Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters

Publication year range
1.
Nature ; 617(7960): 312-324, 2023 05.
Article in English | MEDLINE | ID: mdl-37165242

ABSTRACT

Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals1. These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels. Based on alignments of the assemblies, we generate a draft pangenome that captures known variants and haplotypes and reveals new alleles at structurally complex loci. We also add 119 million base pairs of euchromatic polymorphic sequences and 1,115 gene duplications relative to the existing reference GRCh38. Roughly 90 million of the additional base pairs are derived from structural variation. Using our draft pangenome to analyse short-read data reduced small variant discovery errors by 34% and increased the number of structural variants detected per haplotype by 104% compared with GRCh38-based workflows, which enabled the typing of the vast majority of structural variant alleles per sample.


Subject(s)
Genome, Human , Genomics , Humans , Diploidy , Genome, Human/genetics , Haplotypes/genetics , Sequence Analysis, DNA , Genomics/standards , Reference Standards , Cohort Studies , Alleles , Genetic Variation
2.
Nature ; 611(7936): 519-531, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36261518

ABSTRACT

The current human reference genome, GRCh38, represents over 20 years of effort to generate a high-quality assembly, which has benefitted society1,2. However, it still has many gaps and errors, and does not represent a biological genome as it is a blend of multiple individuals3,4. Recently, a high-quality telomere-to-telomere reference, CHM13, was generated with the latest long-read technologies, but it was derived from a hydatidiform mole cell line with a nearly homozygous genome5. To address these limitations, the Human Pangenome Reference Consortium formed with the goal of creating high-quality, cost-effective, diploid genome assemblies for a pangenome reference that represents human genetic diversity6. Here, in our first scientific report, we determined which combination of current genome sequencing and assembly approaches yield the most complete and accurate diploid genome assembly with minimal manual curation. Approaches that used highly accurate long reads and parent-child data with graph-based haplotype phasing during assembly outperformed those that did not. Developing a combination of the top-performing methods, we generated our first high-quality diploid reference assembly, containing only approximately four gaps per chromosome on average, with most chromosomes within ±1% of the length of CHM13. Nearly 48% of protein-coding genes have non-synonymous amino acid changes between haplotypes, and centromeric regions showed the highest diversity. Our findings serve as a foundation for assembling near-complete diploid human genomes at scale for a pangenome reference to capture global genetic variation from single nucleotides to structural rearrangements.


Subject(s)
Chromosome Mapping , Diploidy , Genome, Human , Genomics , Humans , Chromosome Mapping/standards , Genome, Human/genetics , Haplotypes/genetics , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards , Reference Standards , Genomics/methods , Genomics/standards , Chromosomes, Human/genetics , Genetic Variation/genetics
3.
Nature ; 604(7906): 437-446, 2022 04.
Article in English | MEDLINE | ID: mdl-35444317

ABSTRACT

The human reference genome is the most widely used resource in human genetics and is due for a major update. Its current structure is a linear composite of merged haplotypes from more than 20 people, with a single individual comprising most of the sequence. It contains biases and errors within a framework that does not represent global human genomic variation. A high-quality reference with global representation of common variants, including single-nucleotide variants, structural variants and functional elements, is needed. The Human Pangenome Reference Consortium aims to create a more sophisticated and complete human reference genome with a graph-based, telomere-to-telomere representation of global genomic diversity. Here we leverage innovations in technology, study design and global partnerships with the goal of constructing the highest-possible quality human pangenome reference. Our goal is to improve data representation and streamline analyses to enable routine assembly of complete diploid genomes. With attention to ethical frameworks, the human pangenome reference will contain a more accurate and diverse representation of global genomic variation, improve gene-disease association studies across populations, expand the scope of genomics research to the most repetitive and polymorphic regions of the genome, and serve as the ultimate genetic resource for future biomedical research and precision medicine.


Subject(s)
Genome, Human , Genomics , Genome, Human/genetics , Haplotypes/genetics , High-Throughput Nucleotide Sequencing , Humans , Sequence Analysis, DNA
4.
Cell ; 150(6): 1121-34, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22980976

ABSTRACT

We report the results of whole-genome and transcriptome sequencing of tumor and adjacent normal tissue samples from 17 patients with non-small cell lung carcinoma (NSCLC). We identified 3,726 point mutations and more than 90 indels in the coding sequence, with an average mutation frequency more than 10-fold higher in smokers than in never-smokers. Novel alterations in genes involved in chromatin modification and DNA repair pathways were identified, along with DACH1, CFTR, RELN, ABCB5, and HGF. Deep digital sequencing revealed diverse clonality patterns in both never-smokers and smokers. All validated EFGR and KRAS mutations were present in the founder clones, suggesting possible roles in cancer initiation. Analysis revealed 14 fusions, including ROS1 and ALK, as well as novel metabolic enzymes. Cell-cycle and JAK-STAT pathways are significantly altered in lung cancer, along with perturbations in 54 genes that are potentially targetable with currently available drugs.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Smoking/genetics , Smoking/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Chromosome Aberrations , Female , Gene Expression Profiling , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , INDEL Mutation , Lung Neoplasms/therapy , Male , Molecular Targeted Therapy , Point Mutation , Reelin Protein
5.
Cell ; 150(2): 264-78, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22817890

ABSTRACT

Most mutations in cancer genomes are thought to be acquired after the initiating event, which may cause genomic instability and drive clonal evolution. However, for acute myeloid leukemia (AML), normal karyotypes are common, and genomic instability is unusual. To better understand clonal evolution in AML, we sequenced the genomes of M3-AML samples with a known initiating event (PML-RARA) versus the genomes of normal karyotype M1-AML samples and the exomes of hematopoietic stem/progenitor cells (HSPCs) from healthy people. Collectively, the data suggest that most of the mutations found in AML genomes are actually random events that occurred in HSPCs before they acquired the initiating mutation; the mutational history of that cell is "captured" as the clone expands. In many cases, only one or two additional, cooperating mutations are needed to generate the malignant founding clone. Cells from the founding clone can acquire additional cooperating mutations, yielding subclones that can contribute to disease progression and/or relapse.


