Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Cell ; 167(7): 1734-1749.e22, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27984724

ABSTRACT

Mutation of highly conserved residues in transcription factors may affect protein-protein or protein-DNA interactions, leading to gene network dysregulation and human disease. Human mutations in GATA4, a cardiogenic transcription factor, cause cardiac septal defects and cardiomyopathy. Here, iPS-derived cardiomyocytes from subjects with a heterozygous GATA4-G296S missense mutation showed impaired contractility, calcium handling, and metabolic activity. In human cardiomyocytes, GATA4 broadly co-occupied cardiac enhancers with TBX5, another transcription factor that causes septal defects when mutated. The GATA4-G296S mutation disrupted TBX5 recruitment, particularly to cardiac super-enhancers, concomitant with dysregulation of genes related to the phenotypic abnormalities, including cardiac septation. Conversely, the GATA4-G296S mutation led to failure of GATA4 and TBX5-mediated repression at non-cardiac genes and enhanced open chromatin states at endothelial/endocardial promoters. These results reveal how disease-causing missense mutations can disrupt transcriptional cooperativity, leading to aberrant chromatin states and cellular dysfunction, including those related to morphogenetic defects.


Subject(s)
GATA4 Transcription Factor/genetics , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , Chromatin , Enhancer Elements, Genetic , Female , Heart/growth & development , Humans , Induced Pluripotent Stem Cells , Male , Mutation, Missense , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , T-Box Domain Proteins/genetics
2.
Cell ; 142(3): 375-86, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20691899

ABSTRACT

The reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs) raises the possibility that a somatic cell could be reprogrammed to an alternative differentiated fate without first becoming a stem/progenitor cell. A large pool of fibroblasts exists in the postnatal heart, yet no single "master regulator" of direct cardiac reprogramming has been identified. Here, we report that a combination of three developmental transcription factors (i.e., Gata4, Mef2c, and Tbx5) rapidly and efficiently reprogrammed postnatal cardiac or dermal fibroblasts directly into differentiated cardiomyocyte-like cells. Induced cardiomyocytes expressed cardiac-specific markers, had a global gene expression profile similar to cardiomyocytes, and contracted spontaneously. Fibroblasts transplanted into mouse hearts one day after transduction of the three factors also differentiated into cardiomyocyte-like cells. We believe these findings demonstrate that functional cardiomyocytes can be directly reprogrammed from differentiated somatic cells by defined factors. Reprogramming of endogenous or explanted fibroblasts might provide a source of cardiomyocytes for regenerative approaches.


Subject(s)
Cell Differentiation , Fibroblasts/cytology , Myocardium/cytology , Myocytes, Cardiac/cytology , Animals , Cell Separation , Fibroblasts/metabolism , GATA4 Transcription Factor/metabolism , Gene Expression Profiling , MEF2 Transcription Factors , Mice , Muscle Contraction , Myocytes, Cardiac/metabolism , Myogenic Regulatory Factors/metabolism , T-Box Domain Proteins/metabolism
3.
Circulation ; 145(22): 1663-1683, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35400201

ABSTRACT

BACKGROUND: Transcriptional reconfiguration is central to heart failure, the most common cause of which is dilated cardiomyopathy (DCM). The effect of 3-dimensional chromatin topology on transcriptional dysregulation and pathogenesis in human DCM remains elusive. METHODS: We generated a compendium of 3-dimensional epigenome and transcriptome maps from 101 biobanked human DCM and nonfailing heart tissues through highly integrative chromatin immunoprecipitation (H3K27ac [acetylation of lysine 27 on histone H3]), in situ high-throughput chromosome conformation capture, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin using sequencing, and RNA sequencing. We used human induced pluripotent stem cell-derived cardiomyocytes and mouse models to interrogate the key transcription factor implicated in 3-dimensional chromatin organization and transcriptional regulation in DCM pathogenesis. RESULTS: We discovered that the active regulatory elements (H3K27ac peaks) and their connectome (H3K27ac loops) were extensively reprogrammed in DCM hearts and contributed to transcriptional dysregulation implicated in DCM development. For example, we identified that nontranscribing NPPA-AS1 (natriuretic peptide A antisense RNA 1) promoter functions as an enhancer and physically interacts with the NPPA (natriuretic peptide A) and NPPB (natriuretic peptide B) promoters, leading to the cotranscription of NPPA and NPPB in DCM hearts. We revealed that DCM-enriched H3K27ac loops largely resided in conserved high-order chromatin architectures (compartments, topologically associating domains) and their anchors unexpectedly had equivalent chromatin accessibility. We discovered that the DCM-enriched H3K27ac loop anchors exhibited a strong enrichment for HAND1 (heart and neural crest derivatives expressed 1), a key transcription factor involved in early cardiogenesis. In line with this, its protein expression was upregulated in human DCM and mouse failing hearts. To further validate whether HAND1 is a causal driver for the reprogramming of enhancer-promoter connectome in DCM hearts, we performed comprehensive 3-dimensional epigenome mappings in human induced pluripotent stem cell-derived cardiomyocytes. We found that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced a distinct gain of enhancer-promoter connectivity and correspondingly increased the expression of their connected genes implicated in DCM pathogenesis, thus recapitulating the transcriptional signature in human DCM hearts. Electrophysiology analysis demonstrated that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced abnormal calcium handling. Furthermore, cardiomyocyte-specific overexpression of Hand1 in the mouse hearts resulted in dilated cardiac remodeling with impaired contractility/Ca2+ handling in cardiomyocytes, increased ratio of heart weight/body weight, and compromised cardiac function, which were ascribed to recapitulation of transcriptional reprogramming in DCM. CONCLUSIONS: This study provided novel chromatin topology insights into DCM pathogenesis and illustrated a model whereby a single transcription factor (HAND1) reprograms the genome-wide enhancer-promoter connectome to drive DCM pathogenesis.


Subject(s)
Cardiomyopathy, Dilated , Induced Pluripotent Stem Cells , Animals , Cardiomyopathy, Dilated/metabolism , Chromatin/genetics , Chromatin/metabolism , Histones/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Transcription Factors/genetics
4.
J Mol Cell Cardiol ; 166: 107-115, 2022 05.
Article in English | MEDLINE | ID: mdl-35247375

ABSTRACT

The electrophysiological properties of the heart include cardiac automaticity, excitation (i.e., depolarization and repolarization of action potential) of individual cardiomyocytes, and highly coordinated electrical propagation through the whole heart. An abnormality in any of these properties can cause arrhythmias. MicroRNAs (miRs) have been recognized as essential regulators of gene expression through the conventional RNA interference (RNAi) mechanism and are involved in a variety of biological events. Recent evidence has demonstrated that miRs regulate the electrophysiology of the heart through fine regulation by the conventional RNAi mechanism of the expression of ion channels, transporters, intracellular Ca2+-handling proteins, and other relevant factors. Recently, a direct interaction between miRs and ion channels has also been reported in the heart, revealing a biophysical modulation by miRs of cardiac electrophysiology. These advanced discoveries suggest that miR controls cardiac electrophysiology through two distinct mechanisms: immediate action through biophysical modulation and long-term conventional RNAi regulation. Here, we review the recent research progress and summarize the current understanding of how miR manipulates the function of ion channels to maintain the homeostasis of cardiac electrophysiology.


Subject(s)
MicroRNAs , Arrhythmias, Cardiac/metabolism , Electrophysiologic Techniques, Cardiac , Humans , Ion Channels/genetics , Ion Channels/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism
5.
Circulation ; 143(16): 1597-1613, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33590773

ABSTRACT

BACKGROUND: MicroRNAs (miRs) play critical roles in regulation of numerous biological events, including cardiac electrophysiology and arrhythmia, through a canonical RNA interference mechanism. It remains unknown whether endogenous miRs modulate physiologic homeostasis of the heart through noncanonical mechanisms. METHODS: We focused on the predominant miR of the heart (miR1) and investigated whether miR1 could physically bind with ion channels in cardiomyocytes by electrophoretic mobility shift assay, in situ proximity ligation assay, RNA pull down, and RNA immunoprecipitation assays. The functional modulations of cellular electrophysiology were evaluated by inside-out and whole-cell patch clamp. Mutagenesis of miR1 and the ion channel was used to understand the underlying mechanism. The effect on the heart ex vivo was demonstrated through investigating arrhythmia-associated human single nucleotide polymorphisms with miR1-deficient mice. RESULTS: We found that endogenous miR1 could physically bind with cardiac membrane proteins, including an inward-rectifier potassium channel Kir2.1. The miR1-Kir2.1 physical interaction was observed in mouse, guinea pig, canine, and human cardiomyocytes. miR1 quickly and significantly suppressed IK1 at sub-pmol/L concentration, which is close to endogenous miR expression level. Acute presence of miR1 depolarized resting membrane potential and prolonged final repolarization of the action potential in cardiomyocytes. We identified 3 miR1-binding residues on the C-terminus of Kir2.1. Mechanistically, miR1 binds to the pore-facing G-loop of Kir2.1 through the core sequence AAGAAG, which is outside its RNA interference seed region. This biophysical modulation is involved in the dysregulation of gain-of-function Kir2.1-M301K mutation in short QT or atrial fibrillation. We found that an arrhythmia-associated human single nucleotide polymorphism of miR1 (hSNP14A/G) specifically disrupts the biophysical modulation while retaining the RNA interference function. It is remarkable that miR1 but not hSNP14A/G relieved the hyperpolarized resting membrane potential in miR1-deficient cardiomyocytes, improved the conduction velocity, and eliminated the high inducibility of arrhythmia in miR1-deficient hearts ex vivo. CONCLUSIONS: Our study reveals a novel evolutionarily conserved biophysical action of endogenous miRs in modulating cardiac electrophysiology. Our discovery of miRs' biophysical modulation provides a more comprehensive understanding of ion channel dysregulation and may provide new insights into the pathogenesis of cardiac arrhythmias.


Subject(s)
Ion Channels/metabolism , Membrane Potentials/physiology , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Animals , Dogs , Guinea Pigs , Humans , Mice
6.
Nature ; 485(7400): 593-8, 2012 May 31.
Article in English | MEDLINE | ID: mdl-22522929

ABSTRACT

The reprogramming of adult cells into pluripotent cells or directly into alternative adult cell types holds great promise for regenerative medicine. We reported previously that cardiac fibroblasts,which represent 50%of the cells in the mammalian heart, can be directly reprogrammed to adult cardiomyocyte-like cells in vitro by the addition of Gata4, Mef2c and Tbx5 (GMT). Here we use genetic lineage tracing to show that resident non-myocytes in the murine heart can be reprogrammed into cardiomyocyte-like cells in vivo by local delivery of GMT after coronary ligation. Induced cardiomyocytes became binucleate, assembled sarcomeres and had cardiomyocyte-like gene expression. Analysis of single cells revealed ventricular cardiomyocyte-like action potentials, beating upon electrical stimulation, and evidence of electrical coupling. In vivo delivery of GMT decreased infarct size and modestly attenuated cardiac dysfunction up to 3 months after coronary ligation. Delivery of the pro-angiogenic and fibroblast-activating peptide, thymosin b4, along with GMT, resulted in further improvements in scar area and cardiac function. These findings demonstrate that cardiac fibroblasts can be reprogrammed into cardiomyocyte-like cells in their native environment for potential regenerative purposes.


Subject(s)
Cell Transdifferentiation , Cellular Reprogramming , Fibroblasts/cytology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Regenerative Medicine/methods , Animals , Biomarkers/analysis , Cell Lineage , Cicatrix/pathology , Cicatrix/therapy , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , GATA4 Transcription Factor/genetics , GATA4 Transcription Factor/metabolism , Gene Expression Regulation , Genetic Vectors/genetics , Heart/physiology , Heart/physiopathology , MEF2 Transcription Factors , Male , Mice , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Infarction/therapy , Myocardium/cytology , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myogenic Regulatory Factors/genetics , Myogenic Regulatory Factors/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Thymosin/pharmacology , Thymosin/therapeutic use
7.
Proc Natl Acad Sci U S A ; 112(41): 12705-10, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26417073

ABSTRACT

Single cardiomyocytes contain myofibrils that harbor the sarcomere-based contractile machinery of the myocardium. Cardiomyocytes differentiated from human pluripotent stem cells (hPSC-CMs) have potential as an in vitro model of heart activity. However, their fetal-like misalignment of myofibrils limits their usefulness for modeling contractile activity. We analyzed the effects of cell shape and substrate stiffness on the shortening and movement of labeled sarcomeres and the translation of sarcomere activity to mechanical output (contractility) in live engineered hPSC-CMs. Single hPSC-CMs were cultured on polyacrylamide substrates of physiological stiffness (10 kPa), and Matrigel micropatterns were used to generate physiological shapes (2,000-µm(2) rectangles with length:width aspect ratios of 5:1-7:1) and a mature alignment of myofibrils. Translation of sarcomere shortening to mechanical output was highest in 7:1 hPSC-CMs. Increased substrate stiffness and applied overstretch induced myofibril defects in 7:1 hPSC-CMs and decreased mechanical output. Inhibitors of nonmuscle myosin activity repressed the assembly of myofibrils, showing that subcellular tension drives the improved contractile activity in these engineered hPSC-CMs. Other factors associated with improved contractility were axially directed calcium flow, systematic mitochondrial distribution, more mature electrophysiology, and evidence of transverse-tubule formation. These findings support the potential of these engineered hPSC-CMs as powerful models for studying myocardial contractility at the cellular level.


Subject(s)
Cell Differentiation , Cell Shape , Models, Biological , Myocardial Contraction , Myocytes, Cardiac/metabolism , Pluripotent Stem Cells/metabolism , Calcium Signaling , Cells, Cultured , Humans , Mitochondria, Heart , Myocytes, Cardiac/cytology , Pluripotent Stem Cells/cytology
8.
Int J Mol Sci ; 19(5)2018 May 04.
Article in English | MEDLINE | ID: mdl-29734659

ABSTRACT

Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) holds a great promise for regenerative medicine and has been studied in several major directions. However, cell-cycle regulation, a fundamental biological process, has not been investigated during iCM-reprogramming. Here, our time-lapse imaging on iCMs, reprogrammed by Gata4, Mef2c, and Tbx5 (GMT) monocistronic retroviruses, revealed that iCM-reprogramming was majorly initiated at late-G1- or S-phase and nearly half of GMT-reprogrammed iCMs divided soon after reprogramming. iCMs exited cell cycle along the process of reprogramming with decreased percentage of 5-ethynyl-20-deoxyuridine (EdU)⁺/α-myosin heavy chain (αMHC)-GFP⁺ cells. S-phase synchronization post-GMT-infection could enhance cell-cycle exit of reprogrammed iCMs and yield more GFPhigh iCMs, which achieved an advanced reprogramming with more expression of cardiac genes than GFPlow cells. However, S-phase synchronization did not enhance the reprogramming with a polycistronic-viral vector, in which cell-cycle exit had been accelerated. In conclusion, post-infection synchronization of S-phase facilitated the early progression of GMT-reprogramming through a mechanism of enhanced cell-cycle exit.


Subject(s)
Cell Cycle Checkpoints/genetics , Cell Differentiation/genetics , Cellular Reprogramming/genetics , Myocytes, Cardiac/cytology , Animals , Cell Cycle/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Mice , Myocytes, Cardiac/metabolism , Regenerative Medicine/trends
9.
Circ J ; 79(2): 245-54, 2015.
Article in English | MEDLINE | ID: mdl-25744738

ABSTRACT

Cardiac fibroblasts play critical roles in maintaining normal cardiac function and in cardiac remodeling during pathological conditions such as myocardial infarction (MI). Adult cardiomyocytes (CMs) have little to no regenerative capacity; damaged CMs in the heart after MI are replaced by cardiac fibroblasts that become activated and transform into myofibroblasts, which preserves the structural integrity. Unfortunately, this process typically causes fibrosis and reduces cardiac function. Directly reprogramming adult cardiac fibroblasts into induced CM-like cells (iCMs) holds great promise for restoring heart function. Direct cardiac reprogramming also provides a new research model to investigate which transcription factors and microRNAs control the molecular network that guides cardiac cell fate. We review the approaches and characterization of in vitro and in vivo reprogrammed iCMs from different laboratories, and outline the future directions needed to translate this new approach into a practical therapy for damaged hearts.


Subject(s)
Cellular Reprogramming , Fibroblasts/metabolism , Myocardial Infarction/therapy , Myocytes, Cardiac/metabolism , Regenerative Medicine/methods , Animals , Humans , Mice , Myocardial Infarction/metabolism , Rats
10.
Circ Arrhythm Electrophysiol ; 17(1): e012150, 2024 01.
Article in English | MEDLINE | ID: mdl-38126205

ABSTRACT

BACKGROUND: MicroRNA-1 (miR1), encoded by the genes miR1-1 and miR1-2, is the most abundant microRNA in the heart and plays a critical role in heart development and physiology. Dysregulation of miR1 has been associated with various heart diseases, where a significant reduction (>75%) in miR1 expression has been observed in patient hearts with atrial fibrillation or acute myocardial infarction. However, it remains uncertain whether miR1-deficiency acts as a primary etiological factor of cardiac remodeling. METHODS: miR1-1 or miR1-2 knockout mice were crossbred to produce 75%-miR1-knockdown (75%KD; miR1-1+/-:miR1-2-/- or miR1-1-/-:miR1-2+/-) mice. Cardiac pathology of 75%KD cardiomyocytes/hearts was investigated by ECG, patch clamping, optical mapping, transcriptomic, and proteomic assays. RESULTS: In adult 75%KD hearts, the overall miR1 expression was reduced to ≈25% of the normal wild-type level. These adult 75%KD hearts displayed decreased ejection fraction and fractional shortening, prolonged QRS and QT intervals, and high susceptibility to arrhythmias. Adult 75%KD cardiomyocytes exhibited prolonged action potentials with impaired repolarization and excitation-contraction coupling. Comparatively, 75%KD cardiomyocytes showcased reduced Na+ current and transient outward potassium current, coupled with elevated L-type Ca2+ current, as opposed to wild-type cells. RNA sequencing and proteomics assays indicated negative regulation of cardiac muscle contraction and ion channel activities, along with a positive enrichment of smooth muscle contraction genes in 75%KD cardiomyocytes/hearts. miR1 deficiency led to dysregulation of a wide gene network, with miR1's RNA interference-direct targets influencing many indirectly regulated genes. Furthermore, after 6 weeks of bi-weekly intravenous tail-vein injection of miR1 mimics, the ejection fraction and fractional shortening of 75%KD hearts showed significant improvement but remained susceptible to arrhythmias. CONCLUSIONS: miR1 deficiency acts as a primary etiological factor in inducing cardiac remodeling via disrupting heart regulatory homeostasis. Achieving stable and appropriate microRNA expression levels in the heart is critical for effective microRNA-based therapy in cardiovascular diseases.


