Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioinformatics ; 34(14): 2513-2514, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29394323

ABSTRACT

Motivation: In the new release of pymzML (v2.0), we have optimized the speed of this established tool for mass spectrometry data analysis to adapt to increasing amounts of data in mass spectrometry. Thus, we integrated faster libraries for numerical calculations, improved data retrieving algorithms and have optimized the source code. Importantly, to adapt to rapidly growing file sizes, we developed a generalizable compression scheme for very fast random access and applied this concept to mzML files to retrieve spectral data. Results: pymzML performs at par with established C programs when it comes to processing times. However, it offers the versatility of a scripting language, while adding unprecedented fast random access to compressed files. Additionally, we designed our compression scheme in such a general way that it can be applied to any field where fast random access to large data blocks in compressed files is desired. Availability and implementation: pymzML is freely available on https://github.com/pymzML/pymzML under GPL license. pymzML requires Python3.4+ and optionally numpy. Documentation available on http://pymzml.readthedocs.io.


Subject(s)
Data Compression/methods , Mass Spectrometry/methods , Software , Algorithms , Proteomics/methods
2.
Biochemistry ; 44(15): 5931-9, 2005 Apr 19.
Article in English | MEDLINE | ID: mdl-15823053

ABSTRACT

To gain new insights into the function of photosystem II (PSII) herbicides DCMU (a urea herbicide) and bromoxynil (a phenolic herbicide), we have studied their effects in a better understood system, the bacterial photosynthetic reaction center of the terbutryn-resistant mutant T4 of Blastochloris (Bl.) viridis. This mutant is uniquely sensitive to these herbicides. We have used redox potentiometry and time-resolved absorption spectroscopy in the nanosecond and microsecond time scale. At room temperature the P(+)(*)Q(A)(-)(*) charge recombination in the presence of bromoxynil was faster than in the presence of DCMU. Two phases of P(+)(*)Q(A)(-)(*) recombination were observed. In accordance with the literature, the two phases were attributed to two different populations of reaction centers. Although the herbicides did induce small differences in the activation barriers of the charge recombination reactions, these did not explain the large herbicide-induced differences in the kinetics at ambient temperature. Instead, these were attributed to a change in the relative amplitude of the phases, with the fast:slow ratio being approximately 3:1 with bromoxynil and approximately 1:2 with DCMU at 300 K. Redox titrations of Q(A) were performed with and without herbicides at pH 6.5. The E(m) was shifted by approximately -75 mV by bromoxynil and by approximately +55 mV by DCMU. As the titrations were done over a time range that is assumed to be much longer than that for the transition between the two different populations, the potentials measured are considered to be a weighted average of two potentials for Q(A). The influence of the herbicides can thus be considered to be on the equilibrium of the two reaction center forms. This may also be the case in photosystem II.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/drug effects , Herbicides/pharmacology , Hyphomicrobiaceae/chemistry , Hyphomicrobiaceae/drug effects , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/drug effects , Bacterial Proteins/genetics , Diuron/pharmacology , Drug Resistance, Bacterial/genetics , Electrochemistry , Hyphomicrobiaceae/genetics , Kinetics , Mutation , Nitriles/pharmacology , Oxidation-Reduction , Photosystem II Protein Complex/genetics , Potentiometry , Spectrophotometry , Temperature , Triazines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL