Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nanomaterials (Basel) ; 14(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38607157

ABSTRACT

The limited access to fresh water and the increased presence of emergent pollutants (EPs) in wastewater has increased the interest in developing strategies for wastewater remediation, including photocatalysis. Graphitic carbon nitride (g-C3N4) is a 2D non-metal material with outstanding properties, such as a 2.7 eV bandgap and physicochemical stability, making it a promising photocatalyst. This work reports the process of obtaining high-surface-area (SA) g-C3N4 using the thermal-exfoliation process and the posterior effect of Ag-nanoparticle loading over the exfoliated g-C3N4 surface. The photocatalytic activity of samples was evaluated through methylene blue (MB) degradation under visible-light radiation and correlated to its physical properties obtained by XRD, TEM, BET, and UV-Vis analyses. Moreover, 74% MB degradation was achieved by exfoliated g-C3N4 compared to its bulk counterpart (55%) in 180 min. Moreover, better photocatalytic performances (94% MB remotion) were registered at low Ag loading, with 5 wt.% as the optimal value. Such an improvement is attributed to the synergetic effect produced by a higher SA and the role of Ag nanoparticles in preventing charge-recombination processes. Based on the results, this work provides a simple and efficient methodology to obtain Ag/g-C3N4 photocatalysts with enhanced photocatalytic performance that is adequate for water remediation under sunlight conditions.

2.
ACS Omega ; 9(7): 7554-7563, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405448

ABSTRACT

The antimicrobial activity of silver and zinc exchanged cations in Y-zeolite (Ag/CBV-600, Zn/CBV-600) is evaluated against Staphylococcus aureus (gram (+)) and Escherichia coli (gram (-)) bacteria along with their adsorption capacity for viruses: brome mosaic virus (BMV), cowpea chlorotic mottle virus (CCMV), and the bacteriophage MS2. The physicochemical properties of synthesized nanomaterials are characterized by inductively coupled plasma optical emission spectroscopy (ICP-OES), UV-Vis spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). According to the obtained results, the main species associated with the exchanged ions are Ag+ and Zn2+ cations with the concentration of around 1 atomic %. The incorporation of cations does not modify the Y-zeolite framework. The Ag/CBV-600 and Zn/CBV-600 materials show an inactivation of 90% for both gram (+) and gram (-) bacteria at 16 h at a relatively low concentration of nanomaterial (0.5 mg/mL). Moreover, the samples present good adsorption capacity for BMV, CCMV, and MS2 viruses showing adsorption higher than 40% after 2 h of interaction with the viruses. These prominent results allow the further usage of nanomaterials as an effective remedy to inhibit and reduce the spread of viruses such as SARS-CoV-2 or other gram (+) or gram (-) bacteria.

SELECTION OF CITATIONS
SEARCH DETAIL