Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nat Immunol ; 23(1): 50-61, 2022 01.
Article in English | MEDLINE | ID: mdl-34853448

ABSTRACT

NP105-113-B*07:02-specific CD8+ T cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP105-113-B*07:02-specific T cell clones and single-cell sequencing were performed concurrently, with functional avidity and antiviral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with T cell receptor usage, transcriptome signature and disease severity (acute n = 77, convalescent n = 52). We demonstrated a beneficial association of NP105-113-B*07:02-specific T cells in COVID-19 disease progression, linked with expansion of T cell precursors, high functional avidity and antiviral effector function. Broad immune memory pools were narrowed postinfection but NP105-113-B*07:02-specific T cells were maintained 6 months after infection with preserved antiviral efficacy to the SARS-CoV-2 Victoria strain, as well as Alpha, Beta, Gamma and Delta variants. Our data show that NP105-113-B*07:02-specific T cell responses associate with mild disease and high antiviral efficacy, pointing to inclusion for future vaccine design.


Subject(s)
HLA-B7 Antigen/immunology , Immunodominant Epitopes/immunology , Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Cytotoxic/immunology , Aged , Amino Acid Sequence , Antibodies, Viral/immunology , Antibody Affinity/immunology , COVID-19/immunology , COVID-19/pathology , Cell Line, Transformed , Female , Gene Expression Profiling , Humans , Immunologic Memory/immunology , Male , Middle Aged , Receptors, Antigen, T-Cell/immunology , Severity of Illness Index , Vaccinia virus/genetics , Vaccinia virus/immunology , Vaccinia virus/metabolism
2.
Nat Immunol ; 21(11): 1336-1345, 2020 11.
Article in English | MEDLINE | ID: mdl-32887977

ABSTRACT

The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide-MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.


Subject(s)
Antigens, Viral/immunology , Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/prevention & control , Epitopes, T-Lymphocyte/immunology , Humans , Immunodominant Epitopes/immunology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , United Kingdom , Viral Vaccines/immunology
3.
J Exp Med ; 219(6)2022 06 06.
Article in English | MEDLINE | ID: mdl-35472220

ABSTRACT

Improving the efficacy of immune checkpoint therapies will require a better understanding of how immune cells are recruited and sustained in tumors. Here, we used the photoconversion of the tumor immune cell compartment to identify newly entering lymphocytes, determine how they change over time, and investigate their egress from the tumor. Combining single-cell transcriptomics and flow cytometry, we found that while a diverse mix of CD8 T cell subsets enter the tumor, all CD8 T cells retained within this environment for more than 72 h developed an exhausted phenotype, revealing the rapid establishment of this program. Rather than forming tumor-resident populations, non-effector subsets, which express TCF-1 and include memory and stem-like cells, were continuously recruited into the tumor, but this recruitment was balanced by concurrent egress to the tumor-draining lymph node. Thus, the TCF-1+ CD8 T cell niche in tumors is highly dynamic, with the circulation of cells between the tumor and peripheral lymphoid tissue to bridge systemic and intratumoral responses.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Immunotherapy , Lymphoid Tissue , T-Lymphocyte Subsets
4.
J Virol ; 83(14): 7361-4, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19386715

ABSTRACT

To study the role of CD8 T cells in the control of varicella-zoster virus (VZV) reactivation, we developed multimeric major histocompatibility complexes to identify VZV-specific CD8 T cells. Potential HLA-A2 binding peptides from the putative immediate-early 62 protein (IE62) of VZV were tested for binding, and peptides with sufficient binding capacity were used to generate pentamers. Patients with VZV reactivation following stem cell transplantation were screened with these pentamers, leading to the identification of the first validated class I-restricted epitope of VZV. In 42% of HLA-A2 patients following VZV reactivation, these IE62-ALW-A2 T cells could be detected ex vivo.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Herpes Zoster/immunology , Herpesvirus 3, Human/immunology , Postoperative Complications/immunology , Postoperative Complications/virology , Stem Cell Transplantation/adverse effects , Cohort Studies , HLA-A2 Antigen/immunology , Herpes Zoster/virology , Humans , Immediate-Early Proteins/immunology , Trans-Activators/immunology , Transplantation, Homologous/adverse effects , Transplantation, Homologous/immunology , Viral Envelope Proteins/immunology
5.
bioRxiv ; 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32577665

ABSTRACT

COVID-19 is an ongoing global crisis in which the development of effective vaccines and therapeutics will depend critically on understanding the natural immunity to the virus, including the role of SARS-CoV-2-specific T cells. We have conducted a study of 42 patients following recovery from COVID-19, including 28 mild and 14 severe cases, comparing their T cell responses to those of 16 control donors. We assessed the immune memory of T cell responses using IFNγ based assays with overlapping peptides spanning SARS-CoV-2 apart from ORF1. We found the breadth, magnitude and frequency of memory T cell responses from COVID-19 were significantly higher in severe compared to mild COVID-19 cases, and this effect was most marked in response to spike, membrane, and ORF3a proteins. Total and spike-specific T cell responses correlated with the anti-Spike, anti-Receptor Binding Domain (RBD) as well as anti-Nucleoprotein (NP) endpoint antibody titre (p<0.001, <0.001 and =0.002). We identified 39 separate peptides containing CD4 + and/or CD8 + epitopes, which strikingly included six immunodominant epitope clusters targeted by T cells in many donors, including 3 clusters in spike (recognised by 29%, 24%, 18% donors), two in the membrane protein (M, 32%, 47%) and one in the nucleoprotein (Np, 35%). CD8+ responses were further defined for their HLA restriction, including B*4001-restricted T cells showing central memory and effector memory phenotype. In mild cases, higher frequencies of multi-cytokine producing M- and NP-specific CD8 + T cells than spike-specific CD8 + T cells were observed. They furthermore showed a higher ratio of SARS-CoV-2-specific CD8 + to CD4 + T cell responses. Immunodominant epitope clusters and peptides containing T cell epitopes identified in this study will provide critical tools to study the role of virus-specific T cells in control and resolution of SARS-CoV-2 infections. The identification of T cell specificity and functionality associated with milder disease, highlights the potential importance of including non-spike proteins within future COVID-19 vaccine design.

SELECTION OF CITATIONS
SEARCH DETAIL