ABSTRACT
We report the use of TILLING (targeting induced local lesions in genomes), a reverse genetic, nontransgenic method, to improve a quality trait in a polyploid crop plant. Waxy starches, composed mostly of amylopectin, have unique physiochemical properties. Wheat with only one or two functional waxy genes (granule-bound starch synthase I, or GBSSI) produces starch with intermediate levels of amylopectin. We have identified 246 alleles of the waxy genes by TILLING each homoeolog in 1,920 allohexaploid and allotetraploid wheat individuals. These alleles encode waxy enzymes ranging in activity from near wild type to null, and they represent more genetic diversity than had been described in the preceding 25 years. A line of bread wheat containing homozygous mutations in two waxy homoeologs created through TILLING and a preexisting deletion of the third waxy homoeolog displays a near-null waxy phenotype. This approach to creating and identifying genetic variation shows potential as a tool for crop improvement.
Subject(s)
Plants, Genetically Modified , Transgenes , Triticum/genetics , Alleles , Amylopectin/metabolism , Amylose/chemistry , Crops, Agricultural/genetics , DNA Mutational Analysis , DNA Primers/chemistry , Gene Deletion , Gene Library , Genes, Plant , Genome , Genome, Plant , Heterozygote , Homozygote , Models, Genetic , Mutation , Phenotype , Polymerase Chain ReactionABSTRACT
The potential use of algae in biofuels applications is receiving significant attention. However, none of the current algal model species are competitive production strains. Here we present a draft genome sequence and a genetic transformation method for the marine microalga Nannochloropsis gaditana CCMP526. We show that N. gaditana has highly favourable lipid yields, and is a promising production organism. The genome assembly includes nuclear (~29 Mb) and organellar genomes, and contains 9,052 gene models. We define the genes required for glycerolipid biogenesis and detail the differential regulation of genes during nitrogen-limited lipid biosynthesis. Phylogenomic analysis identifies genetic attributes of this organism, including unique stramenopile photosynthesis genes and gene expansions that may explain the distinguishing photoautotrophic phenotypes observed. The availability of a genome sequence and transformation methods will facilitate investigations into N. gaditana lipid biosynthesis and permit genetic engineering strategies to further improve this naturally productive alga.
Subject(s)
Genome , Stramenopiles/genetics , Transformation, Genetic , Base Sequence , Chromosome Mapping , Lipids/biosynthesis , Microalgae/genetics , Molecular Sequence Data , Photosynthesis/genetics , Phylogeny , Sequence Analysis, DNA , Stramenopiles/metabolismABSTRACT
Many oomycete and fungal plant pathogens are obligate biotrophs, which extract nutrients only from living plant tissue and cannot grow apart from their hosts. Although these pathogens cause substantial crop losses, little is known about the molecular basis or evolution of obligate biotrophy. Here, we report the genome sequence of the oomycete Hyaloperonospora arabidopsidis (Hpa), an obligate biotroph and natural pathogen of Arabidopsis thaliana. In comparison with genomes of related, hemibiotrophic Phytophthora species, the Hpa genome exhibits dramatic reductions in genes encoding (i) RXLR effectors and other secreted pathogenicity proteins, (ii) enzymes for assimilation of inorganic nitrogen and sulfur, and (iii) proteins associated with zoospore formation and motility. These attributes comprise a genomic signature of evolution toward obligate biotrophy.
Subject(s)
Arabidopsis/parasitology , Evolution, Molecular , Genome , Oomycetes/growth & development , Oomycetes/genetics , Plant Diseases/parasitology , Adaptation, Physiological , Amino Acid Sequence , Enzymes/genetics , Gene Dosage , Genes , Host-Pathogen Interactions , Metabolic Networks and Pathways/genetics , Molecular Sequence Data , Oomycetes/pathogenicity , Oomycetes/physiology , Phytophthora/genetics , Polymorphism, Single Nucleotide , Proteins/genetics , Selection, Genetic , Sequence Analysis, DNA , Spores/physiology , Synteny , Virulence Factors/geneticsABSTRACT
BACKGROUND: Pythium ultimum is a ubiquitous oomycete plant pathogen responsible for a variety of diseases on a broad range of crop and ornamental species. RESULTS: The P. ultimum genome (42.8 Mb) encodes 15,290 genes and has extensive sequence similarity and synteny with related Phytophthora species, including the potato blight pathogen Phytophthora infestans. Whole transcriptome sequencing revealed expression of 86% of genes, with detectable differential expression of suites of genes under abiotic stress and in the presence of a host. The predicted proteome includes a large repertoire of proteins involved in plant pathogen interactions, although, surprisingly, the P. ultimum genome does not encode any classical RXLR effectors and relatively few Crinkler genes in comparison to related phytopathogenic oomycetes. A lower number of enzymes involved in carbohydrate metabolism were present compared to Phytophthora species, with the notable absence of cutinases, suggesting a significant difference in virulence mechanisms between P. ultimum and more host-specific oomycete species. Although we observed a high degree of orthology with Phytophthora genomes, there were novel features of the P. ultimum proteome, including an expansion of genes involved in proteolysis and genes unique to Pythium. We identified a small gene family of cadherins, proteins involved in cell adhesion, the first report of these in a genome outside the metazoans. CONCLUSIONS: Access to the P. ultimum genome has revealed not only core pathogenic mechanisms within the oomycetes but also lineage-specific genes associated with the alternative virulence and lifestyles found within the pythiaceous lineages compared to the Peronosporaceae.
Subject(s)
Genome/genetics , Plants/microbiology , Proteins/genetics , Pythium/genetics , Pythium/pathogenicity , Antifungal Agents/pharmacology , Base Sequence , Cadherins/genetics , Carbohydrate Metabolism/drug effects , Carbohydrate Metabolism/genetics , Gene Order/genetics , Gene Rearrangement/genetics , Genome, Mitochondrial/genetics , Genomics , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Multigene Family/genetics , Phylogeny , Proteins/metabolism , Pythium/drug effects , Pythium/growth & development , Repetitive Sequences, Nucleic Acid/genetics , Sequence Alignment , Sequence Analysis, DNA , Synteny/geneticsABSTRACT
The first whole genomes to be compared for phylogenetic inference were those of mitochondria, which provided the first sets of genome-level characters for phylogenetic reconstruction. Most powerful among these characters has been the comparisons of the relative arrangements of genes, which has convincingly resolved numerous branch points, including those that had remained recalcitrant even to very large molecular sequence comparisons. Now the world faces a tsunami of complete nuclear genome sequences. In addition to the tremendous amount of DNA sequence that is becoming available for comparison, there is also a potential for many more genome-level characters to be developed, including the relative positions of introns, the domain structures of proteins, gene family membership, the presence of particular biochemical pathways, aspects of DNA replication or transcription, and many others. These characters can be especially convincing owing to their low likelihood of reverting to a primitive condition or occurring independently in separate lineages, thereby reducing the occurrence of homoplasy. The comparisons of organelle genomes pioneered the way for using such features for phylogenetic reconstructions, and it is almost certainly true, as ever more genomic sequence becomes available, that further use of genome-level characters will play a big role in outlining the relationships among major animal groups.