ABSTRACT
The clinical manifestation of Parkinson's disease exhibits significant heterogeneity in the prevalence of non-motor symptoms and the rate of progression of motor symptoms, suggesting that Parkinson's disease can be classified into distinct subtypes. In this study, we aimed to explore this heterogeneity by identifying a set of subtypes with distinct patterns of spatiotemporal trajectories of neurodegeneration. We applied Subtype and Stage Inference (SuStaIn), an unsupervised machine learning algorithm that combined disease progression modelling with clustering methods, to cortical and subcortical neurodegeneration visible on 3 T structural MRI of a large cross-sectional sample of 504 patients and 279 healthy controls. Serial longitudinal data were available for a subset of 178 patients at the 2-year follow-up and for 140 patients at the 4-year follow-up. In a subset of 210 patients, concomitant Alzheimer's disease pathology was assessed by evaluating amyloid-ß concentrations in the CSF or via the amyloid-specific radiotracer 18F-flutemetamol with PET. The SuStaIn analysis revealed three distinct subtypes, each characterized by unique patterns of spatiotemporal evolution of brain atrophy: neocortical, limbic and brainstem. In the neocortical subtype, a reduction in brain volume occurred in the frontal and parietal cortices in the earliest disease stage and progressed across the entire neocortex during the early stage, although with relative sparing of the striatum, pallidum, accumbens area and brainstem. The limbic subtype represented comparative regional vulnerability, which was characterized by early volume loss in the amygdala, accumbens area, striatum and temporal cortex, subsequently spreading to the parietal and frontal cortices across disease stage. The brainstem subtype showed gradual rostral progression from the brainstem extending to the amygdala and hippocampus, followed by the temporal and other cortices. Longitudinal MRI data confirmed that 77.8% of participants at the 2-year follow-up and 84.0% at the 4-year follow-up were assigned to subtypes consistent with estimates from the cross-sectional data. This three-subtype model aligned with empirically proposed subtypes based on age at onset, because the neocortical subtype demonstrated characteristics similar to those found in the old-onset phenotype, including older onset and cognitive decline symptoms (P < 0.05). Moreover, the subtypes correspond to the three categories of the neuropathological consensus criteria for symptomatic patients with Lewy pathology, proposing neocortex-, limbic- and brainstem-predominant patterns as different subgroups of α-synuclein distributions. Among the subtypes, the prevalence of biomarker evidence of amyloid-ß pathology was comparable. Upon validation, the subtype model might be applied to individual cases, potentially serving as a biomarker to track disease progression and predict temporal evolution.
ABSTRACT
OBJECTIVE: Degree of indication for epilepsy surgery is determined by taking multiple factors into account. This study aimed to investigate the usefulness of the Specific Consistency Score (SCS), a proposed score for focal epilepsy to rate the indication for epilepsy focal resection. METHODS: This retrospective cohort study included patients considered for resective epilepsy surgery in Kyoto University Hospital from 2011 to 2022. Plausible epileptic focus was tentatively defined. Cardinal findings were scored based on specificity and consistency with the estimated laterality and lobe. The total points represented SCS. The association between SCS and the following clinical parameters was assessed by univariate and multivariate analysis: (1) probability of undergoing resective epilepsy surgery, (2) good postoperative seizure outcome (Engel I and II or Engel I only), and (3) lobar concordance between the noninvasively estimated focus and intracranial electroencephalographic (EEG) recordings. RESULTS: A total of 131 patients were evaluated. Univariate analysis revealed higher SCS in the (1) epilepsy surgery group (8.4 [95% confidence interval (CI) = 7.8-8.9] vs. 4.9 [95% CI = 4.3-5.5] points; p < .001), (2) good postoperative seizure outcome group (Engel I and II; 8.7 [95% CI = 8.2-9.3] vs. 6.4 [95% CI = 4.5-8.3] points; p = .008), and (3) patients whose focus defined by intracranial EEG matched the noninvasively estimated focus (8.3 [95% CI = 7.3-9.2] vs. 5.4 [95% CI = 3.5-7.3] points; p = .004). Multivariate analysis revealed areas under the curve of .843, .825, and .881 for Parameters 1, 2, and 3, respectively. SIGNIFICANCE: SCS provides a reliable index of good indication for resective epilepsy surgery and can be easily available in many institutions not necessarily specializing in epilepsy.
Subject(s)
Patient Selection , Humans , Female , Male , Adult , Retrospective Studies , Young Adult , Middle Aged , Adolescent , Electroencephalography/methods , Epilepsy/surgery , Epilepsy/diagnosis , Treatment Outcome , Child , Cohort Studies , Neurosurgical Procedures/methods , Epilepsies, Partial/surgery , Epilepsies, Partial/physiopathology , Epilepsies, Partial/diagnosisABSTRACT
OBJECTIVE: To investigate the relationship of followings for patients with moyamoya disease (MMD): arterial wall enhancement on vessel wall MRI (VW-MRI), cross-sectional area (CSA), time-of-flight MR angiography (MRA), age, locations from intracranial internal carotid artery (ICA) to proximal middle cerebral artery (MCA), disease progression, and transient ischemic attack (TIA). METHODS: Patients who underwent VW-MRI between October 2018 and December 2020 were enrolled in this retrospective study. We measured arterial wall enhancement (enhancement ratio, ER) and CSA at five sections of ICA and MCA. Also, we scored MRA findings. Multiple linear regression (MLR) analysis was performed to explore the associations between ER, age, MRA score, CSA, history of TIA, and surgical revascularization. RESULTS: We investigated 102 sides of 51 patients with MMD (35 women, 16 men, mean age 31 years ± 18 [standard deviation]). ER for MRA score 2 (signal discontinuity) was higher than ER for other scores in sections D (end of ICA) and E (proximal MCA) on MLR analysis. ER in section E was significantly higher in patients for MRA score 2 with TIA history than without. ER significantly increased as CSA increased in section E, which suggests ER becomes less in decreased CSA due to negative remodeling. CONCLUSION: Arterial wall enhancement in MMD varies by age, location, and disease progression. Arterial wall enhancement may be stronger in the progressive stage of MMD. Arterial wall enhancement increases with history of TIA at proximal MCA, which may indicate the progression of the disease. CLINICAL RELEVANCE STATEMENT: Arterial wall enhancement in moyamoya disease varies by age, location of arteries, and disease progression, and arterial wall enhancement may be used as an imaging biomarker of moyamoya disease. KEY POINTS: It has not been clarified what arterial wall enhancement in moyamoya disease represents. Arterial wall enhancement in moyamoya disease varies by age, location of arteries, and disease progression. Arterial wall enhancement in moyamoya disease increases as the disease progresses.
Subject(s)
Ischemic Attack, Transient , Moyamoya Disease , Male , Humans , Female , Adult , Moyamoya Disease/diagnostic imaging , Retrospective Studies , Ischemic Attack, Transient/diagnostic imaging , Magnetic Resonance Imaging/methods , Middle Cerebral Artery , Disease ProgressionABSTRACT
PURPOSE: The rarity of IDH2 mutations in supratentorial gliomas has led to gaps in understanding their radiological characteristics, potentially resulting in misdiagnosis based solely on negative IDH1 immunohistochemical staining. We aimed to investigate the clinical and imaging characteristics of IDH2-mutant gliomas. METHODS: We analyzed imaging data from adult patients with pathologically confirmed diffuse lower-grade gliomas and known IDH1/2 alteration and 1p/19q codeletion statuses obtained from the records of our institute (January 2011 to August 2022, Cohort 1) and The Cancer Imaging Archive (TCIA, Cohort 2). Two radiologists evaluated clinical information and radiological findings using standardized methods. Furthermore, we compared the data for IDH2-mutant and IDH-wildtype gliomas. Multivariate logistic regression was used to identify the predictors of IDH2 mutation status, and receiver operating characteristic curve analysis was employed to assess the predictive performance of the model. RESULTS: Of the 20 IDH2-mutant supratentorial gliomas, 95% were in the frontal lobes, with 75% classified as oligodendrogliomas. Age and the T2-FLAIR discordance were independent predictors of IDH2 mutations. Receiver operating characteristic curve analysis for the model using age and T2-FLAIR discordance demonstrated a strong potential for discriminating between IDH2-mutant and IDH-wildtype gliomas, with an area under the curve of 0.96 (95% CI, 0.91-0.98, P = .02). CONCLUSION: A high frequency of oligodendrogliomas with 1p/19q codeletion was observed in IDH2-mutated gliomas. Younger age and the presence of the T2-FLAIR discordance were associated with IDH2 mutations and these findings may help with precise diagnoses and treatment decisions in clinical practice.
Subject(s)
Glioma , Isocitrate Dehydrogenase , Magnetic Resonance Imaging , Mutation , Supratentorial Neoplasms , Humans , Isocitrate Dehydrogenase/genetics , Male , Female , Glioma/genetics , Glioma/diagnostic imaging , Glioma/pathology , Middle Aged , Adult , Supratentorial Neoplasms/genetics , Supratentorial Neoplasms/diagnostic imaging , Supratentorial Neoplasms/pathology , Magnetic Resonance Imaging/methods , Aged , Retrospective StudiesABSTRACT
Magnetic resonance imaging (MRI) is an essential tool for evaluating pelvic disorders affecting the prostate, bladder, uterus, ovaries, and/or rectum. Since the diagnostic pathway of pelvic MRI can involve various complex procedures depending on the affected organ, the Reporting and Data System (RADS) is used to standardize image acquisition and interpretation. Artificial intelligence (AI), which encompasses machine learning and deep learning algorithms, has been integrated into both pelvic MRI and the RADS, particularly for prostate MRI. This review outlines recent developments in the use of AI in various stages of the pelvic MRI diagnostic pathway, including image acquisition, image reconstruction, organ and lesion segmentation, lesion detection and classification, and risk stratification, with special emphasis on recent trends in multi-center studies, which can help to improve the generalizability of AI.
Subject(s)
Artificial Intelligence , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Female , Male , Pelvis/diagnostic imagingABSTRACT
OBJECTIVE: The motor severity in Parkinson disease (PD) is believed to parallel dopaminergic terminal degeneration in the striatum, although the terminal was reported to be virtually absent by 4 years postdiagnosis. Meanwhile, neuromelanin-laden dopamine neuron loss in the substantia nigra (SN) elucidated a variability at early stages and gradual loss with less variability 10 years postdiagnosis. Here, we aimed to clarify the correlation between motor impairments and striatal dopaminergic terminal degeneration and nigral neuromelanin-laden dopamine neuron loss at early to advanced stages of PD. METHODS: Ninety-three PD patients were divided into early and advanced subgroups based on motor symptom duration and whether motor fluctuation was present. Striatal dopaminergic terminal degeneration was evaluated using a presynaptic dopamine transporter tracer, 123 I-ioflupane single photon emission computed tomography (SPECT). Nigral neuromelanin-laden dopamine neuron density was assessed by neuromelanin-sensitive magnetic resonance imaging (NM-MRI). RESULTS: In patients with early stage PD (motor symptoms for ≤8 or 10 years), motor dysfunction during the drug-off state was paralleled by a decline in 123 I-ioflupane uptake in the striatum despite the absence of a correlation with reductions in NM-MRI signals in SN. Meanwhile, in patients with advanced stage PD (motor symptoms for >8 or 10 years and with fluctuation), the degree of motor deficits during the drug-off state was not correlated with 123 I-ioflupane uptake in the striatum, despite its significant negative correlation with NM-MRI signals in SN. INTERPRETATION: We propose striatal dopaminergic terminal loss measured using 123 I-ioflupane SPECT and nigral dopamine neuron loss assessed with NM-MRI as early stage and advanced stage motor impairment biomarkers, respectively. ANN NEUROL 2022;92:110-121.
Subject(s)
Parkinson Disease , Corpus Striatum/metabolism , Dopamine , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/pathology , Humans , Magnetic Resonance Imaging/methods , Nerve Degeneration/diagnostic imaging , Nerve Degeneration/pathology , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Substantia Nigra/pathology , Tomography, Emission-Computed, Single-Photon/methodsABSTRACT
Quantitative susceptibility mapping (QSM) is a unique technique for providing quantitative information on tissue magnetic susceptibility using phase image data. QSM can provide valuable information regarding physiological and pathological processes such as iron deposition, hemorrhage, calcification, and myelin. QSM has been considered for use as an imaging biomarker to investigate physiological status and pathological changes. Although various studies have investigated the clinical applications of QSM, particularly regarding the use of QSM in clinical practice, have not been examined well. This review provides on an overview of the basics of QSM and its clinical applications in neuroradiology. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.
ABSTRACT
OBJECTIVES: To assess the accuracy, repeatability, and reproducibility of T1 and T2 relaxation time measurements by three-dimensional magnetic resonance fingerprinting (3D MRF) using various dictionary resolutions. METHODS: The ISMRM/NIST phantom was scanned daily for 10 days in two 3 T MR scanners using a 3D MRF sequence reconstructed using four dictionaries with varying step sizes and one dictionary with wider ranges. Thirty-nine healthy volunteers were enrolled: 20 subjects underwent whole-brain MRF scans in both scanners and the rest in one scanner. ROI/VOI analyses were performed on phantom and brain MRF maps. Accuracy, repeatability, and reproducibility metrics were calculated. RESULTS: In the phantom study, all dictionaries showed high T1 linearity to the reference values (R2 > 0.99), repeatability (CV < 3%), and reproducibility (CV < 3%) with lower linearity (R2 > 0.98), repeatability (CV < 6%), and reproducibility (CV ≤ 4%) for T2 measurement. The volunteer study demonstrated high T1 reproducibility of within-subject CV (wCV) < 4% by all dictionaries with the same ranges, both in the brain parenchyma and CSF. Yet, reproducibility was moderate for T2 measurement (wCV < 8%). In CSF measurement, dictionaries with a smaller range showed a seemingly better reproducibility (T1, wCV 3%; T2, wCV 8%) than the much wider range dictionary (T1, wCV 5%; T2, wCV 13%). Truncated CSF relaxometry values were evident in smaller range dictionaries. CONCLUSIONS: The accuracy, repeatability, and reproducibility of 3D MRF across various dictionary resolutions were high for T1 and moderate for T2 measurements. A lower-resolution dictionary with a well-defined range may be adequate, thus significantly reducing the computational load. KEY POINTS: ⢠A lower-resolution dictionary with a well-defined range may be sufficient for 3D MRF reconstruction. ⢠CSF relaxation times might be underestimated due to truncation by the upper dictionary range. ⢠Dictionary with a higher upper range might be advisable, especially for CSF evaluation and elderly subjects whose perivascular spaces are more prominent.
Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Aged , Image Processing, Computer-Assisted/methods , Reproducibility of Results , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Brain/diagnostic imaging , Phantoms, ImagingABSTRACT
OBJECTIVES: To evaluate susceptibility values associated with iron accumulation in the deep gray matter during postnatal development and to compare magnetic susceptibility between patients with normal and delayed development. METHODS: Patients with postmenstrual age (PMA) ≤ 1000 days underwent MR scans between August 2015 and April 2020 at our hospital. Quantitative susceptibility mapping (QSM) was performed, and magnetic susceptibility was measured using three-dimensional volumes of interest (VOIs) for the caudate nucleus (CN), globus pallidus (GP), putamen (PT), and ventrolateral thalamic nucleus (VL). Cross-sectional analysis was performed for 99 patients with normal development and 39 patients with delayed development. Longitudinal analysis was also performed to interpret changes over time in 13 patients with normal development. Correlations between magnetic susceptibility in VOIs and PMA or chronological age (CA) were assessed. RESULTS: Susceptibility values for CN, GP, PT, and VL showed positive moderate correlations with both PMA (ρ = 0.45, 0.69, 0.62, and 0.33, respectively) and CA (ρ = 0.53, 0.69, 0.66, and 0.39, respectively). The slope of the correlation between susceptibility values and age was highest in the GP among the four gray matter areas. Susceptibility values for the CN, GP, PT, and VL were higher with normal development than with delayed development at early postnatal age, although a significant difference was only observed for the CN. Susceptibility values also increased with age in the longitudinal analysis. CONCLUSIONS: Magnetic susceptibility values in deep gray matter increased with age ≤ 1000 days. The normal development group showed higher susceptibility values than the delayed development group at early postnatal age (PMA ≤ 285 days). KEY POINTS: ⢠Magnetic susceptibilities in deep gray matter nuclei increased with age (postmenstrual age ≤ 1000 days) in a large number of pediatric patients. ⢠The normal development group showed higher susceptibility values than the delayed development group in the basal ganglia and ventrolateral thalamic nucleus at early postnatal age (PMA ≤ 285 days).
Subject(s)
Gray Matter , Magnetic Resonance Imaging , Humans , Child , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging/methods , Cross-Sectional Studies , Iron , Caudate Nucleus , Brain Mapping/methods , Brain/diagnostic imagingABSTRACT
OBJECTIVES: To develop a generative adversarial network (GAN) model to improve image resolution of brain time-of-flight MR angiography (TOF-MRA) and to evaluate the image quality and diagnostic utility of the reconstructed images. METHODS: We included 180 patients who underwent 1-min low-resolution (LR) and 4-min high-resolution (routine) brain TOF-MRA scans. We used 50 patients' datasets for training, 12 for quantitative image quality evaluation, and the rest for diagnostic validation. We modified a pix2pix GAN to suit TOF-MRA datasets and fine-tuned GAN-related parameters, including loss functions. Maximum intensity projection images were generated and compared using multi-scale structural similarity (MS-SSIM) and information theoretic-based statistic similarity measure (ISSM) index. Two radiologists scored vessels' visibilities using a 5-point Likert scale. Finally, we evaluated sensitivities and specificities of GAN-MRA in depicting aneurysms, stenoses, and occlusions. RESULTS: The optimal model was achieved with a lambda of 1e5 and L1 + MS-SSIM loss. Image quality metrics for GAN-MRA were higher than those for LR-MRA (MS-SSIM, 0.87 vs. 0.73; ISSM, 0.60 vs. 0.35; p.adjusted < 0.001). Vessels' visibility of GAN-MRA was superior to LR-MRA (rater A, 4.18 vs. 2.53; rater B, 4.61 vs. 2.65; p.adjusted < 0.001). In depicting vascular abnormalities, GAN-MRA showed comparable sensitivities and specificities, with greater sensitivity for aneurysm detection by one rater (93% vs. 84%, p < 0.05). CONCLUSIONS: An optimized GAN could significantly improve the image quality and vessel visibility of low-resolution brain TOF-MRA with equivalent sensitivity and specificity in detecting aneurysms, stenoses, and occlusions. KEY POINTS: ⢠GAN could significantly improve the image quality and vessel visualization of low-resolution brain MR angiography (MRA). ⢠With optimally adjusted training parameters, the GAN model did not degrade diagnostic performance by generating substantial false positives or false negatives. ⢠GAN could be a promising approach for obtaining higher resolution TOF-MRA from images scanned in a fraction of time.
Subject(s)
Brain , Magnetic Resonance Angiography , Humans , Magnetic Resonance Angiography/methods , Constriction, Pathologic , Brain/diagnostic imaging , Brain/blood supply , Magnetic Resonance Imaging , Cerebral Angiography/methodsABSTRACT
INTRODUCTION: Radiation-induced carotid artery stenosis (RI-CS) is known as one of long-term side effects of radiotherapy for head and neck cancer (HNC). However, the clinical time course after irradiation has been poorly understood. We aimed to investigate the natural history of radiation-induced carotid atherosclerosis, comparing the patients who received radiotherapy for HNC with the patients who were treated without radiotherapy. METHODS: The patients who received treatment of HNC at Department of Otolaryngology, Head and Neck Surgery of Kyoto University Hospital, from November 2012 to July 2015 were enrolled. The patients were assigned into the RT group and the control group, depending on whether radiotherapy was planned or not. Annual carotid ultrasound was performed from the enrollment to 5 years. The increase of mean intima-media thickness (IMT) at common carotid artery from the enrollment (Δmean IMT) was evaluated. RESULTS: Fifty-six patients in the RT group and 25 patients in the control group were enrolled. From 5-year follow-up data, the significant higher increase of Δmean IMT was consistently observed in the RT group than in the control group after 2 years. The RT group presented a 7.8-fold increase of mean IMT compared to the control group (0.060 mm per year in the RT group and 0.008 mm per year in the control group). Cumulative incidence curves obtained from the analysis of all vessels revealed that the RT group presented higher incidence of Δmean IMT ≥0.25 mm than the control group (p < 0.01). In the RT group, the patients with mean IMT ≥1.0 mm at enrollment exhibited significantly higher incidence of Δmean IMT ≥0.25 mm than the patients with mean IMT <1.0 mm (p < 0.01). DISCUSSION: Radiotherapy for HNC induces continuous carotid mean IMT progression. The irradiated carotid arteries with mean IMT ≥1.0 mm before radiotherapy presented earlier IMT progression than those with mean IMT <1.0 mm.
Subject(s)
Carotid Artery Diseases , Head and Neck Neoplasms , Humans , Carotid Intima-Media Thickness , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/complications , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/etiology , Carotid Arteries/diagnostic imaging , Prospective StudiesABSTRACT
Although there is no solid agreement for artificial intelligence (AI), it refers to a computer system with intelligence similar to that of humans. Deep learning appeared in 2006, and more than 10 years have passed since the third AI boom was triggered by improvements in computing power, algorithm development, and the use of big data. In recent years, the application and development of AI technology in the medical field have intensified internationally. There is no doubt that AI will be used in clinical practice to assist in diagnostic imaging in the future. In qualitative diagnosis, it is desirable to develop an explainable AI that at least represents the basis of the diagnostic process. However, it must be kept in mind that AI is a physician-assistant system, and the final decision should be made by the physician while understanding the limitations of AI. The aim of this article is to review the application of AI technology in diagnostic imaging from PubMed database while particularly focusing on diagnostic imaging in thorax such as lesion detection and qualitative diagnosis in order to help radiologists and clinicians to become more familiar with AI in thorax.
Subject(s)
Artificial Intelligence , Deep Learning , Humans , Algorithms , Thorax , Diagnostic ImagingABSTRACT
This review outlines the current status and challenges of the clinical applications of artificial intelligence in liver imaging using computed tomography or magnetic resonance imaging based on a topic analysis of PubMed search results using latent Dirichlet allocation. LDA revealed that "segmentation," "hepatocellular carcinoma and radiomics," "metastasis," "fibrosis," and "reconstruction" were current main topic keywords. Automatic liver segmentation technology using deep learning is beginning to assume new clinical significance as part of whole-body composition analysis. It has also been applied to the screening of large populations and the acquisition of training data for machine learning models and has resulted in the development of imaging biomarkers that have a significant impact on important clinical issues, such as the estimation of liver fibrosis, recurrence, and prognosis of malignant tumors. Deep learning reconstruction is expanding as a new technological clinical application of artificial intelligence and has shown results in reducing contrast and radiation doses. However, there is much missing evidence, such as external validation of machine learning models and the evaluation of the diagnostic performance of specific diseases using deep learning reconstruction, suggesting that the clinical application of these technologies is still in development.
Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Artificial Intelligence , Carcinoma, Hepatocellular/diagnostic imaging , Tomography, X-Ray Computed , Liver Neoplasms/diagnostic imagingABSTRACT
OBJECTIVES: Choroidal anastomosis is a risk factor for hemorrhage in moyamoya disease. One variant of choroidal anastomosis, "transcallosal anastomosis," originates from the medial posterior choroidal artery, and penetrates the corpus callosum to reconstruct the pericallosal artery. We aimed to investigate the prevalence and the bleeding rate of transcallosal anastomosis using sliding thin-slab maximum intensity projection reformatted from magnetic resonance angiography (MRA). MATERIALS AND METHODS: This study included 222 patients. We defined transcallosal anastomosis grades (0-2) and the stenosis of the anterior (ACA, 0-2), middle (MCA, 1-3), and posterior cerebral artery (PCA, 0-2) by MRA scores, independently by two coauthors. RESULTS: Grade-2 transcallosal anastomosis was detected in 21 patients (9.5 %). There were no correlations of the incidence of transcallosal anastomosis with previous bypass surgery (P = 0.23). Multivariate analysis revealed a significantly higher incidence in hemorrhagic onset and younger age (odds ratio [OR] 3.77, and 0.97). Transcallosal anastomosis had statistically significant correlation with ACA and PCA scores (P = 0.01 and 0.03), but not with MCA scores (P = 0.1). In multivariate analysis, ACA scores 1 and 2 were significantly higher (OR, 15.44 and 11.17), and PCA score 1 was also higher (OR, 3.07), but PCA score 2 was not. Interrater agreement for judgment of transcallosal anastomosis grade was strong (κ = 0.89). Two patients with Grade-2 transcallosal anastomosis had late hemorrhage in the corpus callosum (bleeding rate: 2.5 % per year). CONCLUSIONS: Transcallosal anastomosis may be associated with both advanced ACA and moderate PCA stenosis, and cause hemorrhage at the corpus callosum.
Subject(s)
Cerebral Revascularization , Moyamoya Disease , Humans , Moyamoya Disease/diagnostic imaging , Moyamoya Disease/surgery , Moyamoya Disease/complications , Constriction, Pathologic/complications , Hemorrhage/complications , Anastomosis, SurgicalABSTRACT
OBJECTIVES: To assess the feasibility of low-dose contrast-enhanced four-dimensional (4D) time-resolved angiography with stochastic trajectories (TWIST) with iterative reconstruction (hereafter IT-TWIST-MRA) covering the whole brain and to compare IT-TWIST-MRA and TWIST-MRA with reference to digital subtraction angiography (DSA) in the evaluation of arteriovenous shunts (AVS). METHODS: Institutional Review Board approval was obtained for this observational study, and the requirement for written informed consent was waived. Twenty-nine patients with known AVS underwent TWIST-MRA on a 3-T MRI scanner, using low-dose injection (0.02 mmol/kg) of gadolinium-based contrast agent (GBCA) with each of Fourier and iterative reconstruction between September 2016 and October 2019. Visual evaluation of image quality was conducted for delineation of (a) the normal cerebral arteries and veins and (b) AVS feeder, shunt, and drainer vessels. Region-of-interest evaluation was conducted to evaluate bolus sharpness and baseline signal fluctuation in the signal intensity of the cerebral vessels. We compared the detection of AVS between TWIST-MRA and IT-TWIST-MRA. The paired-samples Wilcoxon test was used to test the differences between TWIST-MRA and IT-TWIST-MRA. RESULTS: Visualization scores for normal vasculature and AVS angioarchitecture were significantly better for images produced using IT-TWIST-MRA than those using TWIST-MRA. Peak signal and the enhancement slope of the time-intensity curve were significantly higher for IT-TWIST-MRA than for TWIST-MRA, except for the superior sagittal sinus (SSS). Baseline intensity fluctuation was significantly lower for IT-TWIST-MRA than for TWIST, except for SSS. CONCLUSIONS: IT-TWIST-MRA yields clinically feasible 4D MR-DSA images and delineates AVS even with low-dose GBCA. KEY POINTS: ⢠Iterative reconstruction significantly improves the image quality of TWIST-MRA covering the whole brain. ⢠The short temporal footprint and denoising effect of iterative reconstruction enhances the quality of 4D-MRA. ⢠IT-TWIST-MRA yields clinically feasible images of AVS with low-dose GBCA.
Subject(s)
Image Enhancement , Magnetic Resonance Angiography , Angiography, Digital Subtraction , Brain , Contrast Media/pharmacology , Humans , Image Enhancement/methods , Magnetic Resonance Angiography/methods , Tomography, X-Ray ComputedABSTRACT
BACKGROUND: Detecting immunoglobulin G4 (IgG4)-related intracranial arteriopathy, a rare neurovascular complication of IgG4-related disease, is challenging. While magnetic resonance (MR) vessel wall imaging (VWI) can visualize various neurovascular pathologies, its application to this arteriopathy has not been reported as of this writing. CASE PRESENTATION: A 74-year-old male and a 65-year-old female manifested multiple cranial nerve palsy and neck pain, respectively. Both cases exhibited multiorgan masses with markedly elevated serum IgG4 levels and were clinically diagnosed with IgG4-related disease. Three-dimensional T1-weighted black blood VWI with and without contrast agent identified intracranial vascular lesions characterized as nearly-circumferential mural thickening with homogeneous contrast enhancement in the internal carotid and vertebral arteries; some of the lesions had been unrecognized with screening MR angiography due to expansive remodeling. The former patient underwent corticosteroid therapy, and VWI after treatment revealed decreased mural thickening and enhancement. CONCLUSION: Further studies to elucidate characteristic findings of VWI might contribute to early detection of this treatable pathology.
Subject(s)
Immunoglobulin G4-Related Disease , Intracranial Arterial Diseases , Male , Female , Humans , Aged , Immunoglobulin G4-Related Disease/diagnostic imaging , Magnetic Resonance Imaging/methods , Magnetic Resonance Angiography/methods , Magnetic Resonance Spectroscopy , ImmunoglobulinsABSTRACT
Vessel wall MR imaging (VW-MRI) has been introduced into clinical practice and applied to a variety of diseases, and its usefulness has been reported. High-resolution VW-MRI is essential in the diagnostic workup and provides more information than other routine MR imaging protocols. VW-MRI is useful in assessing lesion location, morphology, and severity. Additional information, such as vessel wall enhancement, which is useful in the differential diagnosis of atherosclerotic disease and vasculitis could be assessed by this special imaging technique. This review describes the VW-MRI technique and its clinical applications in arterial disease, venous disease, vasculitis, and leptomeningeal disease.
Subject(s)
Magnetic Resonance Imaging , Vasculitis , Humans , Magnetic Resonance Angiography/methods , Magnetic Resonance Imaging/methodsABSTRACT
BACKGROUND: Neuromelanin-sensitive magnetic resonance imaging techniques have been developed but currently require relatively long scan times. The aim of this study was to assess the ability of black-blood delay alternating with nutation for tailored excitation-prepared T1-weighted variable flip angle turbo spin echo (DANTE T1-SPACE), which provides relatively high resolution with a short scan time, to visualize neuromelanin in the substantia nigra pars compacta (SNpc). METHODS: Participants comprised 49 healthy controls and 25 patients with Parkinson's disease (PD). Contrast ratios of SNpc and hyperintense SNpc areas, which show pixels brighter than thresholds, were assessed between DANTE T1-SPACE and T1-SPACE in healthy controls. To evaluate the diagnostic ability of DANTE T1-SPACE, the contrast ratios and hyperintense areas were compared between healthy and PD groups, and receiver operating characteristic analyses were performed. We also compared areas under the curve (AUCs) between DANTE T1-SPACE and the previously reported gradient echo neuromelanin (GRE-NM) imaging. Each analysis was performed using original images in native space and images transformed into Montreal Neurological Institute space. Values of P < 0.05 were considered significant. RESULTS: DANTE T1-SPACE showed significantly higher contrast ratios and larger hyperintense areas than T1-SPACE. On DANTE T1-SPACE, healthy controls showed significantly higher contrast ratios and larger hyperintense areas than patients with PD. Hyperintense areas in native space analysis achieved the best AUC (0.94). DANTE T1-SPACE showed AUCs as high as those of GRE-NM. CONCLUSIONS: DANTE T1-SPACE successfully visualized neuromelanin of the SNpc and showed potential for evaluating PD. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Subject(s)
Melanins , Parkinson Disease , Humans , Magnetic Resonance Imaging , Parkinson Disease/diagnostic imaging , Pars Compacta , Substantia NigraABSTRACT
BACKGROUND: Hypothalamic-pituitary-thyroid (HPT) maturation has not been extensively evaluated using neonatal MRI, even though both structures are visualized on MRI. HYPOTHESIS: That signal intensity and volume of pituitary and thyroid (T) glands on MRI in neonates may be interrelated. STUDY TYPE: Retrospective. SUBJECTS: In all, 102 participants. FIELD STRENGTH/SEQUENCE: 3.0T, T1 -weighted pointwise encoding time reduction with radial acquisition (PETRA). ASSESSMENT: The volume of interest of the anterior pituitary (AP), posterior pituitary (PP), and T on MRI were defined on T1 -PETRA by two radiologists, and volumes of AP (AP_vol) and thyroid (T_vol) were calculated. Gestational age (GA), chronological age (CA), GA+CA, birth weight (BW), and thyroid function were recorded. Mean and maximum signal intensities of AP, PP, and T were normalized using signals from the pons and spinal cord as follows: signal ratio of anterior pituitary/pons (AP/pons), signal ratio of posterior pituitary/pons (PP/pons), and signal ratio of thyroid/cord (T/cord) T/cord, respectively. STATISTICAL TESTS: Correlations between signal intensity and volume measures and GA, CA, GA+CA, and BW were assessed using Pearson's correlation coefficient or Spearman's rank correlation coefficient. Thyroid function analysis and Tmean /cord, Tmax /cord, and T_vol were evaluated using the Steel-Dwass test. RESULTS: APmean /pons correlated positively with GA (ρ = 0.62, P < 0.001) and BW (ρ = 0.74, P < 0.001), and negatively with CA (ρ = -0.86, P < 0.001) and GA+CA (ρ = -0.46, P < 0.001). PPmean /pons correlated positively with GA (ρ = 0.49, P < 0.001) and BW (ρ = 0.63, P < 0.001), and negatively with CA (ρ = -0.70, P < 0.001) and GA+CA (r = -0.38, P < 0.001). Tmean /cord correlated positively with GA (ρ = 0.48, P < 0.001) and BW (ρ = 0.55, P < 0.001), and negatively with CA (ρ = -0.59, P < 0.001) and GA+CA (ρ = -0.22, P = 0.03). AP_vol correlated positively with GA (ρ = 0.68, P < 0.001) and BW (ρ = 0.73, P < 0.001), and negatively with CA (ρ = -0.72, P < 0.001). T_vol correlated positively with GA (ρ = 0.50, P < 0.001) and BW (ρ = 0.61, P < 0.001), and negatively with CA (ρ = -0.54, P < 0.001). APmean /pons correlated positively with Tmean /cord (ρ = 0.61, P < 0.001). DATA CONCLUSION: Signal and volume of pituitary and thyroid glands correlated positively with GA and BW, and negatively with CA in neonates. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 5.
Subject(s)
Magnetic Resonance Imaging , Thyroid Gland , Birth Weight , Gestational Age , Humans , Infant , Infant, Newborn , Retrospective Studies , Thyroid Gland/diagnostic imagingABSTRACT
PURPOSE: Time-of-flight (TOF)-MR angiography (MRA) is an important imaging sequence for the surveillance and analysis of cerebral arteriovenous shunt (AVS), including arteriovenous malformation (AVM) and arteriovenous fistula (AVF). However, this technique has the disadvantage of a relatively long scan time. The aim of this study was to compare diagnostic accuracy between compressed sensing (CS)-TOF and conventional parallel imaging (PI)-TOF-MRA for detecting and characterizing AVS. METHODS: This study was approved by the institutional review board for human studies. Participants comprised 56 patients who underwent both CS-TOF-MRA and PI-TOF-MRA on a 3-T MR unit with or without cerebral AVS between June 2016 and September 2018. Imaging parameters for both sequences were almost identical, except the acceleration factor of 3× for PI-TOF-MRA and 6.5× for CS-TOF-MRA, and the scan time of 5 min 19 s for PI-TOF-MRA and 2 min 26 s for CS-TOF-MRA. Two neuroradiologists assessed the accuracy of AVS detection on each sequence and analyzed AVS angioarchitecture. Concordance between CS-TOF, PI-TOF, and digital subtraction angiography was calculated using unweighted and weighted kappa statistics. RESULTS: Both CS-TOF-MRA and PI-TOF-MRA yielded excellent sensitivity and specificity for detecting intracranial AVS (reviewer 1, 97.3%, 94.7%; reviewer 2, 100%, 100%, respectively). Interrater agreement on the angioarchitectural features of intracranial AVS on CS-MRA and PI-MRA was moderate to good. CONCLUSION: The diagnostic performance of CS-TOF-MRA is comparable to that of PI-TOF-MRA in detecting and classifying AVS with a reduced scan time under 2.5 min.