Subject(s)
MicroRNAs , Mice , Humans , Animals , MicroRNAs/genetics , Proteomics , Ventricular Remodeling , Myocytes, Cardiac/metabolism , Arrhythmias, Cardiac , Action Potentials , Mice, Knockout , Homeostasis
11.
Autophagy ; 18(10): 2481-2494, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35220905

ABSTRACT

Defective mitophagy contributes to normal aging and various neurodegenerative and cardiovascular diseases. The newly developed methodologies to visualize and quantify mitophagy allow for additional progress in defining the pathophysiological significance of mitophagy in various model organisms. However, current knowledge regarding mitophagy relevant to human physiology is still limited. Model organisms such as mice might not be optimal models to recapitulate all the key aspects of human disease phenotypes. The development of the human-induced pluripotent stem cells (hiPSCs) may provide an exquisite approach to bridge the gap between animal mitophagy models and human physiology. To explore this premise, we take advantage of the pH-dependent fluorescent mitophagy reporter, mt-Keima, to assess mitophagy in hiPSCs and hiPSC-derived cardiomyocytes (hiPSC-CMs). We demonstrate that mt-Keima expression does not affect mitochondrial function or cardiomyocytes contractility. Comparison of hiPSCs and hiPSC-CMs during different stages of differentiation revealed significant variations in basal mitophagy. In addition, we have employed the mt-Keima hiPSC-CMs to analyze how mitophagy is altered under certain pathological conditions including treating the hiPSC-CMs with doxorubicin, a chemotherapeutic drug well known to cause life-threatening cardiotoxicity, and hypoxia that stimulates ischemia injury. We have further developed a chemical screening to identify compounds that modulate mitophagy in hiPSC-CMs. The ability to assess mitophagy in hiPSC-CMs suggests that the mt-Keima hiPSCs should be a valuable resource in determining the role mitophagy plays in human physiology and hiPSC-based disease models. The mt-Keima hiPSCs could prove a tremendous asset in the search for pharmacological interventions that promote mitophagy as a therapeutic target.Abbreviations: AAVS1: adeno-associated virus integration site 1; AKT/protein kinase B: AKT serine/threonine kinase; CAG promoter: cytomegalovirus early enhancer, chicken ACTB/ß-actin promoter; CIS: cisplatin; CRISPR: clustered regularly interspaced short palindromic repeats; FACS: fluorescence-activated cell sorting; FCCP: carbonyl cyanide p-trifluoromethoxyphenylhydrazone; hiPSC: human induced pluripotent stem cell; hiPSC-CMs: human induced pluripotent stem cell-derived cardiomyocytes; ISO: isoproterenol; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PI3K: phosphoinositide 3-kinase; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RT: room temperature; SB: SBI-0206965; ULK1: unc-51 like autophagy activating kinase 1.


Subject(s)
Induced Pluripotent Stem Cells , Mitophagy , Actins , Animals , Autophagy , Autophagy-Related Protein-1 Homolog , Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone , Cisplatin , Doxorubicin , Humans , Induced Pluripotent Stem Cells/metabolism , Isoproterenol , Mice , Microtubule-Associated Proteins , Mitophagy/genetics , Myocytes, Cardiac/metabolism , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-akt , Serine , Sirolimus , TOR Serine-Threonine Kinases , Ubiquitin-Protein Ligases/metabolism
12.
J Pers Med ; 12(10)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36294819

ABSTRACT

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic disorder of desmosomal and structural proteins that is characterized by fibro-fatty infiltrate in the ventricles and fatal arrhythmia that can occur early before significant structural abnormalities. Most ARVC mutations interfere with ß-catenin-dependent transcription that enhances adipogenesis; however, the mechanistic pathway to arrhythmogenesis is not clear. We hypothesized that adipogenic conditions play an important role in the formation of arrhythmia substrates in ARVC. Cardiac myocyte monolayers co-cultured for 2-4 days with mesenchymal stem cells (MSC) were derived from human-induced pluripotent stem cells with the ARVC5 TMEM43 p.Ser358Leu mutation. The TMEM43 mutation in myocyte co-cultures alone had no significant effect on impulse conduction velocity (CV) or APD. In contrast, when co-cultures were exposed to pro-adipogenic factors for 2-4 days, CV and APD were significantly reduced compared to controls by 49% and 31%, respectively without evidence of adipogenesis. Additionally, these arrhythmia substrates coincided with a significant reduction in IGF-1 expression in MSCs and were mitigated by IGF-1 treatment. These findings suggest that the onset of enhanced adipogenic signaling may be a mechanism of early arrhythmogenesis, which could lead to personalized treatment for arrhythmias associated with TMEM43 and other ARVC mutations.

