Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(18): 4784-4818.e17, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34450027

ABSTRACT

Osteoarthritis affects over 300 million people worldwide. Here, we conduct a genome-wide association study meta-analysis across 826,690 individuals (177,517 with osteoarthritis) and identify 100 independently associated risk variants across 11 osteoarthritis phenotypes, 52 of which have not been associated with the disease before. We report thumb and spine osteoarthritis risk variants and identify differences in genetic effects between weight-bearing and non-weight-bearing joints. We identify sex-specific and early age-at-onset osteoarthritis risk loci. We integrate functional genomics data from primary patient tissues (including articular cartilage, subchondral bone, and osteophytic cartilage) and identify high-confidence effector genes. We provide evidence for genetic correlation with phenotypes related to pain, the main disease symptom, and identify likely causal genes linked to neuronal processes. Our results provide insights into key molecular players in disease processes and highlight attractive drug targets to accelerate translation.


Subject(s)
Genetic Predisposition to Disease , Genetics, Population , Osteoarthritis/genetics , Female , Genome-Wide Association Study , Humans , Osteoarthritis/drug therapy , Phenotype , Polymorphism, Single Nucleotide/genetics , Risk Factors , Sex Characteristics , Signal Transduction/genetics
3.
Genet Epidemiol ; 47(3): 231-248, 2023 04.
Article in English | MEDLINE | ID: mdl-36739617

ABSTRACT

Linkage analysis, a class of methods for detecting co-segregation of genomic segments and traits in families, was used to map disease-causing genes for decades before genotyping arrays and dense SNP genotyping enabled genome-wide association studies in population samples. Population samples often contain related individuals, but the segregation of alleles within families is rarely used because traditional linkage methods are computationally inefficient for larger datasets. Here, we describe Population Linkage, a novel application of Haseman-Elston regression as a method of moments estimator of variance components and their standard errors. We achieve additional computational efficiency by using modern methods for detection of IBD segments and variance component estimation, efficient preprocessing of input data, and minimizing redundant numerical calculations. We also refined variance component models to account for the biases in population-scale methods for IBD segment detection. We ran Population Linkage on four blood lipid traits in over 70,000 individuals from the HUNT and SardiNIA studies, successfully detecting 25 known genetic signals. One notable linkage signal that appeared in both was for low-density lipoprotein (LDL) cholesterol levels in the region near the gene APOE (LOD = 29.3, variance explained = 4.1%). This is the region where the missense variants rs7412 and rs429358, which together make up the ε2, ε3, and ε4 alleles each account for 2.4% and 0.8% of variation in circulating LDL cholesterol. Our results show the potential for linkage analysis and other large-scale applications of method of moments variance components estimation.


Subject(s)
Genome-Wide Association Study , Models, Genetic , Humans , Phenotype , Cholesterol, LDL/genetics , Genetic Linkage , Apolipoproteins E/genetics
4.
Ann Neurol ; 94(4): 713-726, 2023 10.
Article in English | MEDLINE | ID: mdl-37486023

ABSTRACT

OBJECTIVE: The objective of this study was to aggregate data for the first genomewide association study meta-analysis of cluster headache, to identify genetic risk variants, and gain biological insights. METHODS: A total of 4,777 cases (3,348 men and 1,429 women) with clinically diagnosed cluster headache were recruited from 10 European and 1 East Asian cohorts. We first performed an inverse-variance genomewide association meta-analysis of 4,043 cases and 21,729 controls of European ancestry. In a secondary trans-ancestry meta-analysis, we included 734 cases and 9,846 controls of East Asian ancestry. Candidate causal genes were prioritized by 5 complementary methods: expression quantitative trait loci, transcriptome-wide association, fine-mapping of causal gene sets, genetically driven DNA methylation, and effects on protein structure. Gene set and tissue enrichment analyses, genetic correlation, genetic risk score analysis, and Mendelian randomization were part of the downstream analyses. RESULTS: The estimated single nucleotide polymorphism (SNP)-based heritability of cluster headache was 14.5%. We identified 9 independent signals in 7 genomewide significant loci in the primary meta-analysis, and one additional locus in the trans-ethnic meta-analysis. Five of the loci were previously known. The 20 genes prioritized as potentially causal for cluster headache showed enrichment to artery and brain tissue. Cluster headache was genetically correlated with cigarette smoking, risk-taking behavior, attention deficit hyperactivity disorder (ADHD), depression, and musculoskeletal pain. Mendelian randomization analysis indicated a causal effect of cigarette smoking intensity on cluster headache. Three of the identified loci were shared with migraine. INTERPRETATION: This first genomewide association study meta-analysis gives clues to the biological basis of cluster headache and indicates that smoking is a causal risk factor. ANN NEUROL 2023;94:713-726.


Subject(s)
Cluster Headache , Migraine Disorders , Male , Humans , Female , Cluster Headache/epidemiology , Cluster Headache/genetics , Risk Factors , Genome-Wide Association Study , Smoking/adverse effects , Smoking/genetics , Polymorphism, Single Nucleotide/genetics , Genetic Predisposition to Disease/genetics
5.
PLoS Genet ; 16(6): e1008725, 2020 06.
Article in English | MEDLINE | ID: mdl-32603359

ABSTRACT

Risk factors that contribute to inter-individual differences in the age-of-onset of allergic diseases are poorly understood. The aim of this study was to identify genetic risk variants associated with the age at which symptoms of allergic disease first develop, considering information from asthma, hay fever and eczema. Self-reported age-of-onset information was available for 117,130 genotyped individuals of European ancestry from the UK Biobank study. For each individual, we identified the earliest age at which asthma, hay fever and/or eczema was first diagnosed and performed a genome-wide association study (GWAS) of this combined age-of-onset phenotype. We identified 50 variants with a significant independent association (P<3x10-8) with age-of-onset. Forty-five variants had comparable effects on the onset of the three individual diseases and 38 were also associated with allergic disease case-control status in an independent study (n = 222,484). We observed a strong negative genetic correlation between age-of-onset and case-control status of allergic disease (rg = -0.63, P = 4.5x10-61), indicating that cases with early disease onset have a greater burden of allergy risk alleles than those with late disease onset. Subsequently, a multivariate GWAS of age-of-onset and case-control status identified a further 26 associations that were missed by the univariate analyses of age-of-onset or case-control status only. Collectively, of the 76 variants identified, 18 represent novel associations for allergic disease. We identified 81 likely target genes of the 76 associated variants based on information from expression quantitative trait loci (eQTL) and non-synonymous variants, of which we highlight ADAM15, FOSL2, TRIM8, BMPR2, CD200R1, PRKCQ, NOD2, SMAD4, ABCA7 and UBE2L3. Our results support the notion that early and late onset allergic disease have partly distinct genetic architectures, potentially explaining known differences in pathophysiology between individuals.


Subject(s)
Asthma/genetics , Eczema/genetics , Polymorphism, Single Nucleotide , Rhinitis, Allergic, Seasonal/genetics , Adolescent , Adult , Age of Onset , Aged , Asthma/pathology , Child , Eczema/pathology , Female , Genetic Loci , Genome-Wide Association Study/methods , Humans , Male , Middle Aged , Rhinitis, Allergic, Seasonal/pathology
6.
Gut ; 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33888516

ABSTRACT

OBJECTIVE: Haemorrhoidal disease (HEM) affects a large and silently suffering fraction of the population but its aetiology, including suspected genetic predisposition, is poorly understood. We report the first genome-wide association study (GWAS) meta-analysis to identify genetic risk factors for HEM to date. DESIGN: We conducted a GWAS meta-analysis of 218 920 patients with HEM and 725 213 controls of European ancestry. Using GWAS summary statistics, we performed multiple genetic correlation analyses between HEM and other traits as well as calculated HEM polygenic risk scores (PRS) and evaluated their translational potential in independent datasets. Using functional annotation of GWAS results, we identified HEM candidate genes, which differential expression and coexpression in HEM tissues were evaluated employing RNA-seq analyses. The localisation of expressed proteins at selected loci was investigated by immunohistochemistry. RESULTS: We demonstrate modest heritability and genetic correlation of HEM with several other diseases from the GI, neuroaffective and cardiovascular domains. HEM PRS validated in 180 435 individuals from independent datasets allowed the identification of those at risk and correlated with younger age of onset and recurrent surgery. We identified 102 independent HEM risk loci harbouring genes whose expression is enriched in blood vessels and GI tissues, and in pathways associated with smooth muscles, epithelial and endothelial development and morphogenesis. Network transcriptomic analyses highlighted HEM gene coexpression modules that are relevant to the development and integrity of the musculoskeletal and epidermal systems, and the organisation of the extracellular matrix. CONCLUSION: HEM has a genetic component that predisposes to smooth muscle, epithelial and connective tissue dysfunction.

7.
Circulation ; 142(17): 1633-1646, 2020 10 27.
Article in English | MEDLINE | ID: mdl-32981348

ABSTRACT

BACKGROUND: Abdominal aortic aneurysm (AAA) is an important cause of cardiovascular mortality; however, its genetic determinants remain incompletely defined. In total, 10 previously identified risk loci explain a small fraction of AAA heritability. METHODS: We performed a genome-wide association study in the Million Veteran Program testing ≈18 million DNA sequence variants with AAA (7642 cases and 172 172 controls) in veterans of European ancestry with independent replication in up to 4972 cases and 99 858 controls. We then used mendelian randomization to examine the causal effects of blood pressure on AAA. We examined the association of AAA risk variants with aneurysms in the lower extremity, cerebral, and iliac arterial beds, and derived a genome-wide polygenic risk score (PRS) to identify a subset of the population at greater risk for disease. RESULTS: Through a genome-wide association study, we identified 14 novel loci, bringing the total number of known significant AAA loci to 24. In our mendelian randomization analysis, we demonstrate that a genetic increase of 10 mm Hg in diastolic blood pressure (odds ratio, 1.43 [95% CI, 1.24-1.66]; P=1.6×10-6), as opposed to systolic blood pressure (odds ratio, 1.06 [95% CI, 0.97-1.15]; P=0.2), likely has a causal relationship with AAA development. We observed that 19 of 24 AAA risk variants associate with aneurysms in at least 1 other vascular territory. A 29-variant PRS was strongly associated with AAA (odds ratioPRS, 1.26 [95% CI, 1.18-1.36]; PPRS=2.7×10-11 per SD increase in PRS), independent of family history and smoking risk factors (odds ratioPRS+family history+smoking, 1.24 [95% CI, 1.14-1.35]; PPRS=1.27×10-6). Using this PRS, we identified a subset of the population with AAA prevalence greater than that observed in screening trials informing current guidelines. CONCLUSIONS: We identify novel AAA genetic associations with therapeutic implications and identify a subset of the population at significantly increased genetic risk of AAA independent of family history. Our data suggest that extending current screening guidelines to include testing to identify those with high polygenic AAA risk, once the cost of genotyping becomes comparable with that of screening ultrasound, would significantly increase the yield of current screening at reasonable cost.


Subject(s)
Aortic Aneurysm, Abdominal/genetics , Humans , Veterans
8.
Am J Hum Genet ; 102(1): 103-115, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29290336

ABSTRACT

Atrial fibrillation (AF) is a common cardiac arrhythmia and a major risk factor for stroke, heart failure, and premature death. The pathogenesis of AF remains poorly understood, which contributes to the current lack of highly effective treatments. To understand the genetic variation and biology underlying AF, we undertook a genome-wide association study (GWAS) of 6,337 AF individuals and 61,607 AF-free individuals from Norway, including replication in an additional 30,679 AF individuals and 278,895 AF-free individuals. Through genotyping and dense imputation mapping from whole-genome sequencing, we tested almost nine million genetic variants across the genome and identified seven risk loci, including two novel loci. One novel locus (lead single-nucleotide variant [SNV] rs12614435; p = 6.76 × 10-18) comprised intronic and several highly correlated missense variants situated in the I-, A-, and M-bands of titin, which is the largest protein in humans and responsible for the passive elasticity of heart and skeletal muscle. The other novel locus (lead SNV rs56202902; p = 1.54 × 10-11) covered a large, gene-dense chromosome 1 region that has previously been linked to cardiac conduction. Pathway and functional enrichment analyses suggested that many AF-associated genetic variants act through a mechanism of impaired muscle cell differentiation and tissue formation during fetal heart development.


Subject(s)
Atrial Fibrillation/genetics , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Heart/embryology , Regulatory Sequences, Nucleic Acid/genetics , Humans , Inheritance Patterns/genetics , Multifactorial Inheritance/genetics , Organ Specificity/genetics , Physical Chromosome Mapping , Quantitative Trait Loci/genetics , Reproducibility of Results , Risk Factors
9.
Blood ; 134(19): 1645-1657, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31420334

ABSTRACT

Venous thromboembolism (VTE) is a significant contributor to morbidity and mortality. To advance our understanding of the biology contributing to VTE, we conducted a genome-wide association study (GWAS) of VTE and a transcriptome-wide association study (TWAS) based on imputed gene expression from whole blood and liver. We meta-analyzed GWAS data from 18 studies for 30 234 VTE cases and 172 122 controls and assessed the association between 12 923 718 genetic variants and VTE. We generated variant prediction scores of gene expression from whole blood and liver tissue and assessed them for association with VTE. Mendelian randomization analyses were conducted for traits genetically associated with novel VTE loci. We identified 34 independent genetic signals for VTE risk from GWAS meta-analysis, of which 14 are newly reported associations. This included 11 newly associated genetic loci (C1orf198, PLEK, OSMR-AS1, NUGGC/SCARA5, GRK5, MPHOSPH9, ARID4A, PLCG2, SMG6, EIF5A, and STX10) of which 6 replicated, and 3 new independent signals in 3 known genes. Further, TWAS identified 5 additional genetic loci with imputed gene expression levels differing between cases and controls in whole blood (SH2B3, SPSB1, RP11-747H7.3, RP4-737E23.2) and in liver (ERAP1). At some GWAS loci, we found suggestive evidence that the VTE association signal for novel and previously known regions colocalized with expression quantitative trait locus signals. Mendelian randomization analyses suggested that blood traits may contribute to the underlying risk of VTE. To conclude, we identified 16 novel susceptibility loci for VTE; for some loci, the association signals are likely mediated through gene expression of nearby genes.


Subject(s)
Genetic Predisposition to Disease/genetics , Venous Thromboembolism/genetics , Genome-Wide Association Study , Humans
10.
Mol Psychiatry ; 25(9): 2047-2057, 2020 09.
Article in English | MEDLINE | ID: mdl-30116028

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with a complex genetic background, hampering identification of underlying genetic risk factors. We hypothesized that combining linkage analysis and whole-exome sequencing (WES) in multi-generation pedigrees with multiple affected individuals can point toward novel ADHD genes. Three families with multiple ADHD-affected members (Ntotal = 70) and apparent dominant inheritance pattern were included in this study. Genotyping was performed in 37 family members, and WES was additionally carried out in 10 of those. Linkage analysis was performed using multi-point analysis in Superlink Online SNP 1.1. From prioritized linkage regions with a LOD score ≥ 2, a total of 24 genes harboring rare variants were selected. Those genes were taken forward and were jointly analyzed in gene-set analyses of exome-chip data using the MAGMA software in an independent sample of patients with persistent ADHD and healthy controls (N = 9365). The gene-set including all 24 genes together, and particularly the gene-set from one of the three families (12 genes), were significantly associated with persistent ADHD in this sample. Among the latter, gene-wide analysis for the AAED1 gene reached significance. A rare variant (rs151326868) within AAED1 segregated with ADHD in one of the families. The analytic strategy followed here is an effective approach for identifying novel ADHD risk genes. Additionally, this study suggests that both rare and more frequent variants in multiple genes act together in contributing to ADHD risk, even in individual multi-case families.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Attention Deficit Disorder with Hyperactivity/genetics , Exome/genetics , Genetic Linkage/genetics , Genetic Predisposition to Disease/genetics , Humans , Pedigree , Exome Sequencing
11.
Haematologica ; 105(7): 1963-1968, 2020 07.
Article in English | MEDLINE | ID: mdl-31582554

ABSTRACT

Venous thromboembolism (VTE) is a frequent complication in patients with cancer. Homozygous carriers of the fibrinogen gamma gene (FGG) rs2066865 have a moderately increased risk of VTE, but the effect of the FGG variant in cancer is unknown. We aimed to investigate the effect of the FGG variant and active cancer on the risk of VTE. Cases with incident VTE (n=640) and a randomly selected age-weighted sub-cohort (n=3,734) were derived from a population-based cohort (the Tromsø study). Cox-regression was used to estimate hazard ratios (HR) with 95% confidence intervals (CI) for VTE according to categories of cancer and FGG In those without cancer, homozygosity at the FGG variant was associated with a 70% (HR 1.7, 95% CI: 1.2-2.3) increased risk of VTE compared to non-carriers. Cancer patients homozygous for the FGG variant had a two-fold (HR 2.0, 95% CI: 1.1-3.6) higher risk of VTE than cancer patients without the variant. Moreover, the six-months cumulative incidence of VTE among cancer patients was 6.4% (95% CI: 3.5-11.6) in homozygous carriers of FGG and 3.1% (95% CI: 2.3-4.7) in those without risk alleles. A synergistic effect was observed between rs2066865 and active cancer on the risk of VTE (synergy index: 1.81, 95% CI: 1.02-3.21, attributable proportion: 0.43, 95% CI: 0.11-0.74). In conclusion, homozygosity at the FGG variant and active cancer yielded a synergistic effect on the risk of VTE.


Subject(s)
Fibrinogen/genetics , Neoplasms , Venous Thromboembolism , Alleles , Humans , Incidence , Neoplasms/genetics , Risk Factors , Venous Thromboembolism/etiology , Venous Thromboembolism/genetics
12.
Cephalalgia ; 40(6): 625-634, 2020 05.
Article in English | MEDLINE | ID: mdl-32056457

ABSTRACT

BACKGROUND: Variation in mitochondrial DNA (mtDNA) has been indicated in migraine pathogenesis, but genetic studies to date have focused on candidate variants, with sparse findings. We aimed to perform the first mitochondrial genome-wide association study of migraine, examining both single variants and mitochondrial haplogroups. METHODS: In total, 71,860 participants from the population-based Nord-Trøndelag Health Study were genotyped. We excluded samples not passing quality control for nuclear genotypes, in addition to samples with low call rate and closely maternally related. We analysed 775 mitochondrial DNA variants in 4021 migraine cases and 14,288 headache-free controls, using logistic regression. In addition, we analysed 3831 cases and 13,584 controls who could be reliably assigned to a mitochondrial haplogroup. Lastly, we attempted to replicate previously reported mitochondrial DNA candidate variants. RESULTS: Neither of the mitochondrial variants or haplogroups were associated with migraine. In addition, none of the previously reported mtDNA candidate variants replicated in our data. CONCLUSIONS: Our findings do not support a major role of mitochondrial genetic variation in migraine pathophysiology, but a larger sample is needed to detect rare variants and future studies should also examine heteroplasmic variation, epigenetic changes and copy-number variation.


Subject(s)
DNA, Mitochondrial/genetics , Genome-Wide Association Study , Migraine Disorders/genetics , Genetic Variation , Genotype , Humans , Norway
13.
PLoS Genet ; 10(12): e1004799, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25474695

ABSTRACT

We previously used a single nucleotide polymorphism (SNP) in the CHRNA5-A3-B4 gene cluster associated with heaviness of smoking within smokers to confirm the causal effect of smoking in reducing body mass index (BMI) in a Mendelian randomisation analysis. While seeking to extend these findings in a larger sample we found that this SNP is associated with 0.74% lower body mass index (BMI) per minor allele in current smokers (95% CI -0.97 to -0.51, P = 2.00 × 10(-10)), but also unexpectedly found that it was associated with 0.35% higher BMI in never smokers (95% CI +0.18 to +0.52, P = 6.38 × 10(-5)). An interaction test confirmed that these estimates differed from each other (P = 4.95 × 10(-13)). This difference in effects suggests the variant influences BMI both via pathways unrelated to smoking, and via the weight-reducing effects of smoking. It would therefore be essentially undetectable in an unstratified genome-wide association study of BMI, given the opposite association with BMI in never and current smokers. This demonstrates that novel associations may be obscured by hidden population sub-structure. Stratification on well-characterized environmental factors known to impact on health outcomes may therefore reveal novel genetic associations.


Subject(s)
Body Mass Index , Nerve Tissue Proteins/genetics , Receptors, Nicotinic/genetics , Smoking/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Genome-Wide Association Study , Genotype , Health Status , Humans , Middle Aged , Multigene Family , Polymorphism, Single Nucleotide , Severity of Illness Index , Smoking/epidemiology , Weight Loss/genetics , Young Adult
14.
Carcinogenesis ; 36(11): 1314-26, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26363033

ABSTRACT

Large-scale genome-wide association studies (GWAS) have likely uncovered all common variants at the GWAS significance level. Additional variants within the suggestive range (0.0001> P > 5×10(-8)) are, however, still of interest for identifying causal associations. This analysis aimed to apply novel variant prioritization approaches to identify additional lung cancer variants that may not reach the GWAS level. Effects were combined across studies with a total of 33456 controls and 6756 adenocarcinoma (AC; 13 studies), 5061 squamous cell carcinoma (SCC; 12 studies) and 2216 small cell lung cancer cases (9 studies). Based on prior information such as variant physical properties and functional significance, we applied stratified false discovery rates, hierarchical modeling and Bayesian false discovery probabilities for variant prioritization. We conducted a fine mapping analysis as validation of our methods by examining top-ranking novel variants in six independent populations with a total of 3128 cases and 2966 controls. Three novel loci in the suggestive range were identified based on our Bayesian framework analyses: KCNIP4 at 4p15.2 (rs6448050, P = 4.6×10(-7)) and MTMR2 at 11q21 (rs10501831, P = 3.1×10(-6)) with SCC, as well as GAREM at 18q12.1 (rs11662168, P = 3.4×10(-7)) with AC. Use of our prioritization methods validated two of the top three loci associated with SCC (P = 1.05×10(-4) for KCNIP4, represented by rs9799795) and AC (P = 2.16×10(-4) for GAREM, represented by rs3786309) in the independent fine mapping populations. This study highlights the utility of using prior functional data for sequence variants in prioritization analyses to search for robust signals in the suggestive range.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Squamous Cell/genetics , Lung Neoplasms/genetics , Adenocarcinoma/pathology , Bayes Theorem , Carcinoma, Squamous Cell/pathology , Case-Control Studies , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Lung Neoplasms/pathology
16.
Hum Mol Genet ; 21(22): 4980-95, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22899653

ABSTRACT

Recent genome-wide association studies (GWASs) have identified common genetic variants at 5p15.33, 6p21-6p22 and 15q25.1 associated with lung cancer risk. Several other genetic regions including variants of CHEK2 (22q12), TP53BP1 (15q15) and RAD52 (12p13) have been demonstrated to influence lung cancer risk in candidate- or pathway-based analyses. To identify novel risk variants for lung cancer, we performed a meta-analysis of 16 GWASs, totaling 14 900 cases and 29 485 controls of European descent. Our data provided increased support for previously identified risk loci at 5p15 (P = 7.2 × 10(-16)), 6p21 (P = 2.3 × 10(-14)) and 15q25 (P = 2.2 × 10(-63)). Furthermore, we demonstrated histology-specific effects for 5p15, 6p21 and 12p13 loci but not for the 15q25 region. Subgroup analysis also identified a novel disease locus for squamous cell carcinoma at 9p21 (CDKN2A/p16(INK4A)/p14(ARF)/CDKN2B/p15(INK4B)/ANRIL; rs1333040, P = 3.0 × 10(-7)) which was replicated in a series of 5415 Han Chinese (P = 0.03; combined analysis, P = 2.3 × 10(-8)). This large analysis provides additional evidence for the role of inherited genetic susceptibility to lung cancer and insight into biological differences in the development of the different histological types of lung cancer.


Subject(s)
Genetic Variation , Genome-Wide Association Study , Lung Neoplasms/genetics , Asian People/genetics , Case-Control Studies , Humans , Lung Neoplasms/epidemiology , Polymorphism, Single Nucleotide , Risk , White People/genetics
17.
Res Pract Thromb Haemost ; 8(2): 102343, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38476459

ABSTRACT

Background: Data on the proportion of venous thromboembolism (VTE) risk attributed to prothrombotic genotypes in men and women are limited. Objectives: We aimed to estimate the population attributable fraction (PAF) of VTE for recognized, common prothrombotic genotypes in men and women using a population-based case cohort. Methods: Cases with incident VTE (n = 1493) and a randomly sampled subcohort (n = 13,069) were derived from the Tromsø study (1994-2012) and the Trøndelag Health Study (1995-2008) cohorts. DNA samples were genotyped for 17 single-nucleotide polymorphisms (SNPs) previously associated with VTE. PAFs with 95% bias-corrected CIs (based on 10,000 bootstrap samples) were estimated for SNPs significantly associated with VTE, and a 6-SNP cumulative model was constructed for both sexes. Results: In women, the individual PAFs for SNPs included in the cumulative model were 16.9% for ABO (rs8176719), 17.6% for F11 (rs2036914), 15.1% for F11 (rs2289252), 8.7% for FVL (rs6025), 6.0% for FGG (rs2066865), and 0.2% for F2 (rs1799963). The cumulative PAF for this 6-SNP model was 37.8%. In men, the individual PAFs for SNPs included in the cumulative model were 21.3% for ABO, 12.2% for F11 (rs2036914), 10.4% for F11 (rs2289252), 7.5% for FVL, 7.8% for FGG, and 1.1% for F2. This resulted in a cumulative PAF in men of 51.9%. Conclusion: Our findings in a Norwegian population suggest that 52% and 38% of the VTEs can be attributed to known prothrombotic genotypes in men and women, respectively.

18.
Nat Aging ; 4(8): 1064-1075, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38802582

ABSTRACT

As there are effective treatments to reduce hip fractures, identification of patients at high risk of hip fracture is important to inform efficient intervention strategies. To obtain a new tool for hip fracture prediction, we developed a protein-based risk score in the Cardiovascular Health Study using an aptamer-based proteomic platform. The proteomic risk score predicted incident hip fractures and improved hip fracture discrimination in two Trøndelag Health Study validation cohorts using the same aptamer-based platform. When transferred to an antibody-based proteomic platform in a UK Biobank validation cohort, the proteomic risk score was strongly associated with hip fractures (hazard ratio per s.d. increase, 1.64; 95% confidence interval 1.53-1.77). The proteomic risk score, but not available polygenic risk scores for fractures or bone mineral density, improved the C-index beyond the fracture risk assessment tool (FRAX), which integrates information from clinical risk factors (C-index, FRAX 0.735 versus FRAX + proteomic risk score 0.776). The developed proteomic risk score constitutes a new tool for stratifying patients according to hip fracture risk; however, its improvement in hip fracture discrimination is modest and its clinical utility beyond FRAX with information on femoral neck bone mineral density remains to be determined.


Subject(s)
Blood Proteins , Hip Fractures , Proteomics , Humans , Hip Fractures/blood , Hip Fractures/epidemiology , Female , Male , Risk Assessment/methods , Proteomics/methods , Aged , Risk Factors , Blood Proteins/metabolism , Blood Proteins/analysis , Middle Aged , Bone Density
19.
J Bone Miner Res ; 39(2): 139-149, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38477735

ABSTRACT

Hip fractures are associated with significant disability, high cost, and mortality. However, the exact biological mechanisms underlying susceptibility to hip fractures remain incompletely understood. In an exploratory search of the underlying biology as reflected through the circulating proteome, we performed a comprehensive Circulating Proteome Association Study (CPAS) meta-analysis for incident hip fractures. Analyses included 6430 subjects from two prospective cohort studies (Cardiovascular Health Study and Trøndelag Health Study) with circulating proteomics data (aptamer-based 5 K SomaScan version 4.0 assay; 4979 aptamers). Associations between circulating protein levels and incident hip fractures were estimated for each cohort using age and sex-adjusted Cox regression models. Participants experienced 643 incident hip fractures. Compared with the individual studies, inverse-variance weighted meta-analyses yielded more statistically significant associations, identifying 23 aptamers associated with incident hip fractures (conservative Bonferroni correction 0.05/4979, P < 1.0 × 10-5). The aptamers most strongly associated with hip fracture risk corresponded to two proteins of the growth hormone/insulin growth factor system (GHR and IGFBP2), as well as GDF15 and EGFR. High levels of several inflammation-related proteins (CD14, CXCL12, MMP12, ITIH3) were also associated with increased hip fracture risk. Ingenuity pathway analysis identified reduced LXR/RXR activation and increased acute phase response signaling to be overrepresented among those proteins associated with increased hip fracture risk. These analyses identified several circulating proteins and pathways consistently associated with incident hip fractures. These findings underscore the usefulness of the meta-analytic approach for comprehensive CPAS in a similar manner as has previously been observed for large-scale human genetic studies. Future studies should investigate the underlying biology of these potential novel drug targets.


Hip fractures are associated with significant disability, high cost, and mortality. However, the exact biological mechanisms underlying susceptibility to hip fractures remain incompletely understood. To increase the understanding of the underlying mechanisms, we performed a meta-analysis of the associations between 4860 circulating proteins and risk of fractures using two large cohorts, including 6430 participants with 643 incident hip fractures. We identified 23 proteins/aptamers associated with incident hip fractures. Two proteins of the growth hormone/insulin growth factor system (GHR and IGFBP2), as well as GDF15 and EGFR were most strongly associated with hip fracture risk. High levels of several inflammation-related proteins were also associated with increased hip fracture risk. Pathway analysis identified reduced LXR/RXR activation and increased acute phase response signaling to be overrepresented among those proteins associated with increased hip fracture risk. Future mechanistic studies should investigate the underlying biology of these novel protein biomarkers which may be potential drug targets.


Subject(s)
Hip Fractures , Proteome , Humans , Hip Fractures/blood , Hip Fractures/epidemiology , Proteome/metabolism , Female , Male , Incidence , Aged , Blood Proteins/metabolism , Risk Factors
20.
Circ Genom Precis Med ; 16(1): e003542, 2023 02.
Article in English | MEDLINE | ID: mdl-36580301

ABSTRACT

BACKGROUND: The 10-year Atherosclerotic Cardiovascular Disease risk score is the standard approach to predict risk of incident cardiovascular events, and recently, addition of coronary artery disease (CAD) polygenic scores has been evaluated. Although age and sex strongly predict the risk of CAD, their interaction with genetic risk prediction has not been systematically examined. This study performed an extensive evaluation of age and sex effects in genetic CAD risk prediction. METHODS: The population-based Norwegian HUNT2 (Trøndelag Health Study 2) cohort of 51 036 individuals was used as the primary dataset. Findings were replicated in the UK Biobank (372 410 individuals). Models for 10-year CAD risk were fitted using Cox proportional hazards, and Harrell concordance index, sensitivity, and specificity were compared. RESULTS: Inclusion of age and sex interactions of CAD polygenic score to the prediction models increased the C-index and sensitivity by accounting for nonadditive effects of CAD polygenic score and likely countering the observed survival bias in the baseline. The sensitivity for females was lower than males in all models including genetic information. We identified a total of 82.6% of incident CAD cases by using a 2-step approach: (1) Atherosclerotic Cardiovascular Disease risk score (74.1%) and (2) the CAD polygenic score interaction model for those in low clinical risk (additional 8.5%). CONCLUSIONS: These findings highlight the importance and complexity of genetic risk in predicting CAD. There is a need for modeling age- and sex-interaction terms with polygenic scores to optimize detection of individuals at high risk, those who warrant preventive interventions. Sex-specific studies are needed to understand and estimate CAD risk with genetic information.


Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Male , Female , Humans , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Coronary Artery Disease/diagnosis , Risk Assessment , Risk Factors , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL