better understanding of disease pathophysiology, a revision of the current clinical taxonomy and accelerated development of strategies to prevent and treat AD.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid/metabolism , Models, Statistical , Alzheimer Disease/psychology , Amyloid Neuropathies/metabolism , Amyloid Neuropathies/pathology , Amyloid beta-Peptides , Animals , Humans , tau Proteins/metabolism
2.
Brain ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940331

ABSTRACT

Increasing evidence shows that neuroinflammation is a possible modulator of tau spread effects on cognitive impairment in Alzheimer's disease. In this context, plasma levels of the glial fibrillary acidic protein (GFAP) have been suggested to have a robust association with Alzheimer's disease pathophysiology. This study aims to assess the correlation between plasma GFAP and Alzheimer's disease pathology, and their synergistic effect on cognitive performance and decline. A cohort of 122 memory clinic subjects with amyloid and tau positron emission tomography, MRI scans, plasma GFAP, and Mini-Mental State Examination (MMSE) was included in the study. A subsample of 94 subjects had a follow-up MMSE score at least one year after baseline. Regional and voxel-based correlations between Alzheimer's disease biomarkers and plasma GFAP were assessed. Mediation analyses were performed to evaluate the effects of plasma GFAP on the association between amyloid and tau PET, and tau PET and cognitive impairment and decline. GFAP was associated with increased tau PET ligand uptake in the lateral temporal and inferior temporal lobes in a strong left-sided pattern independently of age, gender, education, amyloid, and APOE status (ß=0.001, p < 0.01). The annual rate of MMSE change was significantly and independently correlated with both GFAP (ß=0.006, p < 0.01) and global tau SUVR (ß=4.33, p < 0.01), but not with amyloid burden. Partial mediation effects of GFAP were found on the association between amyloid and tau pathology (13.7%), and between tau pathology and cognitive decline (17.4%), but not on global cognition at baseline. Neuroinflammation measured by circulating GFAP is independently associated with tau Alzheimer's disease pathology and with cognitive decline, suggesting neuroinflammation as a potential target for future disease-modifying trials targeting tau pathology. Peretti et al. show that a circulatory marker of neuroinflammation-glial fibrillary acidic protein-is associated with tau pathology in lateral temporal and frontal regions in patients with Alzheimer's disease, independent of amyloid load. Neuroinflammation appears to modulate the association between amyloid and tau biomarkers.

3.
Eur J Nucl Med Mol Imaging ; 51(6): 1639-1650, 2024 May.
Article in English | MEDLINE | ID: mdl-38182839

ABSTRACT

PURPOSE: [18F]Flortaucipir PET is a powerful diagnostic and prognostic tool for Alzheimer's disease (AD). Tau status definition is mainly based in the literature on semi-quantitative measures while in clinical settings visual assessment is usually preferred. We compared visual assessment with established semi-quantitative measures to classify subjects and predict the risk of cognitive decline in a memory clinic population. METHODS: We included 245 individuals from the Geneva Memory Clinic who underwent [18F]flortaucipir PET. Amyloid status was available for 207 individuals and clinical follow-up for 135. All scans were blindly evaluated by three independent raters who visually classified the scans according to Braak stages. Standardized uptake value ratio (SUVR) values were obtained from a global meta-ROI to define tau positivity, and the Simplified Temporo-Occipital Classification (STOC) was applied to obtain semi-quantitatively tau stages. The agreement between measures was tested using Cohen's kappa (k). ROC analysis and linear mixed-effects models were applied to test the diagnostic and prognostic values of tau status and stages obtained with the visual and semi-quantitative approaches. RESULTS: We found good inter-rater reliability in the visual interpretation of tau Braak stages, independently from the rater's expertise (k>0.68, p<0.01). A good agreement was equally found between visual and SUVR-based classifications for tau status (k=0.67, p<0.01). All tau-assessment modalities significantly discriminated amyloid-positive MCI and demented subjects from others (AUC>0.80) and amyloid-positive from negative subjects (AUC>0.85). Linear mixed-effect models showed that tau-positive individuals presented a significantly faster cognitive decline than the tau-negative group (p<0.01), independently from the classification method. CONCLUSION: Our results show that visual assessment is reliable for defining tau status and stages in a memory clinic population. The high inter-rater reliability, the substantial agreement, and the similar diagnostic and prognostic performance of visual rating and semi-quantitative methods demonstrate that [18F]flortaucipir PET can be robustly assessed visually in clinical practice.


