Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Kidney Int ; 105(5): 1088-1099, 2024 May.
Article in English | MEDLINE | ID: mdl-38382843

ABSTRACT

Individualized pre-pregnancy counseling and antenatal care for women with chronic kidney disease (CKD) require disease-specific data. Here, we investigated pregnancy outcomes and long-term kidney function in women with COL4A3-5 related disease (Alport Syndrome, (AS)) in a large multicenter cohort. The ALPART-network (mAternaL and fetal PregnAncy outcomes of women with AlpoRT syndrome), an international collaboration of 17 centers, retrospectively investigated COL4A3-5 related disease pregnancies after the 20th week. Outcomes were stratified per inheritance pattern (X-Linked AS (XLAS)), Autosomal Dominant AS (ADAS), or Autosomal Recessive AS (ARAS)). The influence of pregnancy on estimated glomerular filtration rate (eGFR)-slope was assessed in 192 pregnancies encompassing 116 women (121 with XLAS, 47 with ADAS, and 12 with ARAS). Median eGFR pre-pregnancy was over 90ml/min/1.73m2. Neonatal outcomes were favorable: 100% live births, median gestational age 39.0 weeks and mean birth weight 3135 grams. Gestational hypertension occurred during 23% of pregnancies (reference: 'general' CKD G1-G2 pregnancies incidence is 4-20%) and preeclampsia in 20%. The mean eGFR declined after pregnancy but remained within normal range (over 90ml/min/1.73m2). Pregnancy did not significantly affect eGFR-slope (pre-pregnancy ß=-1.030, post-pregnancy ß=-1.349). ARAS-pregnancies demonstrated less favorable outcomes (early preterm birth incidence 3/11 (27%)). ARAS was a significant independent predictor for lower birth weight and shorter duration of pregnancy, next to the classic predictors (pre-pregnancy kidney function, proteinuria, and chronic hypertension) though missing proteinuria values and the small ARAS-sample hindered analysis. This is the largest study to date on AS and pregnancy with reassuring results for mild AS, though inheritance patterns could be considered in counseling next to classic risk factors. Thus, our findings support personalized reproductive care and highlight the importance of investigating kidney disease-specific pregnancy outcomes.


Subject(s)
Nephritis, Hereditary , Pregnancy Complications , Premature Birth , Renal Insufficiency, Chronic , Female , Humans , Pregnancy , Infant, Newborn , Infant , Pregnancy Outcome/epidemiology , Nephritis, Hereditary/genetics , Birth Weight , Retrospective Studies , Premature Birth/etiology , Pregnancy Complications/epidemiology , Pregnancy Complications/genetics , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/genetics , Proteinuria , Counseling
2.
Article in English | MEDLINE | ID: mdl-38317457

ABSTRACT

BACKGROUND: Clinical variability among individuals with heterozygous pathogenic/likely pathogenic (P/LP) variants in the COL4A3/COL4A4 genes (also called autosomal dominant Alport syndrome or COL4A3/COL4A4 related disorder) is huge; many individuals are asymptomatic or show microhematuria, while others may develop proteinuria and chronic kidney disease (CKD). The prevalence of simple kidney cysts (KC) in the general population varies according to age, and patients with advanced CKD are prone to have them. A possible association between heterozygous COL4A3, COL4A4, and COL4A5 P/LP variants and KC has been described in small cohorts. The presence of KC in a multicenter cohort of individuals with heterozygous P/LP variants in the COL4A3/COL4A4 genes is assessed in this study. METHODS: We evaluated the presence of KC by ultrasound in 157 individuals with P/LP variants in COL4A3 (40.7%) or COL4A4 (53.5%) without kidney replacement therapy. The association between presence of KC and age, proteinuria, eGFR, and causative gene was analyzed. Prevalence of KC was compared with historical case series in the general population. RESULTS: Half of the individuals with P/LP variants in COL4A3/COL4A4 showed KC, which is a significantly higher percentage than in the general population. Only 3.8% (6/157) had cystic nephromegaly. Age and eGFR showed an association with the presence of KC (p<0.001). No association was found between KC and proteinuria, sex, or causative gene. CONCLUSIONS: Individuals with COL4A3/COL4A4 P/LP variants are prone to develop KC more frequently than the general population, and their presence is related to age and to eGFR. Neither proteinuria, sex nor the causative gene influences the presence of KC in these individuals.