Subject(s)
Clonal Evolution , Leukemia, Myeloid, Acute/genetics , Mutation , Adult , Aged , DNA Mutational Analysis , Disease Progression , Female , Genome-Wide Association Study , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/physiopathology , Male , Middle Aged , Oncogene Proteins, Fusion/genetics , Recurrence , Skin/metabolism , Young Adult
6.
Am J Hum Genet ; 109(1): 81-96, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34932938

ABSTRACT

Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples. We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.


Subject(s)
Exome , Genetic Variation , Genome-Wide Association Study , Lipids/blood , Open Reading Frames , Alleles , Blood Glucose/genetics , Case-Control Studies , Computational Biology/methods , Databases, Genetic , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Genetic Predisposition to Disease , Genetics, Population , Genome-Wide Association Study/methods , Humans , Lipid Metabolism/genetics , Liver/metabolism , Liver/pathology , Molecular Sequence Annotation , Multifactorial Inheritance , Phenotype , Polymorphism, Single Nucleotide
7.
Genome Res ; 30(12): 1716-1726, 2020 12.
Article in English | MEDLINE | ID: mdl-33208454

ABSTRACT

Studies of Y Chromosome evolution have focused primarily on gene decay, a consequence of suppression of crossing-over with the X Chromosome. Here, we provide evidence that suppression of X-Y crossing-over unleashed a second dynamic: selfish X-Y arms races that reshaped the sex chromosomes in mammals as different as cattle, mice, and men. Using super-resolution sequencing, we explore the Y Chromosome of Bos taurus (bull) and find it to be dominated by massive, lineage-specific amplification of testis-expressed gene families, making it the most gene-dense Y Chromosome sequenced to date. As in mice, an X-linked homolog of a bull Y-amplified gene has become testis-specific and amplified. This evolutionary convergence implies that lineage-specific X-Y coevolution through gene amplification, and the selfish forces underlying this phenomenon, were dominatingly powerful among diverse mammalian lineages. Together with Y gene decay, X-Y arms races molded mammalian sex chromosomes and influenced the course of mammalian evolution.


Subject(s)
Sequence Analysis, DNA/veterinary , X Chromosome/genetics , Y Chromosome/genetics , Animals , Cattle , Cell Lineage , Crossing Over, Genetic , Evolution, Molecular , Female , Gene Amplification , Humans , Male , Mice , Organ Specificity , Testis/chemistry
10.
Mol Psychiatry ; 25(8): 1859-1875, 2020 08.
Article in English | MEDLINE | ID: mdl-30108311

ABSTRACT

The Alzheimer's Disease Sequencing Project (ADSP) undertook whole exome sequencing in 5,740 late-onset Alzheimer disease (AD) cases and 5,096 cognitively normal controls primarily of European ancestry (EA), among whom 218 cases and 177 controls were Caribbean Hispanic (CH). An age-, sex- and APOE based risk score and family history were used to select cases most likely to harbor novel AD risk variants and controls least likely to develop AD by age 85 years. We tested ~1.5 million single nucleotide variants (SNVs) and 50,000 insertion-deletion polymorphisms (indels) for association to AD, using multiple models considering individual variants as well as gene-based tests aggregating rare, predicted functional, and loss of function variants. Sixteen single variants and 19 genes that met criteria for significant or suggestive associations after multiple-testing correction were evaluated for replication in four independent samples; three with whole exome sequencing (2,778 cases, 7,262 controls) and one with genome-wide genotyping imputed to the Haplotype Reference Consortium panel (9,343 cases, 11,527 controls). The top findings in the discovery sample were also followed-up in the ADSP whole-genome sequenced family-based dataset (197 members of 42 EA families and 501 members of 157 CH families). We identified novel and predicted functional genetic variants in genes previously associated with AD. We also detected associations in three novel genes: IGHG3 (p = 9.8 × 10-7), an immunoglobulin gene whose antibodies interact with ß-amyloid, a long non-coding RNA AC099552.4 (p = 1.2 × 10-7), and a zinc-finger protein ZNF655 (gene-based p = 5.0 × 10-6). The latter two suggest an important role for transcriptional regulation in AD pathogenesis.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/immunology , Exome Sequencing , Gene Expression Regulation/genetics , Immunity/genetics , Transcription, Genetic/genetics , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Amyloid beta-Peptides/immunology , Apolipoproteins E/genetics , Female , Haplotypes/genetics , Humans , Immunoglobulin G , Kruppel-Like Transcription Factors/genetics , Male , Polymorphism, Genetic/genetics , RNA, Long Noncoding/genetics
SELECTION OF CITATIONS
SEARCH DETAIL