Subject(s)
Carbolines , Positron-Emission Tomography , Humans , Male , Female , Aged , Prognosis , Alzheimer Disease/diagnostic imaging , Middle Aged , Cohort Studies , tau Proteins/metabolism , Aged, 80 and over
4.
Article in English | MEDLINE | ID: mdl-38861183

ABSTRACT

INTRODUCTION: Amyloid-ß (Aß) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The Fluorine-18-Fluorodeoxyglucose ([18F]FDG) PET scan tracks cerebral glucose metabolism, correlated with synaptic dysfunction and disease progression and is complementary for AD diagnosis. Dual-scan acquisitions of amyloid PET allows the possibility to use early-phase amyloid-PET as a biomarker for neurodegeneration, proven to have a good correlation to [18F]FDG PET. The aim of this study was to evaluate the added value of synthesizing the later from the former through deep learning (DL), aiming at reducing the number of PET scans, radiation dose, and discomfort to patients. METHODS: A total of 166 subjects including cognitively unimpaired individuals (N = 72), subjects with mild cognitive impairment (N = 73) and dementia (N = 21) were included in this study. All underwent T1-weighted MRI, dual-phase amyloid PET scans using either Fluorine-18 Florbetapir ([18F]FBP) or Fluorine-18 Flutemetamol ([18F]FMM), and an [18F]FDG PET scan. Two transformer-based DL models called SwinUNETR were trained separately to synthesize the [18F]FDG from early phase [18F]FBP and [18F]FMM (eFBP/eFMM). A clinical similarity score (1: no similarity to 3: similar) was assessed to compare the imaging information obtained by synthesized [18F]FDG as well as eFBP/eFMM to actual [18F]FDG. Quantitative evaluations include region wise correlation and single-subject voxel-wise analyses in comparison with a reference [18F]FDG PET healthy control database. Dice coefficients were calculated to quantify the whole-brain spatial overlap between hypometabolic ([18F]FDG PET) and hypoperfused (eFBP/eFMM) binary maps at the single-subject level as well as between [18F]FDG PET and synthetic [18F]FDG PET hypometabolic binary maps. RESULTS: The clinical evaluation showed that, in comparison to eFBP/eFMM (average of clinical similarity score (CSS) = 1.53), the synthetic [18F]FDG images are quite similar to the actual [18F]FDG images (average of CSS = 2.7) in terms of preserving clinically relevant uptake patterns. The single-subject voxel-wise analyses showed that at the group level, the Dice scores improved by around 13% and 5% when using the DL approach for eFBP and eFMM, respectively. The correlation analysis results indicated a relatively strong correlation between eFBP/eFMM and [18F]FDG (eFBP: slope = 0.77, R2 = 0.61, P-value < 0.0001); eFMM: slope = 0.77, R2 = 0.61, P-value < 0.0001). This correlation improved for synthetic [18F]FDG (synthetic [18F]FDG generated from eFBP (slope = 1.00, R2 = 0.68, P-value < 0.0001), eFMM (slope = 0.93, R2 = 0.72, P-value < 0.0001)). CONCLUSION: We proposed a DL model for generating the [18F]FDG from eFBP/eFMM PET images. This method may be used as an alternative for multiple radiotracer scanning in research and clinical settings allowing to adopt the currently validated [18F]FDG PET normal reference databases for data analysis.

5.
Eur J Nucl Med Mol Imaging ; 51(7): 1876-1890, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38355740

ABSTRACT

PURPOSE: Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017-2022), highlighting methodological shortcomings. METHODS: Studies reporting the diagnostic accuracy values of the molecular imaging techniques (i.e., amyloid-, tau-, [18F]FDG-PETs, DaT-SPECT, and cardiac [123I]-MIBG scintigraphy) in predicting progression from mild cognitive impairment (MCI) to dementia were selected according to the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) method and evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Main eligibility criteria were as follows: (1) ≥ 50 subjects with MCI, (2) follow-up ≥ 3 years, (3) gold standard: progression to dementia or diagnosis on pathology, and (4) measures of prospective accuracy. RESULTS: Sensitivity (SE) and specificity (SP) in predicting progression to dementia, mainly to Alzheimer's dementia were 43-100% and 63-94% for [18F]FDG-PET and 64-94% and 48-93% for amyloid-PET. Longitudinal studies were lacking for less common disorders (Dementia with Lewy bodies-DLB and Frontotemporal lobe degeneration-FTLD) and for tau-PET, DaT-SPECT, and [123I]-MIBG scintigraphy. Therefore, the accuracy values from cross-sectional studies in a smaller sample of subjects (n > 20, also including mild dementia stage) were chosen as surrogate outcomes. DaT-SPECT showed 47-100% SE and 71-100% SP in differentiating Lewy body disease (LBD) from non-LBD conditions; tau-PET: 88% SE and 100% SP in differentiating DLB from Posterior Cortical Atrophy. [123I]-MIBG scintigraphy differentiated LBD from non-LBD conditions with 47-100% SE and 71-100% SP. CONCLUSION: Molecular imaging has a moderate-to-good accuracy in predicting the progression of MCI to Alzheimer's dementia. Longitudinal studies are sparse in non-AD conditions, requiring additional efforts in these settings.


Subject(s)
Cognitive Dysfunction , Dementia , Disease Progression , Humans , Cognitive Dysfunction/diagnostic imaging , Dementia/diagnostic imaging , Molecular Imaging/methods
6.
Eur J Nucl Med Mol Imaging ; 51(3): 734-748, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37897616

ABSTRACT

PURPOSE: To investigate the impact of reduced injected doses on the quantitative and qualitative assessment of the amyloid PET tracers [18F]flutemetamol and [18F]florbetaben. METHODS: Cognitively impaired and unimpaired individuals (N = 250, 36% Aß-positive) were included and injected with [18F]flutemetamol (N = 175) or [18F]florbetaben (N = 75). PET scans were acquired in list-mode (90-110 min post-injection) and reduced-dose images were simulated to generate images of 75, 50, 25, 12.5 and 5% of the original injected dose. Images were reconstructed using vendor-provided reconstruction tools and visually assessed for Aß-pathology. SUVRs were calculated for a global cortical and three smaller regions using a cerebellar cortex reference tissue, and Centiloid was computed. Absolute and percentage differences in SUVR and CL were calculated between dose levels, and the ability to discriminate between Aß- and Aß + scans was evaluated using ROC analyses. Finally, intra-reader agreement between the reduced dose and 100% images was evaluated. RESULTS: At 5% injected dose, change in SUVR was 3.72% and 3.12%, with absolute change in Centiloid 3.35CL and 4.62CL, for [18F]flutemetamol and [18F]florbetaben, respectively. At 12.5% injected dose, percentage change in SUVR and absolute change in Centiloid were < 1.5%. AUCs for discriminating Aß- from Aß + scans were high (AUC ≥ 0.94) across dose levels, and visual assessment showed intra-reader agreement of > 80% for both tracers. CONCLUSION: This proof-of-concept study showed that for both [18F]flutemetamol and [18F]florbetaben, adequate quantitative and qualitative assessments can be obtained at 12.5% of the original injected dose. However, decisions to reduce the injected dose should be made considering the specific clinical or research circumstances.


Subject(s)
Alzheimer Disease , Aniline Compounds , Stilbenes , Humans , Benzothiazoles , Amyloid/metabolism , Positron-Emission Tomography/methods , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , Brain/metabolism
7.
Cereb Cortex ; 33(20): 10514-10527, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37615301

ABSTRACT

Here we tested the hypothesis of a relationship between the cortical default mode network (DMN) structural integrity and the resting-state electroencephalographic (rsEEG) rhythms in patients with Alzheimer's disease with dementia (ADD). Clinical and instrumental datasets in 45 ADD patients and 40 normal elderly (Nold) persons originated from the PDWAVES Consortium (www.pdwaves.eu). Individual rsEEG delta, theta, alpha, and fixed beta and gamma bands were considered. Freeware platforms served to derive (1) the (gray matter) volume of the DMN, dorsal attention (DAN), and sensorimotor (SMN) cortical networks and (2) the rsEEG cortical eLORETA source activities. We found a significant positive association between the DMN gray matter volume, the rsEEG alpha source activity estimated in the posterior DMN nodes (parietal and posterior cingulate cortex), and the global cognitive status in the Nold and ADD participants. Compared with the Nold, the ADD group showed lower DMN gray matter, lower rsEEG alpha source activity in those nodes, and lower global cognitive status. This effect was not observed in the DAN and SMN. These results suggest that the DMN structural integrity and the rsEEG alpha source activities in the DMN posterior hubs may be related and predict the global cognitive status in ADD and Nold persons.

8.
BMC Geriatr ; 24(1): 151, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38350854

ABSTRACT

BACKGROUND: The development of effective strategies to maintain good mental health of older adults is a public health priority. Mindfulness-based interventions have the potential to improve psychological well-being and cognitive functions of older adults, but little is known about the effect of such interventions when delivered through internet. During the COVID-19 pandemic we evaluated short- and long-term cognitive, psychological, and physiological effects of a mindfulness-based intervention (MBI) delivered via web-based videoconference in healthy older adults. METHODS: Fifty older adults participated in an 8-week MBI, which comprised structured 2-h weekly group sessions. A comprehensive evaluation encompassing cognitive (verbal memory, attention and processing speed, executive functions) and psychological assessments (depression and anxiety symptoms, mindfulness, worries, emotion regulation strategies, well-being, interoceptive awareness and sleep) was conducted. Additionally, electroencephalography (EEG) data were recorded before and after the MBI and at the 6-month follow-up (T6). Data were analyzed using an intention-to-treat approach, using linear mixed models adjusted for age. The effect size for time was computed as omega squared. RESULTS: We observed significant improvements from pre-MBI to post-MBI and at the T6 across several measures. These improvements were notable in the areas of verbal memory (California Verbal Learning Test, p ≤ .007), attention and executive functions (Trail Making Test A and BA, p < .050), interoceptive awareness (Multidimensional Assessment of Interoceptive Awareness, p = .0002 for self-regulation and p < .05 for noticing, body listening, and trusting dimensions), and rumination (Heidelberg Form for Emotion Regulation Strategies, p = .018). These changes were associated with low to medium effect size. Moreover, we observed significant changes in EEG patterns, with a decrease in alpha1 (p = .004) and an increase in alpha2 (p < .0001) from pre-MBI to T6. Notably, improvements in TMTBA and rumination were correlated with the decrease in alpha1 (p < .050), while improvements in TMTA were linked to the increase in alpha2 (p = .025). CONCLUSIONS: The results of our study show that a web-based MBI in older adults leads to improvements in cognitive and psychological measures, with associated modulations in specific brain rhythms. While these findings are promising, further controlled studies are required to validate these preliminary results. TRIAL REGISTRATION: The trial has been registered with the United States National Library of Medicine at the National Institutes of Health Registry of Clinical Trials under the code NCT05941143 on July 12, 2023.


Subject(s)
COVID-19 , Mindfulness , Aged , Humans , Cognition , COVID-19/psychology , Internet , Mindfulness/methods , Pandemics , Treatment Outcome , United States , Videoconferencing , Stress, Psychological
9.
Neurodegener Dis ; 24(1): 16-25, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38763140

ABSTRACT

INTRODUCTION: Subjective cognitive decline (SCD) is characterized by subjective cognitive concerns without objective cognitive impairment and is considered a risk factor for cognitive decline and dementia. However, most SCD patients will not develop neurodegenerative disorders, yet they may suffer from minor psychiatric, neurological, or somatic comorbidities. The aim of the present study was to provide a taxonomy of the heterogeneous SCD entity and to conduct a preliminary validation using data from a memory clinic sample. METHODS: Participants were fifty-five SCD individuals consecutively recruited at the Geneva Memory Center. Based on clinical reports, they were classified into three clinically pre-defined subgroups: (i) those with psychological or psychiatric comorbidities (Psy), (ii) those with somatic comorbidities (SomCom), (iii) and those with no apparent cause (NAC). Baseline demographics, clinical, cognitive, and biomarker differences among the SCD subgroups were assessed. Longitudinal cognitive changes (average 3 years follow-up) were modeled using a linear mixed model. RESULTS: Out of the 55 SCD cases, 16 were SomCom, 18 Psy, and 21 NAC. 47% were female, mean age was 71 years. We observed higher frequency of APOE ε4 carriers in NAC (53%) compared to SomCom (14%) and Psy (0%, p = 0.023) and lower level of plasma Aß42 in NAC (6.8 ± 1.0) compared to SomCom (8.4 ± 1.1; p = 0.031). SomCom subjects were older (74 years) than Psy (67 years, p = 0.011), and had greater medial temporal lobe atrophy (1.0 ± 1.0) than Psy (0.2 ± 0.6) and NAC (0.4 ± 0.5, p = 0.005). SomCom has worse episodic memory performances (14.5 ± 3.5) than Psy (15.8 ± 0.4) and NAC (15.8 ± 0.7, p = 0.032). We observed a slightly steeper, yet not statistically significant, cognitive decline in NAC (ß = -0.48) compared to Psy (ß = -0.28) and SomCom (ß = -0.24). CONCLUSIONS: NAC features a higher proportion of APOE ε4 carriers, lower plasma Aß42 and a trend towards steeper cognitive decline than SomCom and Psy. Taken together, these findings suggest that NACs are at higher risk of cognitive decline due to AD. The proposed clinical taxonomy might be implemented in clinical practice to identify SCD at higher risk. However, such taxonomy should be tested on an independent cohort with a larger sample size.

10.
Radiol Med ; 129(3): 467-477, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38329703

ABSTRACT

PURPOSE: Arterial spin labeling (ASL) represents a noninvasive perfusion biomarker, and, in the study of nonvascular disease, the use of the single-timepoint ASL technique is recommended. However, the obtained cerebral blood flow (CBF) maps may be highly influenced by delayed arterial transit time (ATT). Our aim was to assess the complexity of hemodynamic information of single-timepoint CBF maps using a new visual scale and comparing it with an ATT proxy, the "coefficient of spatial variation" (sCoV). MATERIAL AND METHODS: Individual CBF maps were estimated in a memory clinic population (mild cognitive impairment, dementia and cognitively unimpaired controls) and classified into four levels of delayed perfusion based on a visual rating scale. Calculated measures included global/regional sCoVs and common CBF statistics, as mean, median and standard deviation. One-way ANOVA was performed to compare these measures across the four groups of delayed perfusion. Spearman correlation was used to study the association of global sCoV with clinical data and CBF statistics. RESULTS: One hundred and forty-four participants (72 ± 7 years, 53% women) were included in the study. The proportion of maps with none, mild, moderate, and severe delayed perfusion was 15, 20, 37, and 28%, respectively. SCoV demonstrated a significant increase (p < 0.05) across the four groups, except when comparing none vs mild delayed perfusion groups (pBonf > 0.05). Global sCoV values, as an ATT proxy, ranged from 67 ± 4% (none) to 121 ± 24% (severe delayed) and were significantly associated with age and CBF statistics (p < 0.05). CONCLUSION: The impact of ATT delay in single-time CBF maps requires the use of a visual scale or sCoV in clinical or research settings.


Subject(s)
Arteries , Magnetic Resonance Imaging , Humans , Female , Male , Magnetic Resonance Imaging/methods , Spin Labels , Hemodynamics/physiology , Cerebrovascular Circulation/physiology
11.
Alzheimers Dement ; 20(1): 221-233, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37555516

ABSTRACT

INTRODUCTION: Tau and neurodegeneration strongly correlate with cognitive impairment, as compared to amyloid. However, their contribution in explaining cognition and predicting cognitive decline in memory clinics remains unclarified. METHODS: We included 94 participants with Mini-Mental State Examination (MMSE), tau positron emission tomography (PET), amyloid PET, fluorodeoxyglucose (FDG) PET, and MRI scans from Geneva Memory Center. Linear regression and mediation analyses tested the independent and combined association between biomarkers, cognitive performance, and decline. Linear mixed-effects and Cox proportional hazards models assessed biomarkers' prognostic values. RESULTS: Metabolism had the strongest association with cognition (r = 0.712; p < 0.001), followed by tau (r = -0.682; p < 0.001). Neocortical tau showed the strongest association with cognitive decline (r = -0.677; p < 0.001). Metabolism mediated the association between tau and cognition and marginally mediated the one with decline. Tau positivity represented the strongest risk factor for decline (hazard ratio = 32). DISCUSSION: Tau and neurodegeneration synergistically contribute to global cognitive impairment while tau drives decline. The tau PET superior prognostic value supports its implementation in memory clinics. HIGHLIGHTS: Hypometabolism has the strongest association with concurrent cognitive impairment. Neocortical tau pathology is the main determinant of cognitive decline over time. FDG-PET has a superior value compared to MRI as a measure of neurodegeneration. The prognostic value of tau-PET exceeded all other neuroimaging modalities.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , tau Proteins/metabolism , Fluorodeoxyglucose F18/metabolism , Positron-Emission Tomography/methods , Cognitive Dysfunction/metabolism , Amyloid/metabolism , Biomarkers/metabolism , Amyloid beta-Peptides
12.
Alzheimers Dement ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961808

ABSTRACT

INTRODUCTION: Assessing the potential sources of bias and variability of the Centiloid (CL) scale is fundamental for its appropriate clinical application. METHODS: We included 533 participants from AMYloid imaging to Prevent Alzheimer's Disease (AMYPAD DPMS) and Alzheimer's Disease Neuroimaging Initiative (ADNI) cohorts. Thirty-two CL pipelines were created using different combinations of reference region (RR), RR and target types, and quantification spaces. Generalized estimating equations stratified by amyloid positivity were used to assess the impact of the quantification pipeline, radiotracer, age, brain atrophy, and harmonization status on CL. RESULTS: RR selection and RR type impact CL the most, particularly in amyloid-negative individuals. The standard CL pipeline with the whole cerebellum as RR is robust against brain atrophy and differences in image resolution, with 95% confidence intervals below ± 3.95 CL for amyloid beta positivity cutoffs (CL < 24). DISCUSSION: The standard CL pipeline is recommended for most scenarios. Confidence intervals should be considered when operationalizing CL cutoffs in clinical and research settings. HIGHLIGHTS: We developed a framework for evaluating Centiloid (CL) variability to different factors. Reference region selection and delineation had the highest impact on CL values. Whole cerebellum (WCB) and whole cerebellum plus brainstem (WCB+BSTM) as reference regions yielded consistent results across tracers. The standard CL pipeline is robust against atrophy and image resolution variation. Estimated within- and between-pipeline variability (95% confidence interval) in absolute CL units.

13.
Alzheimers Dement ; 20(5): 3429-3441, 2024 May.
Article in English | MEDLINE | ID: mdl-38574374

ABSTRACT

INTRODUCTION: To support clinical trial designs focused on early interventions, our study determined reliable early amyloid-ß (Aß) accumulation based on Centiloids (CL) in pre-dementia populations. METHODS: A total of 1032 participants from the Amyloid Imaging to Prevent Alzheimer's Disease-Prognostic and Natural History Study (AMYPAD-PNHS) and Insight46 who underwent [18F]flutemetamol, [18F]florbetaben or [18F]florbetapir amyloid-PET were included. A normative strategy was used to define reliable accumulation by estimating the 95th percentile of longitudinal measurements in sub-populations (NPNHS = 101/750, NInsight46 = 35/382) expected to remain stable over time. The baseline CL threshold that optimally predicts future accumulation was investigated using precision-recall analyses. Accumulation rates were examined using linear mixed-effect models. RESULTS: Reliable accumulation in the PNHS was estimated to occur at >3.0 CL/year. Baseline CL of 16 [12,19] best predicted future Aß-accumulators. Rates of amyloid accumulation were tracer-independent, lower for APOE ε4 non-carriers, and for subjects with higher levels of education. DISCUSSION: Our results support a 12-20 CL window for inclusion into early secondary prevention studies. Reliable accumulation definition warrants further investigations.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Aniline Compounds , Positron-Emission Tomography , Humans , Male , Female , Aged , Amyloid beta-Peptides/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Prognosis , Middle Aged , Longitudinal Studies , Stilbenes , Brain/diagnostic imaging , Brain/metabolism , Benzothiazoles
14.
Psychogeriatrics ; 24(4): 968-982, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38638077

ABSTRACT

Behavioural and psychological symptoms of dementia (BPSD) are a clinical challenge for the lack of a sound taxonomy, frequent presentation with comorbid BPSD, lack of specific pharmacologic interventions, poor base of methodologically sound evidence with randomized clinical trials, contamination from the treatment of behavioural disturbances of young and adult psychiatric conditions, and small efficacy window of psychotropic drugs. We present here a treatment workflow based on a concept-driven literature review based on the notions that (i) the aetiology of BPSD can be mainly neurobiological (so-called 'primary' symptoms) or mainly environmental and functional ('secondary' symptoms) and that this drives treatment; (ii) the clinical efficacy of psychotropic drugs is driven by their specific profile of receptor affinity; (iii) drug treatment should follow the rules of 'start low-go slow, prescribe and revise'. This article argues in support of the distinction between primary and secondary BPSD, as well as their characteristics, which until now have been just sketchily described in the literature. It also offers comprehensive and pragmatic clinician-oriented recommendations for the treatment of BPSD.


Subject(s)
Dementia , Psychotropic Drugs , Humans , Dementia/drug therapy , Dementia/psychology , Psychotropic Drugs/therapeutic use , Aged , Behavioral Symptoms/drug therapy , Behavioral Symptoms/diagnosis , Mental Disorders/drug therapy , Mental Disorders/therapy
15.
Rev Med Suisse ; 20(856-7): 51-54, 2024 Jan 17.
Article in French | MEDLINE | ID: mdl-38231100

ABSTRACT

The increasing prevalence of Alzheimer's disease in the general population presents a number of medical, economic and social challenges for the years to come. After 20 years of research with no new treatment option, a new class of drugs is set to be introduced in Europe. Anti-amyloid drugs, which are already available in the United-States, slow the disease progression by targeting the biological processes causing the disease, unlike the symptomatic treatments that are currently available. However, their precise indications and the monitoring of their adverse events are still to be defined. Several other drugs are in advanced stages of development, such as those targeting the tau protein or neuroinflammation, suggesting that the management of the disease will be quite different in the years to come.


L'augmentation du nombre de personnes atteintes de la maladie d'Alzheimer présente des enjeux médicaux, économiques et sociaux pour les années à venir. Après 20 années de recherche sans nouveauté médicamenteuse, une nouvelle classe de molécules est sur le point d'arriver sur le marché en Europe. Les traitements antiamyloïde, déjà commercialisés aux États-Unis, ralentissent le déclin cognitif en ciblant le processus biologique qui en est à l'origine, contrairement aux traitements symptomatiques disponibles actuellement. Cependant, leurs indications précises et la gestion de leurs effets indésirables restent encore à définir. D'autres traitements sont dans des phases avancées d'élaboration, comme ceux ciblant la protéine tau ou l'inflammation, laissant envisager que la prise en charge de la maladie sera bien différente dans les années à venir.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/drug therapy , Alzheimer Disease/epidemiology , Disease Progression , Europe
16.
Ann Neurol ; 91(1): 33-47, 2022 01.
Article in English | MEDLINE | ID: mdl-34743360

ABSTRACT

OBJECTIVE: Although the presymptomatic stages of frontotemporal dementia (FTD) provide a unique chance to delay or even prevent neurodegeneration by early intervention, they remain poorly defined. Leveraging a large multicenter cohort of genetic FTD mutation carriers, we provide a biomarker-based stratification and biomarker cascade of the likely most treatment-relevant stage within the presymptomatic phase: the conversion stage. METHODS: We longitudinally assessed serum levels of neurofilament light (NfL) and phosphorylated neurofilament heavy (pNfH) in the Genetic FTD Initiative (GENFI) cohort (n = 444), using single-molecule array technique. Subjects comprised 91 symptomatic and 179 presymptomatic subjects with mutations in the FTD genes C9orf72, GRN, or MAPT, and 174 mutation-negative within-family controls. RESULTS: In a biomarker cascade, NfL increase preceded the hypothetical clinical onset by 15 years and concurred with brain atrophy onset, whereas pNfH increase started close to clinical onset. The conversion stage was marked by increased NfL, but still normal pNfH levels, while both were increased at the symptomatic stage. Intra-individual change rates were increased for NfL at the conversion stage and for pNfH at the symptomatic stage, highlighting their respective potential as stage-dependent dynamic biomarkers within the biomarker cascade. Increased NfL levels and NfL change rates allowed identification of presymptomatic subjects converting to symptomatic disease and capture of proximity-to-onset. We estimate stage-dependent sample sizes for trials aiming to decrease neurofilament levels or change rates. INTERPRETATION: Blood NfL and pNfH provide dynamic stage-dependent stratification and, potentially, treatment response biomarkers in presymptomatic FTD, allowing demarcation of the conversion stage. The proposed biomarker cascade might pave the way towards a biomarker-based precision medicine approach to genetic FTD. ANN NEUROL 2022;91:33-47.


Subject(s)
Biomarkers/blood , Frontotemporal Dementia/blood , Neurofilament Proteins/blood , Aged , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged
17.
J Neurol Neurosurg Psychiatry ; 94(6): 420-427, 2023 06.
Article in English | MEDLINE | ID: mdl-37012066

ABSTRACT

BACKGROUND: The key Alzheimer's disease (AD) biomarkers are traditionally measured with techniques/exams that are either expensive (amyloid-positron emission tomography (PET) and tau-PET), invasive (cerebrospinal fluid Aß42 and p-tau181), or poorly specific (atrophy on MRI and hypometabolism on fluorodeoxyglucose-PET). Recently developed plasma biomarkers could significantly enhance the efficiency of the diagnostic pathway in memory clinics and improve patient care. This study aimed to: (1) confirm the correlations between plasma and traditional AD biomarkers, (2) assess the diagnostic accuracy of plasma biomarkers as compared with traditional biomarkers, and (3) estimate the proportion of traditional exams potentially saved thanks to the use of plasma biomarkers. METHODS: Participants were 200 patients with plasma biomarkers and at least one traditional biomarker collected within 12 months. RESULTS: Overall, plasma biomarkers significantly correlated with biomarkers assessed through traditional techniques: up to r=0.50 (p<0.001) among amyloid, r=0.43 (p=0.002) among tau, and r=-0.23 (p=0.001) among neurodegeneration biomarkers. Moreover, plasma biomarkers showed high accuracy in discriminating the biomarker status (normal or abnormal) determined by using traditional biomarkers: up to area under the curve (AUC)=0.87 for amyloid, AUC=0.82 for tau, and AUC=0.63 for neurodegeneration status. The use of plasma as a gateway to traditional biomarkers using cohort-specific thresholds (with 95% sensitivity and 95% specificity) could save up to 49% of amyloid, 38% of tau, and 16% of neurodegeneration biomarkers. CONCLUSION: The implementation of plasma biomarkers could save a remarkable proportion of more expensive traditional exams, making the diagnostic workup more cost-effective and improving patient care.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Positron-Emission Tomography , Peptide Fragments/cerebrospinal fluid , Cognitive Dysfunction/diagnosis
18.
Eur J Nucl Med Mol Imaging ; 50(11): 3313-3323, 2023 09.
Article in English | MEDLINE | ID: mdl-37358619

ABSTRACT

PURPOSE: The ATN model represents a research framework used to classify subjects based on the presence or absence of Alzheimer's disease (AD) pathology through biomarkers for amyloid (A), tau (T), and neurodegeneration (N). The aim of this study was to assess the relationship between ATN profiles defined through imaging and cognitive decline in a memory clinic cohort. METHODS: One hundred-eight patients from the memory clinic of Geneva University Hospitals underwent complete clinical and neuropsychological evaluation at baseline and 23 ± 5 months after inclusion, magnetic resonance imaging, amyloid and tau PET scans. ATN profiles were divided into four groups: normal, AD pathological change (AD-PC: A + T-N-, A + T-N +), AD pathology (AD-P: A + T + N-, A + T + N +), and suspected non-AD pathology (SNAP: A-T + N-, A-T-N + , A-T + N +). RESULTS: Mini-Mental State Examination (MMSE) scores were significantly different among groups, both at baseline and follow-up, with the normal group having higher average MMSE scores than the other groups. MMSE scores changed significantly after 2 years only in AD-PC and AD-P groups. AD-P profile classification also had the largest number of decliners at follow-up (55%) and the steepest global cognitive decline compared to the normal group. Cox regression showed that participants within the AD-P group had a higher risk of cognitive decline (HR = 6.15, CI = 2.59-14.59), followed by AD-PC (HR = 3.16, CI = 1.17-8.52). CONCLUSION: Of the different group classifications, AD-P was found to have the most significant effect on cognitive decline over a period of 2 years, highlighting the value of both amyloid and tau PET molecular imaging as prognostic imaging biomarkers in clinical practice.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Prognosis , Amyloid beta-Peptides , tau Proteins , Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Biomarkers , Positron-Emission Tomography
19.
Eur J Nucl Med Mol Imaging ; 50(11): 3265-3275, 2023 09.
Article in English | MEDLINE | ID: mdl-37272955

ABSTRACT

PURPOSE: Several [18F]Flortaucipir cutoffs have been proposed for tau PET positivity (T+) in Alzheimer's disease (AD), but none were data-driven. The aim of this study was to establish and validate unsupervised T+ cutoffs by applying Gaussian mixture models (GMM). METHODS: Amyloid negative (A-) cognitively normal (CN) and amyloid positive (A+) AD-related dementia (ADRD) subjects from ADNI (n=269) were included. ADNI (n=475) and Geneva Memory Clinic (GMC) cohorts (n=98) were used for validation. GMM-based cutoffs were extracted for the temporal meta-ROI, and validated against previously published cutoffs and visual rating. RESULTS: GMM-based cutoffs classified less subjects as T+, mainly in the A- CN (<3.4% vs >28.5%) and A+ CN (<14.5% vs >42.9%) groups and showed higher agreement with visual rating (ICC=0.91 vs ICC<0.62) than published cutoffs. CONCLUSION: We provided reliable data-driven [18F]Flortaucipir cutoffs for in vivo T+ detection in AD. These cutoffs might be useful to select participants in clinical and research studies.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , tau Proteins , Amyloid beta-Peptides , Positron-Emission Tomography , Amyloid
20.
Mol Psychiatry ; 27(4): 1990-1999, 2022 04.
Article in English | MEDLINE | ID: mdl-35173266

ABSTRACT

Alzheimer's disease (AD) biomarkers represent several neurodegenerative processes, such as synaptic dysfunction, neuronal inflammation and injury, as well as amyloid pathology. We performed an exome-wide rare variant analysis of six AD biomarkers (ß-amyloid, total/phosphorylated tau, NfL, YKL-40, and Neurogranin) to discover genes associated with these markers. Genetic and biomarker information was available for 480 participants from two studies: EMIF-AD and ADNI. We applied a principal component (PC) analysis to derive biomarkers combinations, which represent statistically independent biological processes. We then tested whether rare variants in 9576 protein-coding genes associate with these PCs using a Meta-SKAT test. We also tested whether the PCs are intermediary to gene effects on AD symptoms with a SMUT test. One PC loaded on NfL and YKL-40, indicators of neuronal injury and inflammation. Four genes were associated with this PC: IFFO1, DTNB, NLRC3, and SLC22A10. Mediation tests suggest, that these genes also affect dementia symptoms via inflammation/injury. We also observed an association between a PC loading on Neurogranin, a marker for synaptic functioning, with GABBR2 and CASZ1, but no mediation effects. The results suggest that rare variants in IFFO1, DTNB, NLRC3, and SLC22A10 heighten susceptibility to neuronal injury and inflammation, potentially by altering cytoskeleton structure and immune activity disinhibition, resulting in an elevated dementia risk. GABBR2 and CASZ1 were associated with synaptic functioning, but mediation analyses suggest that the effect of these two genes on synaptic functioning is not consequential for AD development.


Subject(s)
Alzheimer Disease , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/genetics , Biomarkers , Chitinase-3-Like Protein 1/genetics , DNA-Binding Proteins , Dithionitrobenzoic Acid , Humans , Inflammation/genetics , Intercellular Signaling Peptides and Proteins , Neurogranin/genetics , Transcription Factors , tau Proteins
SELECTION OF CITATIONS
SEARCH DETAIL