Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Pflugers Arch ; 475(6): 691-709, 2023 06.
Article in English | MEDLINE | ID: mdl-37156970

ABSTRACT

Extracellular vesicles (EVs) enriched with bioactive molecules have gained considerable attention in nanotechnology because they are critical to intercellular communication while maintaining low immunological impact. Among biological matrices, urine has emerged as a noninvasive source of extracellular-contained liquid biopsy, currently of interest as a readout for physiological adaptations. Therefore, we aimed to evaluate chronic adaptations of endurance sport practice in terms of urinary EV parameters and evaluated by food consumption assessment. Two balanced groups of 13 inactive controls vs. triathlon athletes were enrolled; their urinary EVs were obtained by differential ultracentrifugation and analyzed by dynamic light scattering and transmission electron and atomic force microscopy. The cargo was analyzed by means of purine and miRNA content through HPLC-UV and qRT-PCR. Specific urinary EV signatures differentiated inactive versus endurance-trained in terms of peculiar shape. Particularly, a spheroid shape, smaller size, and lower roughness characterize EVs from triathletes. Metabolic and regulatory miRNAs often associated with skeletal muscle (i.e., miR378a-5p, miR27a-3p, miR133a, and miR206) also accounted for a differential signature. These miRNAs and guanosine in urinary EVs can be used as a readout for metabolic status along with the shape and roughness of EVs, novel informative parameters that are rarely considered. The network models allow scholars to entangle nutritional and exercise factors related to EVs' miRNA and purine content to depict metabolic signatures. All in all, multiplex biophysical and molecular analyses of urinary EVs may serve as promising prospects for research in exercise physiology.


Subject(s)
Body Fluids , Extracellular Vesicles , MicroRNAs , Urinary Tract , Humans , MicroRNAs/metabolism , Urinary Tract/metabolism , Extracellular Vesicles/metabolism , Body Fluids/metabolism , Purines/metabolism
2.
Mol Genet Metab ; 140(3): 107705, 2023 11.
Article in English | MEDLINE | ID: mdl-37837864

ABSTRACT

PURPOSE: Beyond classical procedures, bioinformatic-assisted approaches and computational biology offer unprecedented opportunities for scholars. However, these amazing possibilities still need epistemological criticism, as well as standardized procedures. Especially those topics with a huge body of data may benefit from data science (DS)-assisted methods. Therefore, the current study dealt with the combined expert-assisted and DS-assisted approaches to address the broad field of muscle secretome. We aimed to apply DS tools to fix the literature research, suggest investigation targets with a data-driven approach, predict possible scenarios, and define a workflow. METHODS: Recognized scholars with expertise on myokines were invited to provide a list of the most important myokines. GeneRecommender, GeneMANIA, HumanNet, and STRING were selected as DS tools. Networks were built on STRING and GeneMANIA. The outcomes of DS tools included the top 5 recommendations. Each expert-led discussion has been then integrated with an DS-led approach to provide further perspectives. RESULTS: Among the results, 11 molecules had already been described as bona-fide myokines in literature, and 11 molecules were putative myokines. Most of the myokines and the putative myokines recommended by the DS tools were described as present in the cargo of extracellular vesicles. CONCLUSIONS: Including both supervised and unsupervised learning methods, as well as encompassing algorithms focused on both protein interaction and gene represent a comprehensive approach to tackle complex biomedical topics. DS-assisted methods for reviewing existent evidence, recommending targets of interest, and predicting original scenarios are worth exploring as in silico recommendations to be integrated with experts' ideas for optimizing molecular studies.