3.
Nephrol Dial Transplant ; 37(4): 687-696, 2022 03 25.
Article in English | MEDLINE | ID: mdl-33532864

ABSTRACT

BACKGROUND: Inherited kidney diseases are one of the leading causes of chronic kidney disease (CKD) that manifests before the age of 30 years. Precise clinical diagnosis of early-onset CKD is complicated due to the high phenotypic overlap, but genetic testing is a powerful diagnostic tool. We aimed to develop a genetic testing strategy to maximize the diagnostic yield for patients presenting with early-onset CKD and to determine the prevalence of the main causative genes. METHODS: We performed genetic testing of 460 patients with early-onset CKD of suspected monogenic cause using next-generation sequencing of a custom-designed kidney disease gene panel in addition to targeted screening for c.428dupC MUC1. RESULTS: We achieved a global diagnostic yield of 65% (300/460), which varied depending on the clinical diagnostic group: 77% in cystic kidney diseases, 76% in tubulopathies, 67% in autosomal dominant tubulointerstitial kidney disease, 61% in glomerulopathies and 38% in congenital anomalies of the kidney and urinary tract. Among the 300 genetically diagnosed patients, the clinical diagnosis was confirmed in 77%, a specific diagnosis within a clinical diagnostic group was identified in 15%, and 7% of cases were reclassified. Of the 64 causative genes identified in our cohort, 7 (COL4A3, COL4A4, COL4A5, HNF1B, PKD1, PKD2 and PKHD1) accounted for 66% (198/300) of the genetically diagnosed patients. CONCLUSIONS: Two-thirds of patients with early-onset CKD in this cohort had a genetic cause. Just seven genes were responsible for the majority of diagnoses. Establishing a genetic diagnosis is crucial to define the precise aetiology of CKD, which allows accurate genetic counselling and improved patient management.


Subject(s)
Polycystic Kidney Diseases , Renal Insufficiency, Chronic , Adult , Female , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Kidney , Male , Mutation , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/genetics
4.
Am J Kidney Dis ; 78(4): 560-570.e1, 2021 10.
Article in English | MEDLINE | ID: mdl-33838161

ABSTRACT

RATIONALE & OBJECTIVE: Alport syndrome is a common genetic kidney disease accounting for approximately 2% of patients receiving kidney replacement therapy (KRT). It is caused by pathogenic variants in the gene COL4A3, COL4A4, or COL4A5. The aim of this study was to evaluate the clinical and genetic spectrum of patients with autosomal dominant Alport syndrome (ADAS). STUDY DESIGN: Retrospective cohort study. SETTING & PARTICIPANTS: 82 families (252 patients) with ADAS were studied. Clinical, genetic, laboratory, and pathology data were collected. OBSERVATIONS: A pathogenic DNA variant in COL4A3 was identified in 107 patients (35 families), whereas 133 harbored a pathogenic variant in COL4A4 (43 families). Digenic/complex inheritance was observed in 12 patients. Overall, the median kidney survival was 67 (95% CI, 58-73) years, without significant differences across sex (P=0.8), causative genes (P=0.6), or type of variant (P=0.9). Microhematuria was the most common kidney manifestation (92.1%), and extrarenal features were rare. Findings on kidney biopsies ranged from normal to focal segmental glomerulosclerosis. The slope of estimated glomerular filtration rate change was-1.46 (-1.66 to-1.26) mL/min/1.73m2 per year for the overall group, with no significant differences between ADAS genes (P=0.2). LIMITATIONS: The relatively small size of this series from a single country, potentially limiting generalizability. CONCLUSIONS: Patients with ADAS have a wide spectrum of clinical presentations, ranging from asymptomatic to kidney failure, a pattern not clearly related to the causative gene or type of variant. The diversity of ADAS phenotypes contributes to its underdiagnosis in clinical practice.


Subject(s)
Autoantigens/genetics , Collagen Type IV/genetics , Genetic Testing/methods , Genetic Variation/genetics , Nephritis, Hereditary/diagnosis , Nephritis, Hereditary/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Middle Aged , Nephritis, Hereditary/epidemiology , Renal Insufficiency/diagnosis , Renal Insufficiency/epidemiology , Renal Insufficiency/genetics , Retrospective Studies , Young Adult
5.
Article in English | MEDLINE | ID: mdl-33367818

ABSTRACT

BACKGROUND: Primary nephrogenic diabetes insipidus (NDI) is a rare disorder and little is known about treatment practices and long-term outcome. METHODS: Paediatric and adult nephrologists contacted through European professional organizations entered data in an online form. RESULTS: Data were collected on 315 patients (22 countries, male 84%, adults 35%). Mutation testing had been performed in 270 (86%); pathogenic variants were identified in 258 (96%). The median (range) age at diagnosis was 0.6 (0.0-60) years and at last follow-up 14.0 (0.1-70) years. In adults, height was normal with a mean (standard deviation) score of -0.39 (±1.0), yet there was increased prevalence of obesity (body mass index >30 kg/m2; 41% versus 16% European average; P < 0.001). There was also increased prevalence of chronic kidney disease (CKD) Stage ≥2 in children (32%) and adults (48%). Evidence of flow uropathy was present in 38%. A higher proportion of children than adults (85% versus 54%; P < 0.001) received medications to reduce urine output. Patients ≥25 years were less likely to have a university degree than the European average (21% versus 35%; P = 0.003) but full-time employment was similar. Mental health problems, predominantly attention-deficit hyperactivity disorder (16%), were reported in 36% of patients. CONCLUSION: This large NDI cohort shows an overall favourable outcome with normal adult height and only mild to moderate CKD in most. Yet, while full-time employment was similar to the European average, educational achievement was lower, and more than half had urological and/or mental health problems.

6.
Nephrol Dial Transplant ; 34(8): 1272-1279, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31190059

ABSTRACT

Alport syndrome (AS) is the most frequent inherited kidney disease after autosomal dominant polycystic kidney disease. It has three different patterns of inheritance-autosomal dominant, autosomal recessive and X-linked-which in part explains the wide spectrum of disease, ranging from isolated microhaematuria to end-stage renal disease early in life. The search for a treatment for AS is being pursued vigorously, not only because of the obvious unmet need but also because AS is a rare disease and any drug approved will have an orphan drug designation with its various benefits. Moreover, AS patients are quite young with very few comorbidities, which facilitates clinical trials. This review identifies the particularities of each pattern of inheritance but focuses mainly on new drugs or therapeutic targets for the disease. Most treatment-related investigations are directed not at the main abnormality in AS, namely collagen IV composition, but rather at the associated inflammation and fibrosis. Thus, AS may serve as a proof of concept for numerous drugs of potential value in many diseases that cause chronic kidney disease.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Nephritis, Hereditary/therapy , Pharmaceutical Preparations/administration & dosage , Stem Cell Transplantation/methods , Fibrosis/prevention & control , Genetic Predisposition to Disease , Humans , Inflammation/prevention & control , Nephritis, Hereditary/genetics , Nephritis, Hereditary/pathology
7.
BMC Nephrol ; 20(1): 126, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30975089

ABSTRACT

BACKGROUND: Galloway-Mowat syndrome (GAMOS) is a rare autosomal recessive disorder characterized by early-onset nephrotic syndrome and microcephaly with brain anomalies. WDR73 pathogenic variants were described as the first genetic cause of GAMOS and, very recently, four novel causative genes, OSGEP, LAGE3, TP53RK, and TPRKB, have been identified. CASE PRESENTATION: We present the clinical and genetic characteristics of two unrelated infants with clinical suspicion of GAMOS who were born from consanguineous parents. Both patients showed a similar clinical presentation, with early-onset nephrotic syndrome, microcephaly, brain atrophy, developmental delay, axial hypotonia, and early fatality. We identified two novel likely disease-causing variants in the OSGEP gene. These two cases, in conjunction with the findings of a literature review, indicate that OSGEP pathogenic variants are associated with an earlier onset of nephrotic syndrome and shorter life expectancy than WDR73 pathogenic variants. CONCLUSIONS: Our findings expand the spectrum of pathogenic variants in the OSGEP gene and, taken in conjunction with the results of the literature review, suggest that the OSGEP gene should be considered the main known monogenic cause of GAMOS. Early genetic diagnosis of GAMOS is of paramount importance for genetic counseling and family planning.


Subject(s)
Hernia, Hiatal , Kidney/pathology , Metalloendopeptidases/genetics , Microcephaly , Nephrosis , Nephrotic Syndrome , Atrophy , Biopsy , Brain/diagnostic imaging , Brain/pathology , Clinical Deterioration , Fatal Outcome , Female , Genetic Predisposition to Disease , Hernia, Hiatal/complications , Hernia, Hiatal/diagnosis , Hernia, Hiatal/genetics , Hernia, Hiatal/mortality , Homozygote , Humans , Infant , Life Expectancy , Male , Microcephaly/complications , Microcephaly/diagnosis , Microcephaly/etiology , Microcephaly/genetics , Microcephaly/mortality , Nephrosis/complications , Nephrosis/diagnosis , Nephrosis/genetics , Nephrosis/mortality , Nephrotic Syndrome/diagnosis , Nephrotic Syndrome/etiology , Nephrotic Syndrome/genetics
8.
Kidney Int ; 94(2): 363-371, 2018 08.
Article in English | MEDLINE | ID: mdl-29801666

ABSTRACT

Molecular diagnosis of inherited kidney diseases remains a challenge due to their expanding phenotypic spectra as well as the constantly growing list of disease-causing genes. Here we develop a comprehensive approach for genetic diagnosis of inherited cystic and glomerular nephropathies. Targeted next generation sequencing of 140 genes causative of or associated with cystic or glomerular nephropathies was performed in 421 patients, a validation cohort of 116 patients with previously known mutations, and a diagnostic cohort of 207 patients with suspected inherited cystic disease and 98 patients with glomerular disease. In the validation cohort, a sensitivity of 99% was achieved. In the diagnostic cohort, causative mutations were found in 78% of patients with cystic disease and 62% of patients with glomerular disease, mostly familial cases, including copy number variants. Results depict the distribution of different cystic and glomerular inherited diseases showing the most likely diagnosis according to perinatal, pediatric and adult disease onset. Of all the genetically diagnosed patients, 15% were referred with an unspecified clinical diagnosis and in 2% genetic testing changed the clinical diagnosis. Therefore, in 17% of cases our genetic analysis was crucial to establish the correct diagnosis. Complex inheritance patterns in autosomal dominant polycystic kidney disease and Alport syndrome were suspected in seven and six patients, respectively. Thus, our kidney-disease gene panel is a comprehensive, noninvasive, and cost-effective tool for genetic diagnosis of cystic and glomerular inherited kidney diseases. This allows etiologic diagnosis in three-quarters of patients and is especially valuable in patients with unspecific or atypical phenotypes.


Subject(s)
Genetic Testing/methods , Nephritis, Hereditary/diagnosis , Polycystic Kidney, Autosomal Dominant/diagnosis , Prenatal Diagnosis/methods , Adolescent , Adult , Age of Onset , Aged , Child , Child, Preschool , Cohort Studies , Cost-Benefit Analysis , DNA Mutational Analysis/economics , DNA Mutational Analysis/methods , Feasibility Studies , Female , Genetic Testing/economics , High-Throughput Nucleotide Sequencing/economics , High-Throughput Nucleotide Sequencing/methods , Humans , Infant , Infant, Newborn , Kidney/pathology , Male , Middle Aged , Mutation , Nephritis, Hereditary/epidemiology , Nephritis, Hereditary/genetics , Nephritis, Hereditary/pathology , Phenotype , Polycystic Kidney, Autosomal Dominant/epidemiology , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Pregnancy , Prenatal Diagnosis/economics , Prevalence , Young Adult
9.
Am J Kidney Dis ; 72(3): 411-418, 2018 09.
Article in English | MEDLINE | ID: mdl-29784615

ABSTRACT

RATIONALE & OBJECTIVE: Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a rare underdiagnosed cause of end-stage renal disease (ESRD). ADTKD is caused by mutations in at least 4 different genes: MUC1, UMOD, HNF1B, and REN. STUDY DESIGN: Retrospective cohort study. SETTING & PARTICIPANTS: 56 families (131 affected individuals) with ADTKD referred from different Spanish hospitals. Clinical, laboratory, radiologic, and pathologic data were collected, and genetic testing for UMOD, MUC1, REN, and HNF1B was performed. PREDICTORS: Hyperuricemia, ultrasound findings, renal histology, genetic mutations. OUTCOMES: Age at ESRD, rate of decline in estimated glomerular filtration rate. RESULTS: ADTKD was diagnosed in 25 families (45%), 9 carried UMOD pathogenic variants (41 affected members), and 16 carried the MUC1 pathogenic mutation c.(428)dupC (90 affected members). No pathogenic variants were identified in REN or HNF1B. Among the 77 individuals who developed ESRD, median age at onset of ESRD was 51 years for those with ADTKD-MUC1 versus 56 years (P=0.1) for those with ADTKD-UMOD. Individuals with the MUC1 duplication presented higher risk for developing ESRD (HR, 2.24; P=0.03). The slope of decline in estimated glomerular filtration rate showed no significant difference between groups (-3.0mL/min/1.73m2 per year in the ADTKD-UMOD group versus -3.9mL/min/1.73m2 per year in the ADTKD-MUC1 group; P=0.2). The prevalence of hyperuricemia was significantly higher in individuals with ADTKD-UMOD (87% vs 54%; P=0.006). Although gout occurred more frequently in this group, the difference was not statistically significant (24% vs 7%; P=0.07). LIMITATIONS: Relatively small Spanish cohort. MUC1 analysis limited to cytosine duplication. CONCLUSIONS: The main genetic cause of ADTKD in our Spanish cohort is the MUC1 pathogenic mutation c.(428)dupC. Renal survival may be worse in individuals with the MUC1 mutation than in those with UMOD mutations. Clinical presentation does not permit distinguishing between these variants. However, hyperuricemia and gout are more frequent in individuals with ADTKD-UMOD.


Subject(s)
Kidney Failure, Chronic/diagnosis , Kidney Failure, Chronic/genetics , Mucin-1/genetics , Polycystic Kidney, Autosomal Dominant/diagnosis , Polycystic Kidney, Autosomal Dominant/genetics , Uromodulin/genetics , Adult , Female , Humans , Kidney Failure, Chronic/epidemiology , Male , Middle Aged , Mutation/genetics , Nephritis, Interstitial/diagnosis , Nephritis, Interstitial/epidemiology , Nephritis, Interstitial/genetics , Polycystic Kidney, Autosomal Dominant/epidemiology , Spain/epidemiology
10.
Am J Nephrol ; 48(4): 308-317, 2018.
Article in English | MEDLINE | ID: mdl-30347391

ABSTRACT

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) causes the development of renal cysts and leads to a decline in renal function. Limited guidance exists in clinical practice on the use of tolvaptan. A decision algorithm from the European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Working Groups of Inherited Kidney Disorders and European Renal Best Practice (WGIKD/ERBP) has been proposed to identify candidates for tolvaptan treatment; however, this algorithm has not been assessed in clinical practice. METHODS: Eighteen-month cross-sectional, unicenter, observational study assessing 305 consecutive ADPKD patients. The ERA-EDTA WGIKD/ERBP algorithm with a stepwise approach was used to assess rapid progression (RP). Subsequently, expanded criteria based on the REPRISE trial were applied to evaluate the -impact of extended age (≤55 years) and estimated glomerular filtration rate (eGFR; ≥25 mL/min/1.73 m2). RESULTS: Historical eGFR decline, indicative of RP, was fulfilled in 26% of 73 patients who were candidates for RP assessment, mostly aged 31-55 years. Further tests including ultrasound and MRI measurements of kidney volume plus genetic testing enabled the evaluation of the remaining patients. Overall, 15.7% of patients met the criteria for rapid or likely RP using the algorithm, and the percentage increased to 27% when extending age and eGFR. CONCLUSIONS: The ERA-EDTA WGIKD/ERBP algorithm provides a valuable means of identifying in routine clinical practice patients who may be eligible for treatment with tolvaptan. The impact of a new threshold for age and eGFR may increase the percentage of patients to be treated.


Subject(s)
Antidiuretic Hormone Receptor Antagonists/therapeutic use , Clinical Decision-Making/methods , Patient Selection , Polycystic Kidney, Autosomal Dominant/drug therapy , Tolvaptan/therapeutic use , Adult , Age Factors , Algorithms , Cross-Sectional Studies , Disease Progression , Female , Glomerular Filtration Rate , Humans , Kidney/diagnostic imaging , Kidney/pathology , Kidney/physiopathology , Magnetic Resonance Imaging , Male , Middle Aged , Organ Size , Polycystic Kidney, Autosomal Dominant/pathology , Predictive Value of Tests , Retrospective Studies , Ultrasonography
12.
Genes (Basel) ; 15(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38927615

ABSTRACT

X-linked hypophosphatemia (XLH) is a rare inherited disorder of renal phosphate wasting with a highly variable phenotype caused by loss-of-function variants in the PHEX gene. The diagnosis of individuals with mild phenotypes can be challenging and often delayed. Here, we describe a three-generation family with a very mild clinical presentation of XLH. The diagnosis was unexpectedly found in a 39-year-old woman who was referred for genetic testing due to an unclear childhood diagnosis of a tubulopathy. Genetic testing performed by next-generation sequencing using a kidney disease gene panel identified a novel non-canonical splice site variant in the PHEX gene. Segregation analysis detected that the consultand's father, who presented with hypophosphatemia and decreased tubular phosphate reabsorption, and the consultand's son also carried this variant. RNA studies demonstrated that the non-canonical splice site variant partially altered the splicing of the PHEX gene, as both wild-type and aberrant splicing transcripts were detected in the two male members with only one copy of the PHEX gene. In conclusion, this case contributes to the understanding of the relationship between splicing variants and the variable expressivity of XLH disease. The mild phenotype of this family can be explained by the coexistence of PHEX transcripts with aberrant and wild-type splicing.


Subject(s)
Familial Hypophosphatemic Rickets , PHEX Phosphate Regulating Neutral Endopeptidase , Pedigree , RNA Splice Sites , Humans , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , Adult , Female , Familial Hypophosphatemic Rickets/genetics , Male , RNA Splice Sites/genetics , RNA Splicing/genetics , Phenotype , Genetic Diseases, X-Linked/genetics , Mutation
14.
Kidney Int Rep ; 9(2): 249-256, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38344736

ABSTRACT

Introduction: Accurate tools to inform individual prognosis in patients with autosomal dominant polycystic kidney disease (ADPKD) are lacking. Here, we report an artificial intelligence (AI)-generated method for routinely measuring total kidney volume (TKV). Methods: An ensemble U-net algorithm was created using the nnUNet approach. The training and internal cross-validation cohort consisted of all 1.5T magnetic resonance imaging (MRI) data acquired using 5 different MRI scanners (454 kidneys, 227 scans) in the CYSTic consortium, which was first manually segmented by a single human operator. As an independent validation cohort, we utilized 48 sequential clinical MRI scans with reference results of manual segmentation acquired by 6 individual analysts at a single center. The tool was then implemented for clinical use and its performance analyzed. Results: The training or internal validation cohort was younger (mean age 44.0 vs. 51.5 years) and the female-to-male ratio higher (1.2 vs. 0.94) compared to the clinical validation cohort. The majority of CYSTic patients had PKD1 mutations (79%) and typical disease (Mayo Imaging class 1, 86%). The median DICE score on the clinical validation data set between the algorithm and human analysts was 0.96 for left and right kidneys with a median TKV error of -1.8%. The time taken to manually segment kidneys in the CYSTic data set was 56 (±28) minutes, whereas manual corrections of the algorithm output took 8.5 (±9.2) minutes per scan. Conclusion: Our AI-based algorithm demonstrates performance comparable to manual segmentation. Its rapidity and precision in real-world clinical cases demonstrate its suitability for clinical application.

15.
Nefrologia (Engl Ed) ; 43 Suppl 2: 91-95, 2023 12.
Article in English | MEDLINE | ID: mdl-38278716

ABSTRACT

Fabry disease or also called Anderson-Fabry disease (FD) is a rare disease caused by pathogenic variants in the GLA gene, located on the X chromosome. This gene is involved in the metabolism of glycosphingolipids and its pathogenic variants cause a deficit or absence of α-galactosidase A causing the deposition of globotriaosylceramide throughout the body. Females have a variable phenotypic expression and a better prognosis than males. This is due to the X chromosome inactivation phenomenon. We present a clinical case of Fabry disease in a female with predominantly renal involvement and demonstrate how the X chromosome inactivation phenomenon is tissue dependent, showing preferential inactivation of the mutated allele at the renal level.


Subject(s)
Fabry Disease , Male , Female , Humans , Fabry Disease/genetics , Fabry Disease/pathology , X Chromosome Inactivation , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism , Kidney/pathology , Phenotype
16.
Clin Kidney J ; 16(12): 2314-2326, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38046016

ABSTRACT

Artificial intelligence (AI) is a science that involves creating machines that can imitate human intelligence and learn. AI is ubiquitous in our daily lives, from search engines like Google to home assistants like Alexa and, more recently, OpenAI with its chatbot. AI can improve clinical care and research, but its use requires a solid understanding of its fundamentals, the promises and perils of algorithmic fairness, the barriers and solutions to its clinical implementation, and the pathways to developing an AI-competent workforce. The potential of AI in the field of nephrology is vast, particularly in the areas of diagnosis, treatment and prediction. One of the most significant advantages of AI is the ability to improve diagnostic accuracy. Machine learning algorithms can be trained to recognize patterns in patient data, including lab results, imaging and medical history, in order to identify early signs of kidney disease and thereby allow timely diagnoses and prompt initiation of treatment plans that can improve outcomes for patients. In short, AI holds the promise of advancing personalized medicine to new levels. While AI has tremendous potential, there are also significant challenges to its implementation, including data access and quality, data privacy and security, bias, trustworthiness, computing power, AI integration and legal issues. The European Commission's proposed regulatory framework for AI technology will play a significant role in ensuring the safe and ethical implementation of these technologies in the healthcare industry. Training nephrologists in the fundamentals of AI is imperative because traditionally, decision-making pertaining to the diagnosis, prognosis and treatment of renal patients has relied on ingrained practices, whereas AI serves as a powerful tool for swiftly and confidently synthesizing this information.

17.
Nephron ; 147(3-4): 152-157, 2023.
Article in English | MEDLINE | ID: mdl-36088902

ABSTRACT

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary cause of end-stage kidney disease. Currently, tolvaptan is the only treatment that has proven to delay disease progression. The most notable side effect of this therapy is drug-induced liver injury; however, recently, there have been two reports of creatine kinase (CK) elevation in ADPKD patients on tolvaptan treatment. We set out to monitor and determine the actual incidence of CK elevation and evaluate its potential association with other clinical factors. METHODS: This is an observational retrospective multicenter study performed in rapidly progressive ADPKD patients on tolvaptan treatment from Barcelona, Spain. Laboratory tests, demographics, treatment dose, and reported symptoms were collected from October 2018 to March 2021. RESULTS: Ninety-five patients initiated tolvaptan treatment during follow-up. The medication had to be discontinued in 31 (32.6%) patients, primarily due to aquaretic effects (12.6%), elevated liver enzymes (8.4%), and symptomatic or persistently elevated CK levels (3.2%). Moreover, a total of 27 (28.4%) patients had elevated CK levels, with most of them being either transient (12.6%), mild and asymptomatic (4.2%), or resolved after dose reduction (3.2%) or temporary discontinuation (2.1%). CONCLUSION: We pre-sent the largest cohort that has monitored CK levels in a real-life setting, finding them elevated in 28.4% of patients. More research and monitoring will help us understand the clinical implications and the pathophysiological mechanism of CK elevation in this population.


Subject(s)
Kidney Failure, Chronic , Polycystic Kidney, Autosomal Dominant , Humans , Tolvaptan/therapeutic use , Tolvaptan/adverse effects , Polycystic Kidney, Autosomal Dominant/complications , Antidiuretic Hormone Receptor Antagonists/adverse effects , Kidney Failure, Chronic/complications , Disease Progression , Kidney
18.
Clin Kidney J ; 16(6): 985-995, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37260991

ABSTRACT

Background: The clinical manifestations of autosomal dominant polycystic kidney disease (ADPKD) usually appear in adulthood, however pediatric series report a high morbidity. The objective of the study was to analyze the clinical characteristics of ADPKD in young adults. Methods: Family history, hypertension, albuminuria, estimated glomerular filtration rate (eGFR) and imaging tests were examined in 346 young adults (18-30 years old) out of 2521 patients in the Spanish ADPKD registry (REPQRAD). A literature review searched for reports on hypertension in series with more than 50 young (age <30 years) ADPKD patients. Results: The mean age of this young adult cohort was 25.24 (SD 3.72) years. The mean age at diagnosis of hypertension was 21.15 (SD 4.62) years, while in the overall REPQRAD population was aged 37.6 years. The prevalence of hypertension was 28.03% and increased with age (18-24 years, 16.8%; 25-30 years, 36.8%). Although prevalence was lower in women than in men, the age at onset of hypertension (21 years) was similar in both sexes. Mean eGFR was 108 (SD 21) mL/min/1.73 m2, 38.0% had liver cysts and 3.45% of those studied had intracranial aneurysms. In multivariate analyses, hematuria episodes and kidney length were independent predictors of hypertension (area under the curve 0.75). The prevalence of hypertension in 22 pediatric cohorts was 20%-40%, but no literature reports on hypertension in young ADPKD adults were found. Conclusions: Young adults present non-negligible ADPKD-related morbidity. This supports the need for a thorough assessment of young adults at risk of ADPKD that allows early diagnosis and treatment of hypertension.

19.
Clin Kidney J ; 15(5): 912-921, 2022 May.
Article in English | MEDLINE | ID: mdl-35498884

ABSTRACT

Background: Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic kidney disease and shows a wide phenotype. Only patients with rapid progression (RP) are included in clinical trials or are approved to receive disease-modifying drugs. This study aims at comparing different available predictive tools in ADPKD with the Mayo classification (MC) identification of rapid progressors based on high total kidney volume (TKV) according to age. Methods: A total of 164 ADPKD patients were recruited retrospectively from a single centre. The performance of diverse tools to identify RP defined as being in MC categories 1C-1E was assessed. Results: A total of 118 patients were MC 1C-1E. The algorithm developed by the European Renal Association-European Dialysis and Transplant Association Working Group on Inherited Kidney Disorders/European Renal Best Practice had a low sensitivity in identifying MC 1C-1E. The sensitivity and specificity of TKV to predict RP depend on the cut-off used. A kidney length of >16.5 cm before age 45 years has high specificity but low sensitivity. Assessing the MC by ultrasonography had high levels of agreement with magnetic resonance imaging (MRI) data, especially for 1A, 1D and 1E. The estimated glomerular filtration rate (eGFR) decline was very sensitive but had low specificity. In contrast, the Predicting Renal Outcome in Polycystic Kidney Disease (PROPKD) score was very specific but had poor sensitivity. Having hypertension before 35 years of age is a good clinical predictor of MC 1C-1E. Family history can be of help in suggesting RP, but by itself it lacks sufficient sensitivity and specificity. Conclusions: The MC by ultrasonography could be an option in hospitals with limited access to MRI as it performs well generally, and especially at the extremes of the MC, i.e. classes 1A, 1D and 1E. The eGFR decline is sensitive but not very specific when compared with the MC, whereas the PROPKD score is very specific but has low sensitivity. Integrating the different tools currently available to determine RP should facilitate the identification of rapid progressors among patients with ADPKD.

20.
Case Rep Genet ; 2022: 3208810, 2022.
Article in English | MEDLINE | ID: mdl-36619006

ABSTRACT

Background: Fabry disease (FD) is an X-linked lysosomal storage disorder caused by pathogenic variants of the GLA gene. Heterozygous female patients may show much more variability in clinical manifestations, ranging from asymptomatic to full-blown disease. Because of this heterogeneous clinical picture in women, the diagnosis of FD has typically been delayed for more than a decade, and the optimal time to initiate treatment remains controversial. Case Presentation. Here, we present two unrelated female patients diagnosed with FD harbouring the same pathogenic GLA variant. We discuss the implications of initiating specific therapy at different stages of the disease, with and without organ involvement (early versus late therapeutic intervention). Conclusions: These clinical cases suggest that initiating specific treatment at an earlier age in women with FD may prevent organ involvement and associated clinical events.

SELECTION OF CITATIONS
SEARCH DETAIL