13.
Methods Mol Biol ; 2239: 33-46, 2021.
Article in English | MEDLINE | ID: mdl-33226611

ABSTRACT

Over the last decade, great achievements have been made in the field of direct epigenetic reprogramming, which converts one type of adult somatic cells into another type of differentiated cells, such as direct reprogramming of fibroblasts into cardiomyocytes, without passage through an undifferentiated pluripotent stage. Discovery of direct cardiac reprogramming offers a promising therapeutic strategy to prevent/attenuate cardiac fibrotic remodeling in a diseased heart. Furthermore, in vitro reprogramming of fibroblasts into cardiomyocyte-like cells provides new avenues to conduct basic mechanistic studies, to test drugs, and to model cardiac diseases in a dish. Here, we describe a detailed step-by-step protocol for in vitro production of induced cardiomyocyte-like cells (iCMs) from fibroblasts. The related procedures include high-quality fibroblast isolation of different origins (neonatal cardiac, tail-tip, and adult cardiac fibroblasts), retroviral preparation of reprogramming factors, and iCM generation by fibroblast reprogramming via retroviral transduction of Gata4, Mef2c, and Tbx5. A detailed written protocol will help many other laboratories, inexperienced in this area, to use and further improve this technology in their studies of cardiac regenerative medicine.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation/genetics , Cellular Reprogramming/genetics , Fibroblasts/cytology , Myocytes, Cardiac/cytology , Transcription Factors/genetics , Animals , Cells, Cultured , Epigenesis, Genetic , Fibroblasts/metabolism , Fibroblasts/physiology , Flow Cytometry , GATA4 Transcription Factor/genetics , GATA4 Transcription Factor/metabolism , Genetic Vectors , Humans , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Mice , Muscle Development/drug effects , Muscle Development/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Retroviridae/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Transcription Factors/metabolism
14.
Cells ; 10(7)2021 06 22.
Article in English | MEDLINE | ID: mdl-34206684

ABSTRACT

Direct cardiac reprogramming of fibroblasts into induced cardiomyocytes (iCMs) is a promising approach but remains a challenge in heart regeneration. Efforts have focused on improving the efficiency by understanding fundamental mechanisms. One major challenge is that the plasticity of cultured fibroblast varies batch to batch with unknown mechanisms. Here, we noticed a portion of in vitro cultured fibroblasts have been activated to differentiate into myofibroblasts, marked by the expression of αSMA, even in primary cell cultures. Both forskolin, which increases cAMP levels, and TGFß inhibitor SB431542 can efficiently suppress myofibroblast differentiation of cultured fibroblasts. However, SB431542 improved but forskolin blocked iCM reprogramming of fibroblasts that were infected with retroviruses of Gata4, Mef2c, and Tbx5 (GMT). Moreover, inhibitors of cAMP downstream signaling pathways, PKA or CREB-CBP, significantly improved the efficiency of reprogramming. Consistently, inhibition of p38/MAPK, another upstream regulator of CREB-CBP, also improved reprogramming efficiency. We then investigated if inhibition of these signaling pathways in primary cultured fibroblasts could improve their plasticity for reprogramming and found that preconditioning of cultured fibroblasts with CREB-CBP inhibitor significantly improved the cellular plasticity of fibroblasts to be reprogrammed, yielding ~2-fold more iCMs than untreated control cells. In conclusion, suppression of CREB-CBP signaling improves fibroblast plasticity for direct cardiac reprogramming.


Subject(s)
Cell Plasticity , Cellular Reprogramming , Cyclic AMP Response Element-Binding Protein/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Membrane Proteins/metabolism , Myocardium/cytology , Phosphoproteins/metabolism , Signal Transduction , Animals , Benzamides/pharmacology , Cell Differentiation/drug effects , Cell Plasticity/drug effects , Cells, Cultured , Cellular Reprogramming/drug effects , Colforsin/pharmacology , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Dioxoles/pharmacology , Fibroblasts/drug effects , Mice, Transgenic , Myofibroblasts/cytology , Myofibroblasts/drug effects , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism
15.
Sci Rep ; 11(1): 20570, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663875

ABSTRACT

Chronic kidney disease (CKD) affects more than 20 million people in the US, and it is associated with a significantly increased risk of sudden cardiac death (SCD). Despite the significance, the mechanistic relationship between SCD and CKD is not clear and there are few effective therapies. Using optical mapping techniques, we tested the hypothesis that mouse models of progressive diabetic kidney disease (DKD) exhibit enhanced ventricular arrhythmia incidence and underlying arrhythmia substrates. Compared to wild-type mice, both Leprdb/db eNOS-/- (2KO) and high fat diet plus low dose streptozotocin (HFD + STZ) mouse models of DKD experienced sudden death and greater arrhythmia inducibility, which was more common with isoproterenol than programmed electrical stimulation. 2KO mice demonstrated slowed conduction velocity, prolonged action potential duration (APD), and myocardial fibrosis; both 2KO and HFD + STZ mice exhibited arrhythmias and calcium dysregulation with isoproterenol challenge. Finally, circulating concentrations of the uremic toxin asymmetric dimethylarginine (ADMA) were elevated in 2KO mice. Incubation of human cardiac myocytes with ADMA prolonged APD, as also observed in 2KO mice hearts ex vivo. The present study elucidates an arrhythmia-associated mechanism of sudden death associated with DKD, which may lead to more effective treatments in the vulnerable DKD patient population.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Diabetic Nephropathies/physiopathology , Action Potentials/physiology , Animals , Arrhythmias, Cardiac/pathology , Diabetes Complications/physiopathology , Diabetes Mellitus/physiopathology , Diabetic Nephropathies/pathology , Disease Models, Animal , Heart Rate/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/pathology , Tachycardia, Ventricular/pathology , Tachycardia, Ventricular/physiopathology , Voltage-Sensitive Dye Imaging/methods
16.
Front Physiol ; 12: 661429, 2021.
Article in English | MEDLINE | ID: mdl-33828490

ABSTRACT

Nav1.5, encoded by the gene SCN5A, is the predominant voltage-gated sodium channel expressed in the heart. It initiates the cardiac action potential and thus is crucial for normal heart rhythm and function. Dysfunctions in Nav1.5 have been involved in multiple congenital or acquired cardiac pathological conditions such as Brugada syndrome (BrS), Long QT Syndrome Type 3, and heart failure (HF), all of which can lead to sudden cardiac death (SCD) - one of the leading causes of death worldwide. Our lab has previously reported that Nav1.5 forms dimer channels with coupled gating. We also found that Nav1.5 BrS mutants can exert a dominant-negative (DN) effect and impair the function of wildtype (WT) channels through coupled-gating with the WT. It was previously reported that reduction in cardiac sodium currents (INa), observed in HF, could be due to the increased expression of an SCN5A splice variant - E28D, which results in a truncated sodium channel (Nav1.5-G1642X). In this study, we hypothesized that this SCN5A splice variant leads to INa reduction in HF through biophysical coupling with the WT. We showed that Nav1.5-G1642X is a non-functional channel but can interact with the WT, resulting in a DN effect on the WT channel. We found that both WT and the truncated channel Nav1.5-G1642X traffic at the cell surface, suggesting biophysical coupling. Indeed, we found that the DN effect can be abolished by difopein, an inhibitor of the biophysical coupling. Interestingly, the sodium channel polymorphism H558R, which has beneficial effect in HF patients, could also block the DN effect. In summary, the HF-associated splice variant Nav1.5-G1642X suppresses sodium currents in heart failure patients through a mechanism involving coupled-gating with the wildtype sodium channel.

17.
Am J Physiol Cell Physiol ; 297(1): C152-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19357236

ABSTRACT

Cardiomyocytes (CMs) are nonregenerative. Self-renewable pluripotent human embryonic stem cells (hESCs) can differentiate into CMs for cell-based therapies. We recently reported that Ca(2+) handling, crucial to excitation-contraction coupling of hESC-derived CMs (hESC-CMs), is functional but immature. Such immature properties as smaller cytosolic Ca(2+) transient amplitudes, slower kinetics, and reduced Ca(2+) content of sarcoplasmic reticulum (SR) can be attributed to the differential developmental expression profiles of specific Ca(2+) handling and regulatory proteins in hESC-CMs and their adult counterparts. In particular, calsequestrin (CSQ), the most abundant, high-capacity but low-affinity, Ca(2+)-binding protein in the SR that is anchored to the ryanodine receptor, is robustly expressed in adult CMs but completely absent in hESC-CMs. Here we hypothesized that gene transfer of CSQ in hESC-CMs suffices to induce functional improvement of SR. Transduction of hESC-CMs by the recombinant adenovirus Ad-CMV-CSQ-IRES-GFP (Ad-CSQ) significantly increased the transient amplitude, upstroke velocity, and transient decay compared with the control Ad-CMV-GFP (Ad-GFP) and Ad-CMV-CSQDelta-IRES-GFP (Ad-CSQDelta, which mediated the expression of a nonfunctional, truncated version of CSQ) groups. Ad-CSQ increased the SR Ca(2+) content but did not alter L-type Ca(2+) current. Pharmacologically, untransduced wild-type, Ad-GFP-, Ad-CSQDelta-, and Ad-CSQ-transduced hESC-CMs behaved similarly. Whereas ryanodine significantly reduced the Ca(2+) transient amplitude and slowed the upstroke, thapsigargin slowed the decay. Neither triadin nor junctin was affected. We conclude that CSQ expression in hESC-CMs facilitates Ca(2+) handling maturation. Our results shed insights into the suitability of hESC-CMs for therapies and as certain heart disease models for drug screening.


Subject(s)
Calcium Signaling , Calsequestrin/metabolism , Cell Differentiation , Embryonic Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Adenoviridae/genetics , Calcium Channels, L-Type/metabolism , Calcium Signaling/drug effects , Calsequestrin/genetics , Cell Line , Embryonic Stem Cells/drug effects , Enzyme Inhibitors/pharmacology , Genetic Vectors , Humans , Kinetics , Membrane Potentials , Myocytes, Cardiac/drug effects , Recombinant Fusion Proteins/metabolism , Ryanodine/pharmacology , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Thapsigargin/pharmacology , Transduction, Genetic
18.
Cells ; 8(7)2019 07 04.
Article in English | MEDLINE | ID: mdl-31277520

ABSTRACT

Coronary artery disease is the most common form of cardiovascular diseases, resulting in the loss of cardiomyocytes (CM) at the site of ischemic injury. To compensate for the loss of CMs, cardiac fibroblasts quickly respond to injury and initiate cardiac remodeling in an injured heart. In the remodeling process, cardiac fibroblasts proliferate and differentiate into myofibroblasts, which secrete extracellular matrix to support the intact structure of the heart, and eventually differentiate into matrifibrocytes to form chronic scar tissue. Discovery of direct cardiac reprogramming offers a promising therapeutic strategy to prevent/attenuate this pathologic remodeling and replace the cardiac fibrotic scar with myocardium in situ. Since the first discovery in 2010, many progresses have been made to improve the efficiency and efficacy of reprogramming by understanding the mechanisms and signaling pathways that are activated during direct cardiac reprogramming. Here, we overview the development and recent progresses of direct cardiac reprogramming and discuss future directions in order to translate this promising technology into an effective therapeutic paradigm to reverse cardiac pathological remodeling in an injured heart.


Subject(s)
Cellular Reprogramming/genetics , Coronary Artery Disease/therapy , Myocardium/pathology , Regenerative Medicine/methods , Transcription Factors/genetics , Animals , Coronary Artery Disease/pathology , Disease Models, Animal , Extracellular Matrix/pathology , Fibrosis , Gene Expression Regulation , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Humans , Injections, Intralesional , Myocardium/cytology , Myocytes, Cardiac/physiology , Myofibroblasts/physiology , Signal Transduction/genetics , Transcription Factors/metabolism
20.
Stem Cells Dev ; 17(2): 315-24, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18447646

ABSTRACT

Self-renewing pluripotent human embryonic stem (hES) cells are capable of regenerating such non-dividing cells as neurons and cardiomyocytes for therapies and can serve as an excellent experimental model for studying early human development. Both the spatial and temporal relationships of gene expression play a crucial role in determining differentiation; to obtain a better understanding of hES cell differentiation, it will be necessary to establish an inducible system in hES cells that enables specific transgene(s) to reversibly and conditionally express (1) at specific levels and (2) at particular time points during development. Using lentivirus (LV)-mediated gene transfer and a tetracycline-controlled trans-repressor (TR), we first established in hES cells a doxycycline (DOX)-inducible expression system of green fluorescent protein (GFP) to probe its reversibility and kinetics. Upon the addition of DOX, the percentage of GFP(+) hES cells increased time dependently: The time at which 50% of all green cells appeared (T(50)(on)) was 119.5+/-3.2 h; upon DOX removal, GFP expression declined with a half-time (T(50)(off)) of 127.7+/-3.9 h and became completely silenced at day 8. Both the proportion and total mean fluorescence intensity (MFI) were dose-dependent (EC(50)=24.5+/-2.2 ng/ml). The same system when incorporated into murine (m) ES cells similarly exhibited reversible dose-dependent responses with a similar sensitivity (EC(50)=49.5+/-8.5 ng/ml), but the much faster kinetics (T(50)(on)=35.5+/-5.5 h, T(50)(off) = 71.5+/-2.4 hours). DOX-induced expression of the Kir2.1 channels in mES and hES cells led to robust expression of the inwardly rectifying potassium (K(+)) current and thereby hyperpolarized the resting membrane potential (RMP). We conclude that the LV-inducible system established presents a unique tool for probing differentiation.


Subject(s)
Cell Differentiation/genetics , Embryonic Stem Cells/physiology , Gene Expression Regulation , Transgenes , Animals , Cells, Cultured , Cloning, Molecular , Dose-Response Relationship, Drug , Doxycycline/pharmacology , Electrophysiology , Embryonic Stem Cells/metabolism , Gene Expression Regulation/drug effects , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Membrane Potentials/genetics , Mice , Models, Biological , Phenotype , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL