Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Lab Invest ; 102(5): 560-569, 2022 05.
Article in English | MEDLINE | ID: mdl-34980882

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, manifesting as the progressive development of fluid-filled renal cysts. In approximately half of all patients with ADPKD, end-stage renal disease results in decreased renal function. In this study, we used CRISPR-Cas9 and somatic cell cloning to produce pigs with the unique mutation c.152_153insG (PKD1insG/+). Pathological analysis of founder cloned animals and progeny revealed that PKD1insG/+ pigs developed many pathological conditions similar to those of patients with heterozygous mutations in PKD1. Pathological similarities included the formation of macroscopic renal cysts at the neonatal stage, number and cystogenic dynamics of the renal cysts formed, interstitial fibrosis of the renal tissue, and presence of a premature asymptomatic stage. Our findings demonstrate that PKD1insG/+ pigs recapitulate the characteristic symptoms of ADPKD.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Animals , Female , Heterozygote , Humans , Kidney/pathology , Male , Mutation , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Swine , TRPP Cation Channels/genetics
2.
Proc Natl Acad Sci U S A ; 115(9): 2204-2209, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29440427

ABSTRACT

Bone metastatic lesions are classified as osteoblastic or osteolytic lesions. Prostate and breast cancer patients frequently exhibit osteoblastic-type and osteolytic-type bone metastasis, respectively. In metastatic lesions, tumor cells interact with many different cell types, including osteoblasts, osteoclasts, and mesenchymal stem cells, resulting in an osteoblastic or osteolytic phenotype. However, the mechanisms responsible for the modification of bone remodeling have not been fully elucidated. MicroRNAs (miRNAs) are transferred between cells via exosomes and serve as intercellular communication tools, and numerous studies have demonstrated that cancer-secreted miRNAs are capable of modifying the tumor microenvironment. Thus, cancer-secreted miRNAs can induce an osteoblastic or osteolytic phenotype in the bone metastatic microenvironment. In this study, we performed a comprehensive expression analysis of exosomal miRNAs secreted by several human cancer cell lines and identified eight types of human miRNAs that were highly expressed in exosomes from osteoblastic phenotype-inducing prostate cancer cell lines. One of these miRNAs, hsa-miR-940, significantly promoted the osteogenic differentiation of human mesenchymal stem cells in vitro by targeting ARHGAP1 and FAM134A Interestingly, although MDA-MB-231 breast cancer cells are commonly known as an osteolytic phenotype-inducing cancer cell line, the implantation of miR-940-overexpressing MDA-MB-231 cells induced extensive osteoblastic lesions in the resulting tumors by facilitating the osteogenic differentiation of host mesenchymal cells. Our results suggest that the phenotypes of bone metastases can be induced by miRNAs secreted by cancer cells in the bone microenvironment.


Subject(s)
Bone Neoplasms/metabolism , Breast Neoplasms/pathology , GTPase-Activating Proteins/metabolism , Membrane Proteins/metabolism , MicroRNAs/metabolism , Prostatic Neoplasms/metabolism , Adenocarcinoma/metabolism , Animals , Bone Neoplasms/secondary , Bone Substitutes , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , GTPase-Activating Proteins/genetics , Humans , Male , Membrane Proteins/genetics , Mesenchymal Stem Cells , Mice , MicroRNAs/genetics , Neoplasms, Experimental/metabolism
3.
Proc Natl Acad Sci U S A ; 115(4): 708-713, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29311328

ABSTRACT

Genetically engineered pigs play an indispensable role in the study of rare monogenic diseases. Pigs harboring a gene responsible for a specific disease can be efficiently generated via somatic cell cloning. The generation of somatic cell-cloned pigs from male cells with mutation(s) in an X chromosomal gene is a reliable and straightforward method for reproducing X-linked genetic diseases (XLGDs) in pigs. However, the severe symptoms of XLGDs are often accompanied by impaired growth and reproductive disorders, which hinder the reproduction of these valuable model animals. Here, we generated unique chimeric boars composed of mutant cells harboring a lethal XLGD and normal cells. The chimeric boars exhibited the cured phenotype with fertility while carrying and transmitting the genotype of the XLGD. This unique reproduction system permits routine production of XLGD model pigs through the male-based breeding, thereby opening an avenue for translational research using disease model pigs.


Subject(s)
Embryo Culture Techniques/methods , Genetic Diseases, X-Linked/genetics , Reproduction/genetics , Animals , Animals, Genetically Modified/genetics , Breeding , Chimera , Cloning, Organism/methods , Disease Models, Animal , Fertility , Gene Knockout Techniques/methods , Genetic Engineering/methods , Male , Nuclear Transfer Techniques , Swine/genetics
4.
Nature ; 497(7450): 490-3, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23644455

ABSTRACT

Semaphorin 3A (Sema3A) is a diffusible axonal chemorepellent that has an important role in axon guidance. Previous studies have demonstrated that Sema3a(-/-) mice have multiple developmental defects due to abnormal neuronal innervations. Here we show in mice that Sema3A is abundantly expressed in bone, and cell-based assays showed that Sema3A affected osteoblast differentiation in a cell-autonomous fashion. Accordingly, Sema3a(-/-) mice had a low bone mass due to decreased bone formation. However, osteoblast-specific Sema3A-deficient mice (Sema3acol1(-/-) and Sema3aosx(-/-) mice) had normal bone mass, even though the expression of Sema3A in bone was substantially decreased. In contrast, mice lacking Sema3A in neurons (Sema3asynapsin(-/-) and Sema3anestin(-/-) mice) had low bone mass, similar to Sema3a(-/-) mice, indicating that neuron-derived Sema3A is responsible for the observed bone abnormalities independent of the local effect of Sema3A in bone. Indeed, the number of sensory innervations of trabecular bone was significantly decreased in Sema3asynapsin(-/-) mice, whereas sympathetic innervations of trabecular bone were unchanged. Moreover, ablating sensory nerves decreased bone mass in wild-type mice, whereas it did not reduce the low bone mass in Sema3anestin(-/-) mice further, supporting the essential role of the sensory nervous system in normal bone homeostasis. Finally, neuronal abnormalities in Sema3a(-/-) mice, such as olfactory development, were identified in Sema3asynasin(-/-) mice, demonstrating that neuron-derived Sema3A contributes to the abnormal neural development seen in Sema3a(-/-) mice, and indicating that Sema3A produced in neurons regulates neural development in an autocrine manner. This study demonstrates that Sema3A regulates bone remodelling indirectly by modulating sensory nerve development, but not directly by acting on osteoblasts.


Subject(s)
Bone Remodeling , Bone and Bones/innervation , Bone and Bones/metabolism , Semaphorin-3A/metabolism , Sensory Receptor Cells/metabolism , Animals , Bone and Bones/anatomy & histology , Cell Differentiation , Cells, Cultured , Female , Male , Mice , Organ Size , Osteoblasts/cytology , Osteoblasts/metabolism , Semaphorin-3A/deficiency , Semaphorin-3A/genetics , Sensory Receptor Cells/cytology
5.
EMBO J ; 33(14): 1565-81, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-24920580

ABSTRACT

Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming.


Subject(s)
Cell Transdifferentiation/physiology , Fibroblasts/metabolism , Gene Expression Regulation/physiology , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Transcription Factors/genetics , Analysis of Variance , Animals , Blotting, Western , Cell Transdifferentiation/genetics , Cloning, Molecular , Fibroblasts/cytology , Flow Cytometry , Gene Knockdown Techniques , Green Fluorescent Proteins , Humans , Immunohistochemistry , Mice , Microarray Analysis , Myocytes, Cardiac/cytology , Real-Time Polymerase Chain Reaction , Snail Family Transcription Factors , Transcription Factors/metabolism
6.
J Infect Dis ; 215(12): 1893-1897, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28525596

ABSTRACT

Long-term antiretroviral therapy is associated with increased fracture risk, but the mechanism remains elusive. We measured serum undercarboxylated osteocalcin and pentosidine (markers of poor bone quality) in human immunodeficiency virus-infected patients treated with protease inhibitors (PIs) or an integrase strand transfer inhibitor-containing regimen. The results demonstrated significantly higher undercarboxylated osteocalcin and pentosidine in PI-treated patients. Switching to integrase strand transfer inhibitor significant decreased these markers. We also showed impaired bone mechanical properties with higher undercarboxylated osteocalcin level in PI-treated mice and inhibited osteoblast differentiation in PI-treated osteogenic cells. The results confirmed the adverse effects of PIs on bone quality and osteoblast differentiation.


Subject(s)
Antiretroviral Therapy, Highly Active/adverse effects , Bone Density/drug effects , Protease Inhibitors/adverse effects , Animals , Arginine/analogs & derivatives , Arginine/blood , Biomarkers/blood , Female , HIV-1/drug effects , Humans , Integrase Inhibitors , Lysine/analogs & derivatives , Lysine/blood , Male , Mice , Osteocalcin/blood , Retrospective Studies , Reverse Transcriptase Inhibitors
7.
Clin Calcium ; 25(6): 891-8, 2015 Jun.
Article in Japanese | MEDLINE | ID: mdl-26017867

ABSTRACT

Bone homeostasis is maintained by bone formation and bone resorption. The traditional view of bone metabolism as a primarily endocrine regulation has been expanded in recent years following the identification of nervous system controlling bone metabolism. Especially, sympathetic and parasympathetic nervous system regulates bone formation and bone resorption. In addition, sensory nervous system also has been shown to be involved in the regulation of bone homeostasis. These studies demonstrated that nervous system is closely related to bone remodeling.


Subject(s)
Bone Remodeling/physiology , Bone and Bones/innervation , Bone and Bones/physiology , Molecular Imaging/methods , Molecular Imaging/trends , Neurosecretory Systems/physiology , Parasympathetic Nervous System/physiology , Sympathetic Nervous System/physiology , Animals , Bone Density , Bone Remodeling/genetics , Bone Resorption , Bone and Bones/metabolism , Fluorescent Dyes , Homeostasis , Humans , Leptin/physiology , Mice , Osteogenesis/physiology , Semaphorin-3A/physiology , Sensory Receptor Cells/physiology
8.
Nat Cell Biol ; 9(5): 604-11, 2007 May.
Article in English | MEDLINE | ID: mdl-17435748

ABSTRACT

MicroRNAs (miRNAs) control cell proliferation, differentiation and fate through modulation of gene expression by partially base-pairing with target mRNA sequences. Drosha is an RNase III enzyme that is the catalytic subunit of a large complex that cleaves pri-miRNAs with distinct structures into pre-miRNAs. Here, we show that both the p68 and p72 DEAD-box RNA helicase subunits in the mouse Drosha complex are indispensable for survival in mice, and both are required for primary miRNA and rRNA processing. Gene disruption of either p68 or p72 in mice resulted in early lethality, and in both p68(-/-) and p72(-/-) embryos, expression levels of a set of, but not all, miRNAs and 5.8S rRNA were significantly lowered. In p72(-/-) MEF cells, expression of p72, but not a mutant lacking ATPase activity, restored the impaired expression of miRNAs and 5.8S rRNA. Furthermore, we purified the large complex of mouse Drosha and showed it could generate pre-miRNA and 5.8S rRNA in vitro. Thus, we suggest that DEAD-box RNA helicase subunits are required for recognition of a subset of primary miRNAs in mDrosha-mediated processing.


Subject(s)
DEAD-box RNA Helicases/metabolism , Embryo, Mammalian/metabolism , MicroRNAs/metabolism , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional , RNA, Ribosomal/metabolism , Ribonuclease III/metabolism , Animals , Cell Differentiation , Cell Lineage , Cell Proliferation , Cells, Cultured , Chromatin Immunoprecipitation , DEAD-box RNA Helicases/deficiency , DEAD-box RNA Helicases/genetics , Embryo, Mammalian/cytology , Embryo, Mammalian/enzymology , Fibroblasts/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Isoenzymes/metabolism , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , RNA Interference , RNA, Ribosomal, 5.8S/metabolism
9.
Proc Natl Acad Sci U S A ; 108(12): 4938-43, 2011 Mar 22.
Article in English | MEDLINE | ID: mdl-21383160

ABSTRACT

Prostate cancer development is associated with hyperactive androgen signaling. However, the molecular link between androgen receptor (AR) function and humoral factors remains elusive. A prostate cancer mouse model was generated by selectively mutating the AR threonine 877 into alanine in prostatic epithelial cells through Cre-ERT2-mediated targeted somatic mutagenesis. Such AR point mutant mice (ARpe-T877A/Y) developed hypertrophic prostates with responses to both an androgen antagonist and estrogen, although no prostatic tumor was seen. In prostate cancer model transgenic mice, the onset of prostatic tumorigenesis as well as tumor growth was significantly potentiated by introduction of the AR T877A mutation into the prostate. Genetic screening of mice identified Wnt-5a as an activator. Enhanced Wnt-5a expression was detected in the malignant prostate tumors of patients, whereas in benign prostatic hyperplasia such aberrant up-regulation was not obvious. These findings suggest that a noncanonical Wnt signal stimulates development of prostatic tumors with AR hyperfunction.


Subject(s)
Androgens/metabolism , Neoplasms, Experimental/metabolism , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Signal Transduction , Wnt Proteins/metabolism , Amino Acid Substitution , Androgens/genetics , Animals , Humans , Male , Mice , Mice, Transgenic , Neoplasms, Experimental/genetics , Point Mutation , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , Wnt Proteins/genetics
10.
Hepatogastroenterology ; 61(136): 2315-6, 2014.
Article in English | MEDLINE | ID: mdl-25699373

ABSTRACT

3-dimensional printed liver was constructed using 3D vascular imaging in a patient with intrahepatic cholangiocarcinoma who underwent major hepatectomy. The reproducibility of 3D modeling by the latest imaging has been clarified and future preoperative simulation should be adramatically changed.


Subject(s)
Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology , Cholangiocarcinoma/pathology , Imaging, Three-Dimensional , Liver/pathology , Bile Duct Neoplasms/surgery , Bile Ducts, Intrahepatic/surgery , Cholangiocarcinoma/surgery , Female , Humans , Middle Aged
11.
J Am Coll Surg ; 238(5): 856-860, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38258847

ABSTRACT

BACKGROUND: We previously reported the successful development of a computer-aided diagnosis (CAD) system for preventing retained surgical sponges with deep learning using training data, including composite and simulated radiographs. In this study, we evaluated the efficacy of the CAD system in a clinical setting. STUDY DESIGN: A total of 1,053 postoperative radiographs obtained from patients 20 years of age or older who underwent surgery were evaluated. We implemented a foreign object detection application software on the portable radiographic device used in the operating room to detect retained surgical sponges. The results of the CAD system diagnosis were prospectively collected. RESULTS: Among the 1,053 images, the CAD system detected possible retained surgical items in 150 images. Specificity was 85.8%, which is similar to the data obtained during the development of the software. CONCLUSIONS: The validation of a CAD system using deep learning in a clinical setting showed similar efficacy as during the development of the system. These results suggest that the CAD system can contribute to the establishment of a more effective protocol than the current standard practice for preventing the retention of surgical items.


Subject(s)
Foreign Bodies , Software , Humans , Diagnosis, Computer-Assisted/methods , Radiography , Foreign Bodies/diagnostic imaging , Foreign Bodies/prevention & control , Foreign Bodies/surgery , Computers , Sensitivity and Specificity
12.
Bone ; 187: 117189, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38960296

ABSTRACT

PURPOSE: The effects of daily teriparatide (D-PTH, 20 µg/day), weekly high-dose teriparatide (W-PTH, 56.5 µg/week), or bisphosphonate (BP) on the vertebra and proximal femur were investigated using quantitative computed tomography (QCT). METHODS: A total of 131 postmenopausal women with a history of fragility fractures were randomized to receive D-PTH, W-PTH, or bisphosphonate (oral alendronate or risedronate). QCT were evaluated at baseline and after 18 months of treatment. RESULTS: A total of 86 participants were evaluated by QCT (Spine: D-PTH: 25, W-PTH: 21, BP: 29. Hip: PTH: 22, W-PTH: 21, BP: 32. Dropout rate: 30.5 %). QCT of the vertebra showed that D-PTH, W-PTH, and BP increased total vBMD (+34.8 %, +18.2 %, +11.1 %), trabecular vBMD (+50.8 %, +20.8 %, +12.2 %), and marginal vBMD (+20.0 %, +14.0 %, +11.5 %). The increase in trabecular vBMD was greater in the D-PTH group than in the W-PTH and BP groups. QCT of the proximal femur showed that D-PTH, W-PTH, and BP increased total vBMD (+2.8 %, +3.6 %, +3.2 %) and trabecular vBMD (+7.7 %, +5.1 %, +3.4 %), while only W-PTH and BP significantly increased cortical vBMD (-0.1 %, +1.5 %, +1.6 %). Although there was no significant increase in cortical vBMD in the D-PTH group, cortical bone volume (BV) increased in all three treatment groups (+2.1 %, +3.6 %, +3.1 %). CONCLUSIONS: D-PTH had a strong effect on trabecular bone of vertebra. Although D-PTH did not increase cortical BMD of proximal femur, it increased cortical BV. W-PTH had a moderate effect on trabecular bone of vertebra, while it increased both cortical BMD and BV of proximal femur. Although BP had a limited effect on trabecular bone of vertebra compared to teriparatide, it increased both cortical BMD and BV of proximal femur.


Subject(s)
Cancellous Bone , Diphosphonates , Femur , Postmenopause , Teriparatide , Tomography, X-Ray Computed , Humans , Teriparatide/administration & dosage , Teriparatide/therapeutic use , Teriparatide/pharmacology , Female , Aged , Femur/drug effects , Femur/diagnostic imaging , Femur/pathology , Cancellous Bone/drug effects , Cancellous Bone/diagnostic imaging , Cancellous Bone/pathology , Diphosphonates/administration & dosage , Diphosphonates/pharmacology , Diphosphonates/therapeutic use , Postmenopause/drug effects , Cortical Bone/drug effects , Cortical Bone/diagnostic imaging , Cortical Bone/pathology , Bone Density Conservation Agents/administration & dosage , Bone Density Conservation Agents/therapeutic use , Middle Aged , Bone Density/drug effects , Fractures, Bone/diagnostic imaging , Spine/diagnostic imaging , Spine/drug effects
13.
J Bone Miner Metab ; 31(1): 34-43, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22976053

ABSTRACT

Bone morphogenetic proteins (BMPs) inhibit myogenesis and induce osteoblastic differentiation in myoblasts. They also induce the transcription of several common genes, such as Id1, Id2 and Id3, in various cell types. We have reported that a GC-rich element in the Id1 gene functions as a BMP-responsive element (BRE) that is regulated by Smads. In this study, we analyzed and identified BREs in the 5'-flanking regions of the mouse Id2 and Id3 genes. The core GGCGCC sequence was conserved among the BREs in the Id1, Id2 and Id3 genes and was essential for the response to BMP signaling via Smads. We found a novel BRE on mouse chromosome 13 at position 47,723,740-47,723,768 by searching for conserved sequences containing the Id1 BRE. This potential BRE was found in the 5'-flanking region of a novel gene that produces a non-coding transcript, termed BMP-inducible transcript-1 (BIT-1), and this element regulated the expression of this gene in response to BMP signaling. We found that BIT-1 is expressed in BMP target tissues such as the testis, brain, kidney and cartilage. These findings suggest that the transcriptional induction of the Ids, BIT-1 and additional novel genes containing the conserved BRE sequence may play an important role in the regulation of the differentiation and/or function of target cells in response to BMPs.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Inhibitor of Differentiation Proteins/biosynthesis , Muscle Proteins/metabolism , Myoblasts/metabolism , RNA, Untranslated/metabolism , Response Elements/physiology , Signal Transduction/physiology , Animals , Bone Morphogenetic Proteins/genetics , Cell Line , Chromosomes, Mammalian/genetics , Chromosomes, Mammalian/metabolism , Mice , Muscle Proteins/genetics , Organ Specificity , RNA, Untranslated/genetics
14.
Nat Med ; 12(6): 665-70, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16680148

ABSTRACT

Endochondral ossification is an essential process not only for physiological skeletal development and growth, but also for pathological disorders. We recently identified a novel cartilage-specific molecule, carminerin (also known as cystatin 10 and encoded by Cst10), which is upregulated in synchrony with cartilage maturation and stimulates the later differentiation of cultured chondrocytes. Although carminerin-deficient (Cst10-/-) mice developed and grew normally, they had a microscopic decrease in the calcification of hypertrophic chondrocytes at the growth plate. When we created experimental models of pathological endochondral ossification, we observed suppression of chondrocyte calcification during formation of osteoarthritic osteophytes, age-related ectopic ossification and healing of bone fractures in Cst10-/- mice. Cultured Cst10-/- chondrocytes showed a reduction in calcification with activation of an SRY site in the promoter of the gene encoding nucleotide pyrophosphatase phosphodiesterase 1 (NPP1, encoded by Enpp1). Functional NPP1 is required for carminerin deficiency to suppress the pathological endochondral ossifications listed above. Carminerin is the first cartilage-specific protein that contributes to chondrocyte calcification during endochondral ossification under physiological and pathological conditions through the transcriptional inhibition of NPP1.


Subject(s)
Chondrocytes/physiology , Cystatins/metabolism , Osteogenesis/physiology , Animals , Bone and Bones/anatomy & histology , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Bone and Bones/physiology , Calcinosis , Cells, Cultured , Chondrocytes/cytology , Cystatins/genetics , Embryo, Mammalian/anatomy & histology , Embryo, Mammalian/pathology , Female , Gene Targeting , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoarthritis/metabolism , Osteoarthritis/pathology , Radiography
15.
Nat Med ; 12(1): 133-7, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16327800

ABSTRACT

The structure and function of blood vessels adapt to environmental changes such as physical development and exercise. This phenomenon is based on the ability of the endothelial cells to sense and respond to blood flow; however, the underlying mechanisms remain unclear. Here we show that the ATP-gated P2X4 ion channel, expressed on endothelial cells and encoded by P2rx4 in mice, has a key role in the response of endothelial cells to changes in blood flow. P2rx4(-/-) mice do not have normal endothelial cell responses to flow, such as influx of Ca(2+) and subsequent production of the potent vasodilator nitric oxide (NO). Additionally, vessel dilation induced by acute increases in blood flow is markedly suppressed in P2rx4(-/-) mice. Furthermore, P2rx4(-/-) mice have higher blood pressure and excrete smaller amounts of NO products in their urine than do wild-type mice. Moreover, no adaptive vascular remodeling, that is, a decrease in vessel size in response to a chronic decrease in blood flow, was observed in P2rx4(-/-) mice. Thus, endothelial P2X4 channels are crucial to flow-sensitive mechanisms that regulate blood pressure and vascular remodeling.


Subject(s)
Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2/metabolism , Acetylcholine/metabolism , Animals , Blood Pressure , Blood Vessels/pathology , Blotting, Northern , Calcium/metabolism , Carotid Arteries/pathology , Cells, Cultured , Dose-Response Relationship, Drug , Gene Transfer Techniques , Green Fluorescent Proteins/metabolism , Immunohistochemistry , Mesenteric Arteries/pathology , Mice , Mice, Transgenic , Microscopy, Fluorescence , Models, Biological , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Polymerase Chain Reaction , Receptors, Purinergic P2X4 , Regional Blood Flow , Time Factors
16.
Abdom Imaging ; 38(4): 785-92, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23232581

ABSTRACT

PURPOSE: Arterial enhancement of intrahepatic cholangiocarcinoma (ICC) has been noted. To precisely identify the characteristics of tumor enhancement patterns, we examined the relationship between CT attenuation in the tumor and clinicopathological parameters or prognosis. METHODS: Subjects were 42 ICC patients who had undergone hepatectomy. microvessel density (MVD) determined by CD34 staining was compared with imaging. Attenuation was calculated in images from multidetector CT of tumor and non-tumorous regions. Enhancement patterns were divided into two groups: arterial enhancement with higher attenuation (>16 HU; Hyper group, n = 12); and arterial enhancement with lower attenuation (Hypo group, n = 30). RESULTS: Univariate analysis identified high tumor marker level, increased size, less-differentiation, incomplete resection, increased bleeding, and lower MVD as significantly associated with poor survival (p < 0.05). Increased attenuation throughout the whole ICC correlated significantly with radiological findings and MVD. Concomitant hepatitis, well-differentiation, and smaller tumor were more significantly frequent in the Hyper group than in the Hypo group (p < 0.05). Postoperative early recurrence was significantly less frequent in the Hyper group, and overall survival was significantly better in the Hyper group (p < 0.05). CONCLUSIONS: Increased CT attenuation correlated with ICC tumor vascularity. Increased tumor enhancement in the arterial phase was associated with chronic hepatitis, lower malignancy, and better survival.


Subject(s)
Bile Duct Neoplasms/diagnostic imaging , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic , Cholangiocarcinoma/diagnostic imaging , Cholangiocarcinoma/pathology , Tomography, X-Ray Computed , Adult , Aged , Aged, 80 and over , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/surgery , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/surgery , Female , Hepatectomy , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , Male , Middle Aged
17.
Skin Res Technol ; 19(1): e332-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22672219

ABSTRACT

BACKGROUND/AIMS: Few attempts have been made to distinguish the softness of different skin layers, though specific measurement of the superficial layer would be useful for evaluating the emollient effect of cosmetics and for diagnosis of skin diseases. MATERIALS AND METHODS: We developed a sensor probe consisting of a piezoelectric tactile sensor and a load cell. To evaluate it, we firstly measured silicone rubber samples with different softness. Then, it was applied to human forearm skin before and after tape-stripping. A VapoMeter and skin-surface hygrometer were used to confirm removal of the stratum corneum. A Cutometer was used to obtain conventional softness data for comparison. RESULTS AND CONCLUSIONS: Both the piezoelectric tactile sensor and the load cell could measure the softness of silicone rubber samples, but the piezoelectric tactile sensor was more sensitive than the load cell when the reaction force of the measured sample was under 100 mN in response to a 2-mm indentation. For human skin in vivo, transepidermal water loss and skin conductance were significantly changed after tape-stripping, confirming removal of the stratum corneum. The piezoelectric tactile sensor detected a significant change after tape-stripping, whereas the load cell did not. Thus, the piezoelectric tactile sensor can detect changes of mechanical properties at the skin surface. The load cell data were in agreement with Cutometer measurements, which showed no change in representative skin elasticity parameters after tape-stripping. These results indicate that our sensor can simultaneously measure the mechanical properties of the superficial skin layer and whole skin.


Subject(s)
Elasticity Imaging Techniques/instrumentation , Epidermis/physiology , Skin Physiological Phenomena , Touch , Biomechanical Phenomena/physiology , Cosmetics , Elasticity/physiology , Elasticity Imaging Techniques/methods , Epidermis/injuries , Equipment Design , Humans , Male , Models, Anatomic , Pressure , Silicones , Surgical Tape/adverse effects , Weight-Bearing/physiology
18.
J Artif Organs ; 16(1): 91-7, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23180224

ABSTRACT

The purpose of this study was to observe variation in the local elastic distribution in aortic tissue walls under different static strain conditions, including physiological strain, by use of a scanning haptic microscope (SHM). Strain was applied by stretching aortic tissues in the circumferential direction by the simple tensile method or by the rod-insertion method to mimic in vivo internal pressure loading. SHM measurements in a saline solution at room temperature were performed on canine thoracic aorta using a glass needle probe with a diameter of ca 5 µm and a scanning area and point pitch of 160 × 80 µm and 2 µm, respectively. Under strain of 0-0.23, corresponding to internal pressure of 0-150 mmHg, wavy-shaped elastin fibers stretched until they were almost straightened, and the average elastic modulus increased almost linearly. Although there was little difference between the images obtained for the two different stretching methods, under high strain (>0.36; 250 mmHg) significant circumferential orientation of the collagen fibrils occurred with an increase in the average elastic modulus. It was concluded that the pressure resistance of the aorta under physiological strain was mainly afforded by elastin fibers; collagen fibrils contributed little except under much higher pressures.


Subject(s)
Aorta/physiology , Elasticity/physiology , Animals , Dogs , Stress, Mechanical , Tensile Strength
19.
PLoS Genet ; 6(7): e1001019, 2010 Jul 08.
Article in English | MEDLINE | ID: mdl-20628571

ABSTRACT

Excessive accumulation of bone marrow adipocytes observed in senile osteoporosis or age-related osteopenia is caused by the unbalanced differentiation of MSCs into bone marrow adipocytes or osteoblasts. Several transcription factors are known to regulate the balance between adipocyte and osteoblast differentiation. However, the molecular mechanisms that regulate the balance between adipocyte and osteoblast differentiation in the bone marrow have yet to be elucidated. To identify candidate genes associated with senile osteoporosis, we performed genome-wide expression analyses of differentiating osteoblasts and adipocytes. Among transcription factors that were enriched in the early phase of differentiation, Id4 was identified as a key molecule affecting the differentiation of both cell types. Experiments using bone marrow-derived stromal cell line ST2 and Id4-deficient mice showed that lack of Id4 drastically reduces osteoblast differentiation and drives differentiation toward adipocytes. On the other hand knockdown of Id4 in adipogenic-induced ST2 cells increased the expression of Ppargamma2, a master regulator of adipocyte differentiation. Similar results were observed in bone marrow cells of femur and tibia of Id4-deficient mice. However the effect of Id4 on Ppargamma2 and adipocyte differentiation is unlikely to be of direct nature. The mechanism of Id4 promoting osteoblast differentiation is associated with the Id4-mediated release of Hes1 from Hes1-Hey2 complexes. Hes1 increases the stability and transcriptional activity of Runx2, a key molecule of osteoblast differentiation, which results in an enhanced osteoblast-specific gene expression. The new role of Id4 in promoting osteoblast differentiation renders it a target for preventing the onset of senile osteoporosis.


Subject(s)
Cell Differentiation , Inhibitor of Differentiation Proteins/genetics , Osteoblasts/cytology , Osteoporosis/etiology , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Core Binding Factor Alpha 1 Subunit/physiology , Homeodomain Proteins/metabolism , Mice , Mice, Knockout , Osteoblasts/metabolism , Osteoporosis/pathology , Transcription Factor HES-1 , Transcription Factors , Up-Regulation
20.
Clin Calcium ; 23(9): 1279-83, 2013 Sep.
Article in Japanese | MEDLINE | ID: mdl-23999363

ABSTRACT

The identification that nervous system controls bone metabolism through leptin knock out mice studies opened a new field in bone biology. Notably, sympathetic and parasympathetic nervous system regulate bone formation and bone resorption. In addition, sensory nervous system also has been shown to be involved in the regulation of bone homeostasis. These studies demonstrated that nervous system is closely related to bone remodeling.


Subject(s)
Bone Remodeling/physiology , Central Nervous System/metabolism , Fractures, Bone/metabolism , Homeostasis/physiology , Osteoporosis/metabolism , Animals , Bone Resorption/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL