Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Cancer Genet ; 286-287: 29-34, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38971117

ABSTRACT

Few reports have analyzed the fusion genes involved in carcinogenesis in the oropharynx, where the incidence of human papillomavirus-associated tumors is relatively low. The aim of this study was to identify novel driver fusion genes in patients with oropharyngeal cancer. The study enrolled fifty-seven patients who were diagnosed with oropharyngeal carcinoma. RNA sequencing data from fresh-frozen specimens were used to identify candidate fusion genes via the JAFFA, arriba, and STAR-Fusion pipelines. Candidate fusion genes were confirmed by direct sequencing. The expression level of a candidate fusion gene was compared to that of tumors without fusion genes. Finally, filtering was performed for driver genes using the annoFuse pipeline. In addition, the VIRTUS pipeline was used to analyze the presence of human papillomavirus in the tumors. We identified 5 (8.8 %) novel potential driver in-frame fusion genes, MKNK2::MOB3A, ICMT::RPS6KA3, ATP1B3::GRK7, CSNK2A1::KIF16B, and FGFR3::MAEA, and 1 (1.8 %) known in-frame fusion gene, FGFR3::TACC3, in 57 patients with pharyngeal carcinoma. Our results suggest that sporadic fusion genes may contribute to tumorigenesis in oropharyngeal carcinomas.

2.
Transplantation ; 108(2): 464-472, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38259179

ABSTRACT

BACKGROUND: Children are removed from the liver transplant waitlist because of death or progressive illness. Size mismatch accounts for 30% of organ refusal. This study aimed to demonstrate that 3-dimensional (3D) technology is a feasible and accurate adjunct to organ allocation and living donor selection process. METHODS: This prospective multicenter study included pediatric liver transplant candidates and living donors from January 2020 to February 2023. Patient-specific, 3D-printed liver models were used for anatomic planning, real-time evaluation during organ procurement, and surgical navigation. The primary outcome was to determine model accuracy. The secondary outcome was to determine the impact of outcomes in living donor hepatectomy. Study groups were analyzed using propensity score matching with a retrospective cohort. RESULTS: Twenty-eight recipients were included. The median percentage error was -0.6% for 3D models and had the highest correlation to the actual liver explant (Pearson's R = 0.96, P < 0.001) compared with other volume calculation methods. Patient and graft survival were comparable. From 41 living donors, the median percentage error of the allograft was 12.4%. The donor-matched study group had lower central line utilization (21.4% versus 75%, P = 0.045), shorter length of stay (4 versus 7 d, P = 0.003), and lower mean comprehensive complication index (3 versus 21, P = 0.014). CONCLUSIONS: Three-dimensional volume is highly correlated with actual liver explant volume and may vary across different allografts for living donation. The addition of 3D-printed liver models during the transplant evaluation and organ procurement process is a feasible and safe adjunct to the perioperative decision-making process.


Subject(s)
Liver Transplantation , Models, Anatomic , Child , Humans , Liver , Living Donors , Prospective Studies , Retrospective Studies , Printing, Three-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL