Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 816
Filter
Add more filters

Publication year range
1.
Plant J ; 118(5): 1668-1688, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38407828

ABSTRACT

Bioenergy sorghum is a low-input, drought-resilient, deep-rooting annual crop that has high biomass yield potential enabling the sustainable production of biofuels, biopower, and bioproducts. Bioenergy sorghum's 4-5 m stems account for ~80% of the harvested biomass. Stems accumulate high levels of sucrose that could be used to synthesize bioethanol and useful biopolymers if information about cell-type gene expression and regulation in stems was available to enable engineering. To obtain this information, laser capture microdissection was used to isolate and collect transcriptome profiles from five major cell types that are present in stems of the sweet sorghum Wray. Transcriptome analysis identified genes with cell-type-specific and cell-preferred expression patterns that reflect the distinct metabolic, transport, and regulatory functions of each cell type. Analysis of cell-type-specific gene regulatory networks (GRNs) revealed that unique transcription factor families contribute to distinct regulatory landscapes, where regulation is organized through various modes and identifiable network motifs. Cell-specific transcriptome data was combined with known secondary cell wall (SCW) networks to identify the GRNs that differentially activate SCW formation in vascular sclerenchyma and epidermal cells. The spatial transcriptomic dataset provides a valuable source of information about the function of different sorghum cell types and GRNs that will enable the engineering of bioenergy sorghum stems, and an interactive web application developed during this project will allow easy access and exploration of the data (https://mc-lab.shinyapps.io/lcm-dataset/).


Subject(s)
Biofuels , Cell Wall , Gene Expression Regulation, Plant , Gene Regulatory Networks , Plant Stems , Sorghum , Transcriptome , Sorghum/genetics , Sorghum/metabolism , Plant Stems/genetics , Plant Stems/metabolism , Cell Wall/metabolism , Cell Wall/genetics , Gene Expression Profiling
2.
Nano Lett ; 24(18): 5639-5646, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38668743

ABSTRACT

Structural complexity brings a huge challenge to the analysis of sugar chains. As a single-molecule sensor, nanopores have the potential to provide fingerprint information on saccharides. Traditionally, direct single-molecule saccharide detection with nanopores is hampered by their small size and weak affinity. Here, a carbon nitride nanopore device is developed to discern two types of trisaccharide molecules (LeApN and SLeCpN) with minor structural differences. The resolution of LeApN and SLeCpN in the mixture reaches 0.98, which has never been achieved in solid-state nanopores so far. Monosaccharide (GlcNAcpN) and disaccharide (LacNAcpN) can also be discriminated using this system, indicating that the versatile carbon nitride nanopores possess a monosaccharide-level resolution. This study demonstrates that the carbon nitride nanopores have the potential for conducting structure analysis on single-molecule saccharides.

3.
Small ; : e2400830, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778739

ABSTRACT

Catalysts for zinc-air batteries (ZABs) must be stable over long-term charging-discharging cycles and exhibit bifunctional catalytic activity. In this study, by doping nitrogen-doped carbon (NC) materials with three metal atoms (Fe, Ni, and Cu), a single-atom-distributed FeNiCu-NC bifunctional catalyst is prepared. The catalyst includes Fe(Ni-doped)-N4 for the oxygen evolution reaction (OER), Fe(Cu-doped)-N4 for the oxygen reduction reaction (ORR), and the NiCu-NC catalytic structure for the oxygen reduction reaction (ORR) in the nitrogen-doped carbon nanoparticles. This single-atom distribution catalyst structure enhances the bifunctional catalytic activity. If a trimetallic single-atom catalyst is designed, it will surpass the typical bimetallic single-atom catcalyst. FeNiCu-NC exhibits outstanding performance as an electrocatalyst, with a half-wave potential (E1/2) of 0.876 V versus RHE, overpotential (Ej = 10) of 253 mV versus RHE at 10 mA cm-2, and a small potential gap (ΔE = 0.61 V). As the anode in a ZAB, FeNiCu-NC can undergo continuous charge-discharged cycles for 575 h without significant attenuation. This study presents a new method for achieving high-performance, low-cost ZABs via trimetallic single-atom doping.

4.
Small ; 20(23): e2310040, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38150619

ABSTRACT

Constructing composite catalysts with refined geometric control and optimal electronic structure provides a promising route to enhance electrocatalytic performance toward the oxygen evolution reaction (OER). Herein, a composite catalyst is prepared with multiple components using chemical vapour deposition method to transform crystalline NiFe2O4 into crystalline NiFe2O4@amorphous S-NiFe2O4 with core-shell structure (C-NiFe2O4@A-S-NiFe2O4), and Fe-NiOOH nanoparticles are subsequently in situ generated on its surface during the process of electrocatalytic OER. The C-NiFe2O4@A-S-NiFe2O4 catalyst exhibits a low overpotential of 275 mV while possessing an excellent stability for 500 h at 10 mA cm-2. The anion exchange membrane water electrolyzer with C-NiFe2O4@A-S-NiFe2O4 anode catalyst obtains a current density of 4270 mA cm- 2 at 2.0 V. Further, in situ Raman spectroscopy result demonstrates that in situ generated Fe-NiOOH nanoparticles are revealed to act as the catalytic active phase for catalyzing the OER. Besides, introducing A-S-NiFe2O4 in C-NiFe2O4@A-S-NiFe2O4 facilitates the formation of Fe-NiOOH nanoparticles with high-valency Ni, thus increasing the proportion of lattice oxygen-participated OER. This work not only provides an alternative strategy for the design of high-performance catalysts, but also lays a foundation for the exploration of catalytic mechanisms.

5.
Small ; 20(25): e2309724, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38239083

ABSTRACT

The commercialization of silicon anode for lithium-ion batteries has been hindered by severe structure fracture and continuous interfacial reaction against liquid electrolytes, which can be mitigated by solid-state electrolytes. However, rigid ceramic electrolyte suffers from large electrolyte/electrode interfacial resistance, and polymer electrolyte undergoes poor ionic conductivity, both of which are worsened by volume expansion of silicon. Herein, by dispersing Li1.3Al0.3Ti1.7(PO4)3 (LATP) into poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP) and poly(ethylene oxide) (PEO) matrix, the PVDF-HFP/PEO/LATP (PHP-L) solid-state electrolyte with high ionic conductivity (1.40 × 10-3 S cm-1), high tensile strength and flexibility is designed, achieving brilliant compatibility with silicon nanosheets. The chemical interactions between PVDF-HFP and PEO, LATP increase amorphous degree of polymer, accelerating Li+ transfer. Good flexibility of the PHP-L contributes to adaptive structure variation of electrolyte with silicon expansion/shrinkage, ensuring swift interfacial ions transfer. Moreover, the solid membrane with high tensile limits electrode structural degradation and eliminates continuous interfacial growth to form stable 2D solid electrolyte interface (SEI) film, achieving superior cyclic performance to liquid electrolytes. The Si//PHP-L15//LiFePO4 solid-state full-cell exhibits stable lithium storage with 81% capacity retention after 100 cycles. This work demonstrates the effectiveness of composite solid electrolyte in addressing fundamental interfacial and performance challenges of silicon anodes.

6.
J Transl Med ; 22(1): 224, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429799

ABSTRACT

BACKGROUND: In recent years, natural bone extracellular matrix (ECM)-inspired materials have found widespread application as scaffolds for bone tissue engineering. However, the challenge of creating scaffolds that mimic natural bone ECM's mechanical strength and hierarchical nano-micro-macro structures remains. The purposes of this study were to introduce an innovative bone ECM-inspired scaffold that integrates a 3D-printed framework with hydroxyapatite (HAp) mineralized graphene oxide-collagen (GO-Col) microscaffolds and find its application in the repair of mandibular bone defects. METHODS: Initially, a 3D-printed polycaprolactone (PCL) scaffold was designed with cubic disks and square pores to mimic the macrostructure of bone ECM. Subsequently, we developed multi-layer mineralized GO-Col-HAp microscaffolds (MLM GCH) to simulate natural bone ECM's nano- and microstructural features. Systematic in vitro and in vivo experiments were introduced to evaluate the ECM-inspired structure of the scaffold and to explore its effect on cell proliferation and its ability to repair rat bone defects. RESULTS: The resultant MLM GCH/PCL composite scaffolds exhibited robust mechanical strength and ample assembly space. Moreover, the ECM-inspired MLM GCH microscaffolds displayed favorable attributes such as water absorption and retention and demonstrated promising cell adsorption, proliferation, and osteogenic differentiation in vitro. The MLM GCH/PCL composite scaffolds exhibited successful bone regeneration within mandibular bone defects in vivo. CONCLUSIONS: This study presents a well-conceived strategy for fabricating ECM-inspired scaffolds by integrating 3D-printed PCL frameworks with multilayer mineralized porous microscaffolds, enhancing cell proliferation, osteogenic differentiation, and bone regeneration. This construction approach holds the potential for extension to various other biomaterial types.


Subject(s)
Durapatite , Graphite , Osteogenesis , Rats , Animals , Durapatite/analysis , Durapatite/metabolism , Durapatite/pharmacology , Tissue Scaffolds/chemistry , Bone Regeneration , Collagen/metabolism , Extracellular Matrix/metabolism , Tissue Engineering , Polyesters/chemistry , Mandible , Printing, Three-Dimensional
7.
Microb Cell Fact ; 23(1): 113, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38622698

ABSTRACT

BACKGROUND: Isatropolone A and C, produced by Streptomyces sp. CPCC 204095, belong to an unusual class of non-benzenoid aromatic compounds and contain a rare seven-membered ring structure. Isatropolone A exhibits potent activity against Leishmania donovani, comparable to the only oral drug miltefosine. However, its variably low productivity represents a limitation for this lead compound in the future development of new anti-leishmaniasis drugs to meet unmet clinical needs. RESULTS: Here we first elucidated the regulatory cascade of biosynthesis of isatropolones, which consists of two SARP family regulators, IsaF and IsaJ. Through a series of in vivo and in vitro experiments, IsaF was identified as a pathway-specific activator that orchestrates the transcription of the gene cluster essential for isatropolone biosynthesis. Interestingly, IsaJ was found to only upregulate the expression of the cytochrome P450 monooxygenase IsaS, which is crucial for the yield and proportion of isatropolone A and C. Through targeted gene deletions of isaJ or isaS, we effectively impeded the conversion of isatropolone A to C. Concurrently, the facilitation of isaF overexpression governed by selected promoters, prompted the comprehensive activation of the production of isatropolone A. Furthermore, meticulous optimization of the fermentation parameters was conducted. These strategies culminated in the attainment of an unprecedented maximum yield-980.8 mg/L of isatropolone A-achieved in small-scale solid-state fermentation utilizing the genetically modified strains, thereby establishing the highest reported titer to date. CONCLUSION: In Streptomyces sp. CPCC 204095, the production of isatropolone A and C is modulated by the SARP regulators IsaF and IsaJ. IsaF serves as a master pathway-specific regulator for the production of isatropolones. IsaJ, on the other hand, only dictates the transcription of IsaS, the enzyme responsible for the conversion of isatropolone A and C. By engineering the expression of these pivotal genes, we have devised a strategy for genetic modification aimed at the selective and high-yield biosynthesis of isatropolone A. This study not only unveils the unique regulatory mechanisms governing isatropolone biosynthesis for the first time, but also establishes an essential engineering framework for the targeted high-level production of isatropolone A.


Subject(s)
Streptomyces , Streptomyces/metabolism , Biosynthetic Pathways/genetics , Cytochrome P-450 Enzyme System/metabolism , Promoter Regions, Genetic , Multigene Family
8.
Inorg Chem ; 63(24): 11113-11124, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38837698

ABSTRACT

p-Benzoquinones are important organic intermediates in the synthesis of biopharmaceuticals and fine chemicals. In this study, two crystalline 3D polyoxovanadate-based metal-organic frameworks, H[Cu(tpi)2]{Cu2V7O21}·H2O (1, tpi = C18N5H13) and [Co(Htpi)2]{V4O12} (2, Htpi = C18N5H14), were synthesized, which as heterogeneous catalysts showed excellent catalytic activities for the synthesis of p-benzoquinones. Both compounds were characterized by IR, UV-vis diffuse reflectance spectroscopy, TG, XPS, X-ray diffraction, etc. In 1, {Cu2V7} clusters are connected together by copper cations and 1D Cu-organic coordination chains to yield a 3D polyoxometalate-based metal-organic framework (POMOF); in 2, adjacent 2D bimetallic oxide layers, constructed from 1D polyoxovanadate chains and cobalt ions, are further connected by 1D Co-organic coordination chains to form a 3D POMOF. Noteworthily, in the synthesis of trimethyl-p-benzoquinone, the key intermediate of vitamin E, using 2,3,6-trimethylphenol as the model substrate, the turnover frequency values for compounds 1 and 2 can, respectively, reach 607 and 380 h-1 in 8 min. Furthermore, both compounds demonstrated excellent recyclability and structural stability, characterized by PXRD and IR. The catalytic mechanism reveals that both the homolytic radical mechanism and heterolytic oxygen atom transfer mechanism are involved.

9.
Environ Sci Technol ; 58(11): 5093-5102, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38386012

ABSTRACT

Rapid social-economic development introduces modern lifestyles into rural areas, not only bringing numerous modern products but also new pollutants, such as chlorinated paraffins (CPs). The rural Tibetan Plateau has limited industrial activities and is a unique place to investigate this issue. Herein we collected 90 free-range chicken egg pool samples across the rural Tibetan Plateau to evaluate the pollution status of CPs. Meanwhile, CPs in related soils, free-range chicken eggs from Jiangxi, and farmed eggs from markets were also analyzed. The median concentrations of SCCPs (159 ng g-1 wet weight (ww)) and MCCPs (1390 ng g-1 ww) in Tibetan free-range chicken eggs were comparable to those from Jiangxi (259 and 938 ng g-1 ww) and significantly higher than those in farmed eggs (22.0 and 81.7 ng g-1 ww). In the rural Tibetan Plateau, the median EDI of CPs via egg consumption by adults and children were estimated to be 81.6 and 220.2 ng kg-1 bw day-1 for SCCPs and 483.4 and 1291 ng kg-1 bw day-1 for MCCPs, respectively. MCCPs might pose potential health risks for both adults and children in the worst scenario. Our study demonstrates that new pollutants should not be ignored and need further attention in remote rural areas.


Subject(s)
Environmental Pollutants , Hydrocarbons, Chlorinated , Animals , Child , Humans , Tibet , Hydrocarbons, Chlorinated/analysis , Paraffin/analysis , Chickens , Environmental Monitoring , China
10.
J Nat Prod ; 87(2): 228-237, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38266493

ABSTRACT

As a model liverwort, Marchantia polymorpha contains various flavone glucuronides with cardiovascular-promoting effects and anti-inflammatory properties. However, the related glucuronosyltransferases have not yet been reported. In this study, two bifunctional UDP-glucuronic acid/UDP-glucose:flavonoid glucuronosyltransferases/glucosyltransferases, MpUGT742A1 and MpUGT736B1, were identified from M. polymorpha. Extensive enzymatic assays found that MpUGT742A1 and MpUGT736B1 exhibited efficient glucuronidation activity for flavones, flavonols, and flavanones and showed promiscuous regioselectivity at positions 3, 6, 7, 3', and 4'. These enzymes catalyzed the production of a variety of flavonoid glucuronides with medicinal value, including apigenin-7-O-glucuronide and scutellarein-7-O-glucuronide. With the use of MpUGT736B1, apigenin-4'-O-glucuronide and apigenin-7,4'-di-O-glucuronide were prepared by scaled-up enzymatic catalysis and structurally identified by NMR spectroscopy. MpUGT742A1 also displayed glucosyltransferase activity on the 7-OH position of the flavanones using UDP-glucose as the sugar donor. Furthermore, we constructed four recombinant strains by combining the pathway for increasing the UDP-glucuronic acid supply with the two novel UGTs MpUGT742A1 and MpUGT736B1. When apigenin was used as a substrate, the extracellular apigenin-4'-O-glucuronide and apigenin-7,4'-di-O-glucuronide production obtained from the Escherichia coli strain BB2 reached 598 and 81 mg/L, respectively. Our study provides new candidate genes and strategies for the biosynthesis of flavonoid glucuronides.


Subject(s)
Flavanones , Marchantia , Flavonoids/chemistry , Apigenin , Glucuronides/metabolism , Marchantia/metabolism , Glucuronosyltransferase/chemistry , Glucuronosyltransferase/metabolism , Escherichia coli/metabolism , Glucose , Glucuronic Acid , Uridine Diphosphate
11.
Lipids Health Dis ; 23(1): 183, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867232

ABSTRACT

BACKGROUND: Previous studies have shown a correlation between depression and obesity, as well as between depression and the Atherogenic Index of Plasma (AIP). However, there is limited research on the association between visceral obesity and depression, as well as the potential mediating role of AIP in this relationship. METHODS: This study included 13,123 participants from the 2005-2018 National Health and Nutrition Examination Survey. Visceral obesity was measured with the Body Roundness Index (BRI), while depression was evaluated with the Patient Health Questionnaire-9. The AIP served as a marker for lipid disorders. To investigate the association between the BRI and depression, multivariate logistic regressions, restricted cubic spline models, subgroup analyses, and interaction tests were used. Additionally, a mediation analysis was conducted to explore the role of AIP in mediating the effect of BRI on depression. RESULTS: There was a positive linear correlation between the BRI and depression. After controlling for all covariates, individuals in the highest BRI (Q4) group had an OR of 1.42 for depression (95% CI: 1.12-1.82) in comparison with individuals in the lowest BRI (Q1) group. Moreover, the AIP partially mediated the association between the BRI and depression, accounting for approximately 8.64% (95% CI: 2.04-16.00%) of the total effect. CONCLUSION: The BRI was positively associated with depression, with the AIP playing a mediating role. This study provides a novel perspective on the mechanism that connects visceral obesity to depression. Managing visceral fat and monitoring AIP levels may contribute to alleviating depression.


Subject(s)
Atherosclerosis , Depression , Nutrition Surveys , Obesity, Abdominal , Humans , Depression/blood , Female , Male , Middle Aged , Adult , Atherosclerosis/blood , Obesity, Abdominal/blood , Body Mass Index , Logistic Models , Aged , Biomarkers/blood
12.
Skin Res Technol ; 30(2): e13595, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38279591

ABSTRACT

BACKGROUND: Neurofibromatosis type 1 (NF1) is a common inherited disorder characterized by cutaneous neurofibromas and other features. It is still a challenge in managing inoperable patients and the complex nature of the disease. Bibliometric analyses for cutaneous neurofibromas (cNF) could offer insights into impactful research and collaborations, guiding future efforts to improve patient care and outcomes. METHODS: We conducted a comprehensive literature search of the Web of Science Core Collection database for the period 2003-2022. Data processing and analysis were performed using bibliometric tools including VOSviewer, CiteSpace, and "Bibliometrix" package. Our analysis assessed the publication or collaboration of countries, institutions, authors, and journals, as well as the co-citation and burst of references and keywords. RESULTS: The analysis included 927 articles from 465 journals and 1402 institutions in 67 countries. Research on cNF has been increasing in recent years. The United States leads the field. Pierre Wolkenstein was the top author, while The University of Hamburg was the most productive institution. The American Journal of Medical Genetics Part A published the most articles in cNF. Co-citation analysis revealed major research topics and trends over time, showing growing interest in evaluating quality of life and genotype-phenotype correlation for cNF patients. Emerging topical MEK inhibitors show potential as a promising therapy. CONCLUSION: In conclusion, our bibliometric analysis of cNF research over the past two decades highlights the growing interest in this complex genetic disorder. Leading countries, authors, institutions, and journals have played significant roles in shaping the field. Notably, recent trends emphasize the importance of evaluating quality of life and genotype-phenotype correlations in cNF patients. Furthermore, the emergence of promising topical therapy marks an exciting development in the quest to improve patient care and outcomes for those affected by cNF, paving the way for future research and collaboration.


Subject(s)
Neurofibroma , Skin Neoplasms , Humans , Quality of Life , Bibliometrics , Databases, Factual
13.
Luminescence ; 39(2): e4692, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38383694

ABSTRACT

An optical thermometry strategy based on Mn2+ -doped dual-wavelength emission phosphor has been reported. Samples with different doping content were synthesized through a high-temperature solid-phase method under an air atmosphere. The electronic structure of Li4 Zn(PO4 )2 was calculated using density functional theory, revealing it to be a direct band gap material with an energy gap of 4.708 eV. Moreover, the emitting bands of Mn2+ at 530 and 640 nm can be simultaneously observed when using 417 nm as the exciting wavelength. This is due to the occupation of Mn2+ at the Zn2+ site and the interstitial site. Further analysis was conducted on the temperature-dependent emission characteristics of the sample in the range 293-483 K. Mn2+ has different responses to temperature at different doping sites in Li4 Zn(PO4 )2 . Based on the calculations using the fluorescence intensity ratio technique, the maximum relative sensitivity at a temperature of 483 K was determined to be 1.69% K-1 , while the absolute sensitivity was found to be 0.12% K-1 . The results showed that the Li4 Zn(PO4 )2 :Mn2+ phosphor has potential application in optical thermometry.


Subject(s)
Thermometry , Temperature , Ions , Lithium , Zinc
14.
Arch Gynecol Obstet ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466410

ABSTRACT

PURPOSE: The aim was to analyze the pregnancy and neonatal outcomes of pregnant women with new- onset acute myeloid leukemia (AML) diagnosed during pregnancy. METHODS: In this retrospective study 25 pregnant women who were diagnosed with new-onset AML during pregnancy from January 2010 to January 2021 were enrolled. RESULTS: A total of 4, 13 and 8 pregnant women with new-onset AML were diagnosed during the first, second, and third trimesters, respectively. Twelve of the 25 pregnant women underwent therapeutic abortion and 13 gave birth (9 preterm and 4 full-term newborns). The gestational age at initial clinical manifestations (13.4 ± 3.7 vs. 27.7 ± 5.6 weeks, P < 0.01) and diagnosis (16.9 ± 4.4 vs. 29.7 ± 5.5 weeks, P < 0.01) was lower in the pregnant women who underwent therapeutic abortion than in those who gave birth. Eighty-four percent (21/25) of the pregnant women with new-onset AML during pregnancy survived and were in remission and all the newborns were born alive. Three of the 13 newborns were exposed to chemotherapy, but no congenital malformations were observed. Eight newborns were admitted to the neonatal intensive care unit (NICU), and all recovered. The complete blood counts and biochemical examinations of the 8 newborns were normal. CONCLUSIONS: New-onset AML during an earlier stage of pregnancy may increase the risk of poor pregnancy outcomes. The neonatal outcomes of pregnant women with new-onset AML during pregnancy are good with proper treatment.

15.
J Asian Nat Prod Res ; 26(4): 510-518, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37705345

ABSTRACT

Eriocitrin is a flavonoid glycoside with strong antioxidant capacity that has a variety of pharmacological activities, such as hypolipidemic, anticancer and anti-inflammatory effects. We found that the gut microbiota could rapidly metabolize eriocitrin. By using LC/MSn-IT-TOF, we identified three metabolites of eriocitrin metabolized in the intestinal microbiota: eriodictyol-7-O-glucoside, eriodictyol, and dihydrocaffeic acid. By comparing these two metabolic pathways of eriocitrin (the gut microbiota and liver microsomes), the intestinal microbiota may be the primary metabolic site of eriocitrin metabolism. These findings provide a theoretical foundation for the study of pharmacologically active substances.


Subject(s)
Flavanones , Gastrointestinal Microbiome , Antioxidants/pharmacology , Flavonoids/pharmacology , Biotransformation
16.
J Asian Nat Prod Res ; : 1-10, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869213

ABSTRACT

Liquiritigenin is a natural medicine. However, its inhibitory effect and its potential mechanism on bladder cancer (BCa) remain to be explored. It was found that it could be visualized that the transplanted tumours in the low-dose liquiritigenin -treated group and the high-dose liquiritigenin -treated group were smaller than those in the model group. Liquiritigenin treatment led to alterations in Lachnoclostridium, Escherichia-Shigella, Alistipes and Akkermansia. Non-targeted metabolomics analysis showed that a total of multiple differential metabolites were identified between the model group and the high-dose liquiritigenin-treated group. This provides a new direction and rationale for the antitumour effects of liquiritigenin.

17.
Nano Lett ; 23(19): 9143-9150, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37747809

ABSTRACT

This study demonstrates an acetate ligand (AcO-)-assisted strategy for the controllable and tunable synthesis of colloidal methylammonium lead iodide (MAPbI3) perovskite nanocrystals (PNCs) for efficient photovoltaic and photodetector devices. The size of colloidal MAPbI3 PNCs can be tuned from 9 to 20 nm by changing the AcO-/MA ratio in the reaction precursor. In situ observations and detailed characterization results show that the incorporation of the AcO- ligand alters the formation of PbI6 octahedral cages, which controls PNC growth. A well-optimized AcO-/MA ratio affords MAPbI3 PNCs with a low defect density, a long carrier lifetime, and unique solid-state isotropic properties, which can be used to fabricate solution-processed dual-mode photovoltaic and photodetector devices with a conversion efficiency of 13.34% and a detectivity of 2 × 1011 Jones, respectively. This study provides an avenue to further the precisely controllable synthesis of hybrid PNCs for multifunctional optoelectronic applications.

18.
Molecules ; 29(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38611756

ABSTRACT

Isatropolone C from Streptomyces sp. CPCC 204095 features a fused cyclopentadienone-tropolone-oxacyclohexadiene tricyclic moiety in its structure. Herein, we report an isatropolone C dimer derivative, di-isatropolone C, formed spontaneously from isatropolone C in methanol. Notably, the structure of di-isatropolone C resolved by NMR reveals a newly formed cyclopentane ring to associate the two isatropolone C monomers. The configurations of four chiral carbons, including a ketal one, in the cyclopentane ring are assigned using quantum NMR calculations and DP4+ probability. The plausible molecular mechanism for di-isatropolone C formation is proposed, in which complex dehydrogenative C-C bond coupling may have happened to connect the two isatropolone C monomers. Like isatropolone C, di-isatropolone C shows the biological activity of inducing autophagy in HepG2 cells.


Subject(s)
Autophagy , Carbon , Heterocyclic Compounds, Fused-Ring , Cyclopentanes , Ethers , Polymers
19.
J Am Chem Soc ; 145(11): 6177-6183, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36857470

ABSTRACT

Adaptive bionic self-correcting behavior offers an attractive property for chemical systems. Here, based on the dynamic feature of imine formation, we propose a solvent-responsive strategy for smart switching between an amorphous ionic polyimine membrane and a crystalline organic molecule cage without the addition of other building blocks. To adapt to solvent environmental constraints, the aldehyde and amine components undergo self-correction to form a polymer network or a molecular cage. Studies have shown that the amorphous film can be switched in acetonitrile to generate a discrete cage with bright birefringence under polarized light. Conversely, the membrane from the cage crystal conversion can be regained in ethanol. Such a membrane-cage interconversion can be cycled continuously at least 5 times by switching the two solvents. This work builds a bridge between the polymer network and crystalline molecules and offers prospects for smart dynamic materials.

20.
J Am Chem Soc ; 145(48): 26213-26221, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37944031

ABSTRACT

Electrochemically converting CO2 into specified high-value products is critical for carbon neutral economics. However, governing the product distribution of the CO2 electroreduction on Cu-based catalysts remains challenging. Herein, we put forward an anion enrichment strategy to efficiently dictate the route of *CO reduction by a pulsed electrolysis strategy. Upon periodically applying a positive potential on the cathode, the anion concentration in the vicinity of the electrode increases apparently. By adopting KF, KCl, and KHCO3 as electrolytes, the dominant CO2 electroreduction product on commercial Cu foil can be tuned into CO (53% ± 2.5), C2+ (76.6 ± 2.1%), and CH4 (42.6 ± 2.1%) under pulsed electrolysis. Notably, one can delicately tailor the ratios of CO/CH4, CH4/C2+, and C2+/CO by simply changing the composition of the electrolyte. Density functional theory calculations demonstrate that locally enriched anions can affect the key CO2RR intermediates in different ways owing to their specific electronegativity and volume, which leads to the distinct selectivity. The present study highlights the importance of tuning ionic species at the electrode-electrolyte interface for customizing the CO2 electroreduction products.

SELECTION OF CITATIONS
SEARCH DETAIL