Subject(s)
Muscle, Skeletal , Secretome , Humans , Muscle, Skeletal/metabolism , Exercise/physiology , Computational Biology/methods
3.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36769354

ABSTRACT

Proliferative vitreoretinopathy (PVR) is an abnormal intraocular scarring process that can complicate cases of rhegmatogenous retinal detachment (RRD). Although previous studies have examined the relevance of microRNAs (miRNAs) in ophthalmic diseases, only a few studies have evaluated the expression profiles of microRNAs in subretinal fluid. We hypothesized that the expression profiles of specific miRNAs may change in response to RRD, in the subretinal fluid that is directly in contact with photoreceptors and the retinal pigment epithelium (RPE). We looked for a potential correlation between the expression of specific miRNAs in eyes with RRD and known clinical risk factors of PVR. A total of 24 patients (59 ± 11 years) who underwent scleral buckling procedure were enrolled in this prospective study. Twenty-four undiluted subretinal fluid samples were collected, RNA was isolated and qRT-PCR was performed to analyze the expression of 12 miRNAs. We found the existence of a positive association between the expression of miR-21 (p = 0.017, r = 0.515) and miR-34 (p = 0.030, r = 0.624) and the duration of symptoms related to retinal detachment. Moreover, the expression of miR-146a tended to decrease in patients who developed PVR. Subretinal fluid constitutes an intriguing biological matrix to evaluate the role of miRNAs leading to the development of PVR.


Subject(s)
MicroRNAs , Retinal Detachment , Vitreoretinopathy, Proliferative , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Prospective Studies , Retinal Detachment/genetics , Retinal Detachment/surgery , Retrospective Studies , Scleral Buckling/adverse effects , Scleral Buckling/methods , Subretinal Fluid/metabolism , Vitreoretinopathy, Proliferative/genetics , Middle Aged , Aged
4.
Int J Mol Sci ; 23(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35682706

ABSTRACT

Skeletal muscle consists of long plurinucleate and contractile structures, able to regenerate and repair tissue damage by their resident stem cells: satellite cells (SCs). Reduced skeletal muscle regeneration and progressive atrophy are typical features of sarcopenia, which has important health care implications for humans. Sarcopenia treatment is usually based on physical exercise and nutritional plans, possibly associated with rehabilitation programs, such as vibratory stimulation. Vibrations stimulate muscles and can increase postural stability, balance, and walking in aged and sarcopenic patients. However, the possible direct effect of vibration on SCs is still unclear. Here, we show the effects of focused vibrations administered at increasing time intervals on SCs, isolated from young and aged subjects and cultured in vitro. After stimulations, we found in both young and aged subjects a reduced percentage of apoptotic cells, increased cell size and percentage of aligned cells, mitotic events, and activated cells. We also found an increased number of cells only in young samples. Our results highlight for the first time the presence of direct effects of mechanical vibrations on human SCs. These effects seem to be age-dependent, consisting of a proliferative response of cells derived from young subjects vs. a differentiative response of cells from aged subjects.


Subject(s)
Sarcopenia , Satellite Cells, Skeletal Muscle , Aged , Aging/physiology , Humans , Muscle, Skeletal/pathology , Sarcopenia/pathology , Satellite Cells, Skeletal Muscle/pathology , Vibration
5.
J Musculoskelet Neuronal Interact ; 21(3): 387-396, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34465678

ABSTRACT

OBJECTIVE: To examine whether genetic variability plays a role in skeletal muscle response to disuse. METHODS: We examined skeletal muscle response to disuse in five different strains of mice: CAST/EiJ, NOD/ShiLtJ, NZO/HILtJ, 129S1/SvImJ and A/J. Mice had one limb immobilized by a cast for three weeks. RESULTS: Response to immobilization was dependent on the strain of mice. Skeletal muscle mass/body weight was decreased by immobilization in all strains except 1291/SvImJ. Immobilization decreased absolute skeletal muscle mass in quadriceps and gastrocnemius in NOD/ShiltJ and NZO/HILtJ mice. Three weeks of immobilization resulted in an increase in quadriceps levels of atrogenes in CAST/EiJ. Immobilization resulted in an increase in quadriceps and gastrocnemius levels of Myh4 in CAST/EiJ. A similar trend was observed for Myh7 in gastrocnemius muscle. Immobilization resulted in a decrease of the p-p70S6K1/total p706SK1 ratio in quadriceps of NOD/ShiLtJ mice and the gastrocnemius of A/J mice. Immobilization did not affect the p-4EBP1/total 4EBP1 ratio in quadriceps of any of the strains examined. However, the p-4EBP1/total 4EBP1 ratio in gastrocnemius was greater in immobilized, relative to control, limbs in CAST/EiJ mice. CONCLUSION: Genetic variability affects the response of skeletal muscle to disuse.


Subject(s)
Muscle, Skeletal , Quadriceps Muscle , Animals , Immobilization , Mice , Mice, Inbred NOD , Muscular Atrophy/pathology , Quadriceps Muscle/pathology
6.
Int J Mol Sci ; 22(21)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34769304

ABSTRACT

The increasing life expectancy of populations worldwide represents the most evident success of the last century thanks to varying interacting social and medical achievements [...].


Subject(s)
Cellular Senescence , Life Expectancy , Humans
7.
Int J Mol Sci ; 22(16)2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34445222

ABSTRACT

In the last decade, clear evidence has emerged that the cellular components of skeletal muscle are important sites for the release of proteins and peptides called "myokines", suggesting that skeletal muscle plays the role of a secretory organ. After their secretion by muscles, these factors serve many biological functions, including the exertion of complex autocrine, paracrine and/or endocrine effects. In sum, myokines affect complex multi-organ processes, such as skeletal muscle trophism, metabolism, angiogenesis and immunological response to different physiological (physical activity, aging, etc.) or pathological states (cachexia, dysmetabolic conditions, chronic inflammation, etc.). The aim of this review is to describe in detail a number of myokines that are, to varying degrees, involved in skeletal muscle aging processes and belong to the group of proteins present in the functional environment surrounding the muscle cell known as the "Niche". The particular myokines described are those that, acting both from within the cell and in an autocrine manner, have a defined relationship with the modulation of oxidative stress in muscle cells (mature or stem) involved in the regulatory (metabolic or regenerative) processes of muscle aging. Myostatin, IGF-1, NGF, S100 and irisin are examples of specific myokines that have peculiar features in their mechanisms of action. In particular, the potential role of one of the most recently characterized myokines-irisin, directly linked to an active lifestyle-in reducing if not reversing senescence-induced oxidative damage is discussed in terms of its possible application as an agent able to counteract the deleterious effects of muscle aging.


Subject(s)
Aging/metabolism , Cellular Senescence , Cytokines/metabolism , Muscle, Skeletal/metabolism , Humans
8.
Int J Mol Sci ; 21(24)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371390

ABSTRACT

BACKGROUND: Recently a greater interest in tissue engineering for the treatment of large bone defect has been reported. The aim of the present systematic review and meta-analysis was to investigate the effectiveness of dental pulp stem cells and synthetic block complexes for bone defect treatment in preclinical in vivo articles. METHODS: The electronic database and manual search was conducted on Pubmed, Scopus, and EMBASE. The papers identified were submitted for risk-of-bias assessment and classified according to new bone formation, bone graft characteristics, dental pulp stem cells (DPSCs) culture passages and amount of experimental data. The meta-analysis assessment was conducted to assess new bone formation in test sites with DPSCs/synthetic blocks vs. synthetic block alone. RESULTS: The database search identified a total of 348 papers. After the initial screening, 30 studies were included, according to the different animal models: 19 papers on rats, 3 articles on rabbits, 2 manuscripts on sheep and 4 papers on swine. The meta-analysis evaluation showed a significantly increase in new bone formation in favor of DPSCs/synthetic scaffold complexes, if compared to the control at 4 weeks (Mean Diff: 17.09%, 95% CI: 15.16-18.91%, p < 0.01) and at 8 weeks (Mean Diff: 14.86%, 95% CI: 1.82-27.91%, p < 0.01) in rats calvaria bone defects. CONCLUSION: The synthetic scaffolds in association of DPSCs used for the treatment of bone defects showed encouraging results of early new bone formation in preclinical animal studies and could represent a useful resource for regenerative bone augmentation procedures.


Subject(s)
Bone Diseases/therapy , Bone Regeneration , Cell Differentiation , Dental Pulp/cytology , Stem Cells/cytology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Humans
9.
Int J Mol Sci ; 21(5)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32111063

ABSTRACT

Purines are nitrogen compounds consisting mainly of a nitrogen base of adenine (ABP) or guanine (GBP) and their derivatives: nucleosides (nitrogen bases plus ribose) and nucleotides (nitrogen bases plus ribose and phosphate). These compounds are very common in nature, especially in a phosphorylated form. There is increasing evidence that purines are involved in the development of different organs such as the heart, skeletal muscle and brain. When brain development is complete, some purinergic mechanisms may be silenced, but may be reactivated in the adult brain/muscle, suggesting a role for purines in regeneration and self-repair. Thus, it is possible that guanosine-5'-triphosphate (GTP) also acts as regulator during the adult phase. However, regarding GBP, no specific receptor has been cloned for GTP or its metabolites, although specific binding sites with distinct GTP affinity characteristics have been found in both muscle and neural cell lines. Finally, even if the cross regulation mechanisms between the two different purines (ABP and GBP) are still largely unknown, it is now possible to hypothesize the existence of specific signal paths for guanosine-based nucleotides that are capable of modulating the intensity and duration of the intracellular signal, particularly in excitable tissues such as brain and muscle.


Subject(s)
Guanosine/metabolism , Nucleotides/metabolism , Purines/metabolism , Brain/metabolism , Embryonic Development/physiology , Guanine/metabolism , Guanine Nucleotides/metabolism , Guanosine Triphosphate/metabolism , Humans , Muscles/metabolism , Nervous System/metabolism , Nucleosides/metabolism , Receptors, Purinergic/metabolism
10.
Int J Mol Sci ; 21(7)2020 Apr 05.
Article in English | MEDLINE | ID: mdl-32260521

ABSTRACT

Skeletal muscle differentiation is triggered by a unique family of myogenic basic helix-loop-helix transcription factors, including MyoD, MRF-4, Myf-5, and Myogenin. These transcription factors bind promoters and distant regulatory regions, including E-box elements, of genes whose expression is restricted to muscle cells. Other E-box binding zinc finger proteins target the same DNA response elements, however, their function in muscle development and regeneration is still unknown. Here, we show that the transcription factor zinc finger E-box-binding homeobox 2 (Zeb2, Sip-1, Zfhx1b) is present in skeletal muscle tissues. We investigate the role of Zeb2 in skeletal muscle differentiation using genetic tools and transgenic mouse embryonic stem cells, together with single-cell RNA-sequencing and in vivo muscle engraftment capability. We show that Zeb2 over-expression has a positive impact on skeletal muscle differentiation in pluripotent stem cells and adult myogenic progenitors. We therefore propose that Zeb2 is a novel myogenic regulator and a possible target for improving skeletal muscle regeneration. The non-neural roles of Zeb2 are poorly understood.


Subject(s)
Cell Differentiation , Muscle Development , Pluripotent Stem Cells/metabolism , Zinc Finger E-box Binding Homeobox 2/metabolism , Animals , Cell Line , Male , Mice , Mice, Nude , Muscle, Skeletal/cytology , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/metabolism , Pluripotent Stem Cells/cytology , Zinc Finger E-box Binding Homeobox 2/genetics
11.
Molecules ; 25(23)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297520

ABSTRACT

The increased risk of illness and disability is related to the age inevitable biological changes. Oxidative stress is a proposed mechanism for many age-related diseases. The crucial importance of polyphenol pharmacophore for aging process is largely described thanks to its effects on concentrations of reactive oxygen species. Resveratrol (3,5,4'-trihydroxy-trans-stilbene, RSV) plays a critical role in slowing the aging process but has a poor bioavailabity after oral intake. In this present work, a series of RSV derivatives was designed, synthesized, and evaluated as potential antioxidant agents. These derivatives contain substituents with different electronic and steric properties in different positions of aromatic rings. This kind of substituents affects the activity and the bioavailability of these compounds compared with RSV used as reference compound. Studies of Log P values demonstrated that the introduction of halogens gives the optimum lipophilicity to be considered promising active agents. Among them, compound 6 showed the higher antioxidant activity than RSV. The presence of trifluoromethyl group together with a chlorine atom increased the antioxidant activity compared to RSV.


Subject(s)
Chemistry Techniques, Synthetic , Stilbenes/chemical synthesis , Stilbenes/pharmacology , Animals , Cell Line , Halogenation , Humans , Mice , Models, Theoretical , Molecular Structure , Stilbenes/chemistry
12.
Biochem Biophys Res Commun ; 473(2): 462-70, 2016 Apr 29.
Article in English | MEDLINE | ID: mdl-26975470

ABSTRACT

Satellite cells that reside on the myofibre surface are crucial for the muscle homeostasis and regeneration. Aging goes along with a less effective regeneration of skeletal muscle tissue mainly due to the decreased myogenic capability of satellite cells. This phenomenon impedes proper maintenance and contributes to the age-associated decline in muscle mass, known as sarcopenia. The myogenic potential impairment does not depend on a reduced myogenic cell number, but mainly on their difficulty to complete a differentiation program. The unbalanced production of reactive oxygen species in elderly people could be responsible for skeletal muscle impairments. microRNAs are conserved post-transcriptional regulators implicated in numerous biological processes including adult myogenesis. Here, we measure the ROS level and analyze myomiR (miR-1, miR-133b and miR-206) expression in human myogenic precursors obtained from Vastus lateralis of elderly and young subjects to provide the molecular signature responsible for the differentiation impairment of elderly activated satellite cells.


Subject(s)
Aging , Gene Expression Regulation , MicroRNAs/genetics , Muscle Development , Reactive Oxygen Species/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Cells, Cultured , Humans , Male , Sarcopenia/genetics , Sarcopenia/metabolism , Satellite Cells, Skeletal Muscle/cytology , Young Adult
13.
Carcinogenesis ; 35(10): 2382-92, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25123133

ABSTRACT

Rhabdomyosarcoma is a muscle-derived malignant tumor mainly affecting children. The most frequent variant, embryonal rhabdomyosarcoma (ERMS) is characterized by overexpression of the transcription factor, PAX7 which prevents ERMS cells from exiting the cell cycle and terminally differentiating. However, a role for PAX7 in the invasive properties of ERMS cells has not been investigated in detail thus far. Here we show that ectopic expression of receptor for advanced glycation end-products (RAGE) in human ERMS cells results in the activation of a RAGE/myogenin axis which downregulates PAX7 by transcriptional and post-translational mechanisms, as in normal myoblasts, and reduces metastasis formation. High PAX7 sustains migration and invasiveness in ERMS cells by upregulating EPHA3 and EFNA1 and downregulating NCAM1 thus decreasing the neural cell adhesion molecule (NCAM)/polysialylated-NCAM ratio. Microarray gene expression analysis shows that compared with the RAGE(-ve) TE671/WT cells and similarly to primary human myoblasts, TE671/RAGE cells show upregulation of genes involved in muscle differentiation and cell adhesion, and downregulation of cell migration related and major histocompatibility complex class I genes. Our data reveal a link between PAX7 and metastasis occurrence in ERMSs, and support a role for the RAGE/myogenin axis in metastasis suppression. Thus, low RAGE expression in ERMS primary tumors may be predictive of metastatic behavior.


Subject(s)
PAX7 Transcription Factor/metabolism , Receptors, Immunologic/metabolism , Rhabdomyosarcoma, Embryonal/metabolism , Rhabdomyosarcoma, Embryonal/pathology , Animals , CD56 Antigen/genetics , Cell Line, Tumor/drug effects , Cell Movement/genetics , Ephrin-A1/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Leupeptins/pharmacology , Mice , Mice, Mutant Strains , Mice, Nude , Myoblasts/pathology , Myogenin/metabolism , PAX7 Transcription Factor/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptor for Advanced Glycation End Products , Receptor, EphA3 , Receptors, Immunologic/genetics , Rhabdomyosarcoma, Embryonal/drug therapy , Rhabdomyosarcoma, Embryonal/genetics , Xenograft Model Antitumor Assays
14.
Cell Physiol Biochem ; 33(3): 731-46, 2014.
Article in English | MEDLINE | ID: mdl-24662389

ABSTRACT

BACKGROUND/AIMS: Extracellular GTP is able to modulate some specific functions in neuron, glia and muscle cell models as it has been demonstrated over the last two decades. In fact, extracellular GTP binds its specific plasma membrane binding sites and induces signal transduction via [Ca(2+)]i increase. We demonstrate, for the first time, that extracellular GTP is able to modulate cell swelling in M1-CCD cortical collecting duct epithelial cells via upregulation of aquaporin 5 (AQP5) expression. METHODS: We used videoimaging, immunocitochemistry, flow cytometry, confocal techniques, Western blotting and RT-PCR for protein and gene expression analysis, respectively. RESULTS: We demonstrate that AQP5 mRNA is up-regulated 7 h after the GTP exposure in the cell culture medium, and its protein level is increased after 12-24 h. We show that AQP5 is targeted to the plasma membrane of M1-CCD cells, where it facilitates cell swelling, and that the GTP-dependent AQP5 up-regulation occurs via [Ca(2+)]i increase. Indeed, GTP induces both oscillating and transient [Ca(2+)]i increase, and specifically the oscillating kinetic appears to be responsible for blocking cell cycle in the S-phase while the [Ca(2+)]i influx, with whatever kinetic, seems to be responsible for inducing AQP5 expression. CONCLUSION: The role of GTP as a regulator of AQP5-mediated water transport in renal cells is of great importance in the physiology of renal epithelia, due to its possible physiopathological implications. GTP-dependent AQP5 expression could act as osmosensor. In addition, the data presented here suggest that GTP might play the same role in other tissues where rapid water transport is required for cell volume regulation and maintenance of the homeostasis.


Subject(s)
Aquaporin 5/biosynthesis , Cell Membrane/metabolism , Epithelial Cells/metabolism , Guanosine Triphosphate/pharmacology , Kidney Tubules, Collecting/metabolism , Up-Regulation/drug effects , Animals , Calcium Signaling/drug effects , Cell Line , Epithelial Cells/cytology , Kidney Tubules, Collecting/cytology , Mice
15.
G Ital Nefrol ; 41(1)2024 Feb 28.
Article in Italian | MEDLINE | ID: mdl-38426681

ABSTRACT

47-year-old woman suffering from minimal lesion glomerulonephritis previously undergone high-dose steroid therapy and subjected to exacerbations of nephrotic syndrome after therapy discontinuation. It was decided to initiate off-label treatment with Rituximab at a dosage of 375 mg/m2 administred at zero-time, one-month and three months with good therapeutic response and resolution of the clinical laboratory picture. The therapy was well tolerated and had no side effects. This scheme could be an alternative to the conventional therapeutic scheme with steroids or other classes of immunosuppressive drugs, especially in order to avoid problems related to prolonged exposure to steroid therapy.


Subject(s)
Nephrosis, Lipoid , Nephrotic Syndrome , Female , Humans , Rituximab/adverse effects , Nephrotic Syndrome/complications , Nephrotic Syndrome/drug therapy , Nephrosis, Lipoid/complications , Nephrosis, Lipoid/drug therapy , Antibodies, Monoclonal, Murine-Derived/therapeutic use , Immunosuppressive Agents/adverse effects , Steroids , Recurrence , Treatment Outcome
16.
Acta Physiol (Oxf) ; 240(4): e14122, 2024 04.
Article in English | MEDLINE | ID: mdl-38483046

ABSTRACT

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a demanding medical condition for patients and society. It has raised much more public awareness after the COVID-19 pandemic since ME/CFS and long-COVID patients share many clinical symptoms such as debilitating chronic fatigue. However, unlike long COVID, the etiopathology of ME/CFS remains a mystery despite several decades' research. This review moves from pathophysiology of ME/CFS through the compelling evidence and most interesting hypotheses. It focuses on the pathophysiology of skeletal muscle by proposing the hypothesis that skeletal muscle tissue offers novel opportunities for diagnosis and treatment of this syndrome and that new evidence can help resolve the long-standing debate on terminology.


Subject(s)
Fatigue Syndrome, Chronic , Humans , Fatigue Syndrome, Chronic/diagnosis , Fatigue Syndrome, Chronic/epidemiology , Post-Acute COVID-19 Syndrome , Pandemics , Muscle, Skeletal/metabolism
17.
Eur J Transl Myol ; 2023 06 16.
Article in English | MEDLINE | ID: mdl-37326466

ABSTRACT

After two years of conferences on a virtual platform due to the COVID-19 pandemic, finally, the 19th annual meeting of the Interuniversity Institute of Myology (IIM) has returned to the heart of central Italy, in Assisi, an important cultural hub, which boasts a wide range of historic buildings and museums. This event brought together scientists from around the world providing a valuable opportunity to discuss scientific issues in the field of myology. Traditionally, the meeting particularly encourages the participation of young trainees, and the panel discussions were moderated by leading international scientists, making this a special event where young researchers had the opportunity to talk to prestigious scientists in a friendly and informal environment. Furthermore, the IIM young researchers' winners for the best oral and poster presentations, became part of the IIM Young Committee, involved in the scientific organization of sessions and roundtables and for the invitation of a main speaker for the IIM 2023 meeting. The four keynote speakers for the IIM Conference 2022 presented new insights into the role of multinucleation during muscle growth and disease, the long-range distribution of giant mRNAs in skeletal muscle, human skeletal muscle remodelling from type 2 diabetic patients and the genome integrity and cell identity in adult muscle stem cells. The congress hosted young PhD students and trainees and included 6 research sessions, two poster sessions, round tables and socio-cultural events, promoting science outreach and interdisciplinary works that are advancing new directions in the field of myology. All other attendees had the opportunity to showcase their work through poster presentations. The IIM meeting 2022 was also part of an advanced training event, which included dedicated round tables and a training session of Advanced Myology on the morning of 23 October, reserved for students under 35 enrolled in the training school, receiving a certificate of attendance. This course proposed lectures and roundtable discussions coordinated by internationally outstanding speakers on muscle metabolism, pathophysiological regeneration and emerging therapeutic approaches for muscle degenerations. As in past editions, all participants shared their results, opinions, and perspectives in understanding developmental and adult myogenesis with novel insights into muscle biology in pathophysiological conditions. We report here the abstracts of the meeting that describe the basic, translational, and clinical research and certainly contribute to the vast field of myology in an innovative and original way.

18.
Nutrients ; 15(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36904236

ABSTRACT

Bone healing is a major clinical issue, especially in bone defects of critical dimensions. Some studies have reported in vivo positive effects on bone healing by some bioactive compounds, such as the phenolic derivatives found in vegetables and plants, such as resveratrol, curcumin, and apigenin. The aim of this work was (1) to analyze in vitro in human dental pulp stem cells the effects of these three natural compounds on the gene expression of related genes downstream to RUNX2 and SMAD5, key factor transcriptions associated with osteoblast differentiation, in order to better understand the positive effects that can occur in vivo in bone healing, and (2) to evaluate in vivo the effects on bone healing of critical-size defects in the calvaria in rats of these three nutraceuticals tested in parallel and for the first time administered by the gastric route. Upregulation of the RUNX2, SMAD5, COLL1, COLL4, and COLL5 genes in the presence of apigenin, curcumin, and resveratrol was detected. In vivo, apigenin induced more consistent significant bone healing in critical-size defects in rat calvaria compared to the other study groups. The study findings encourage a possible therapeutic supplementation with nutraceuticals during the bone regeneration process.


Subject(s)
Curcumin , Rats , Humans , Animals , Resveratrol , Curcumin/pharmacology , Apigenin , Core Binding Factor Alpha 1 Subunit/genetics , Osteogenesis , Dietary Supplements , Adjuvants, Immunologic
19.
Eur J Transl Myol ; 33(3)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37700736

ABSTRACT

Reports of electromyography during hypoxic exercise are contrasting, due to protocol and muscle diversity. This work aimed to investigate alterations in muscle activation and myoelectrical fatigue during exercise at high-altitude in those muscles primarily involved in trekking. Twelve young adults balanced by gender and age were tested at low (1,667 m) and high (4,554 m, "Capanna Margherita", Italy) altitude, during an isometric squat lasting 60 seconds. High-density surface electromyography was performed from the quadriceps of right limb. The root mean square (RMS), median frequency with its slope, and muscle fiber conduction velocity (MFCV) were computed. Neither males nor females showed changes in median frequency (Med: 36.13 vs 35.63 Hz) and its slope (Med: -9 vs -12 degree) in response to high-altitude trekking, despite a great inter-individual heterogeneity, nor differences were found for MFCV. RMS was not significantly equivalent, with greater values at low altitude (0.385 ± 0.104 mV) than high altitude (0.346 ± 0.090 mV). Unexpected results can be due either to a postural compensation of the whole body compensating for a relatively greater effort or to the inability to support muscle activation after repeated physical efforts.  Interesting results may emerge by measuring simultaneously electromyography, muscle oxygenation and kinematics comparing trekking at normoxia vs hypoxia.

20.
Microorganisms ; 11(10)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37894213

ABSTRACT

Previous studies have reported an association between oral microbial dysbiosis and the development and progression of pathologies in the central nervous system. Porphyromonas gingivalis (Pg), the keystone pathogen of the oral cavity, can induce a systemic antibody response measured in patients' sera using enzyme-linked immunosorbent assays. The present case-control study quantified the immune system's response to Pg abundance in the oral cavities of patients affected by different central nervous system pathologies. The study cohort included 87 participants: 23 healthy controls (HC), 17 patients with an acute neurological condition (N-AC), 19 patients with a chronic neurological condition (N-CH), and 28 patients with neurodegenerative disease (N-DEG). The results showed that the Pg abundance in the oral cavity was higher in the N-DEG patients than in the HC (p = 0.0001) and N-AC patients (p = 0.01). In addition, the Pg abundance was higher in the N-CH patients than the HCs (p = 0.005). Only the N-CH patients had more serum anti-Pg antibodies than the HC (p = 0.012). The inadequate response of the immune system of the N-DEG group in producing anti-Pg antibodies was also clearly indicated by an analysis of the ratio between the anti-Pg antibodies quantity and the Pg abundance. Indeed, this ratio was significantly lower between the N-DEG group than all other groups (p = 0.0001, p = 0.002, and p = 0.03 for HC, N-AC, and N-CH, respectively). The immune system's response to Pg abundance in the oral cavity showed a stepwise model: the response diminished progressively from the patients affected with an acute condition to the patients suffering from chronic nervous system disorders and finally to the patients affected by neurodegenerative diseases.

SELECTION OF CITATIONS
SEARCH DETAIL