ABSTRACT
AIMS: γ-Hydroxybutyrate (GHB) is used as a treatment for narcolepsy and alcohol withdrawal and as a recreational substance. Nevertheless, there are limited data on the pharmacokinetics and pharmacokinetic-pharmacodynamic relationships of GHB in humans. We characterized the pharmacokinetic profile and exposure-psychotropic effect relationship of GHB in humans. METHODS: Two oral doses of GHB (25 and 35 mg kg(-1) ) were administered to 32 healthy male subjects (16 for each dose) using a randomized, placebo-controlled, cross-over design. RESULTS: Maximal concentrations of GHB were (geometric mean and 95% CI): 218 (176-270) nmol ml(-1) and 453 (374-549) nmol ml(-1) for the 25 and 35 mg kg(-1) GHB doses, respectively. The elimination half-lives (mean ± SD) were 36 ± 9 and 39 ± 7 min and the AUC∞ values (geometric mean and 95% CI) were 15 747 (12 854-19 290) and 40 113 (33 093-48 622) nmolâmin ml(-1) for the 20 and 35 mg kg(-1) GHB doses, respectively. Thus, plasma GHB exposure (AUC0-∞ ) rose disproportionally (+40%) with the higher dose. γ-Hydroxybutyrate produced mixed stimulant-sedative effects, with a dose-dependent increase in sedation and dizziness. It did not alter heart rate or blood pressure. A close relationship between plasma GHB exposure and its psychotropic effects was found, with higher GHB concentrations associated with higher subjective stimulation, sedation, and dizziness. No clockwise hysteresis was observed in the GHB concentration effect plot over time (i.e., no acute pharmacological tolerance). CONCLUSION: Evidence was found of a nonlinear dose-exposure relationship (i.e., no dose proportionality) at moderate doses of GHB. The effects of GHB on consciousness were closely linked to its plasma exposure and exhibited no acute tolerance.
Subject(s)
GABA Agonists/pharmacology , Hypnotics and Sedatives/pharmacology , Narcolepsy/drug therapy , Psychotropic Drugs/pharmacology , Sodium Oxybate/pharmacology , Substance Withdrawal Syndrome/drug therapy , Administration, Oral , Adult , Blood Pressure/drug effects , Cross-Over Studies , Dose-Response Relationship, Drug , Drug Tolerance , GABA Agonists/administration & dosage , GABA Agonists/pharmacokinetics , Healthy Volunteers , Heart Rate/drug effects , Humans , Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/pharmacokinetics , Male , Psychotropic Drugs/administration & dosage , Psychotropic Drugs/pharmacokinetics , Sodium Oxybate/administration & dosage , Sodium Oxybate/pharmacokinetics , Young AdultABSTRACT
BACKGROUND AND PURPOSE: 4'-O-methylhonokiol (MH) is a natural product showing anti-inflammatory, anti-osteoclastogenic, and neuroprotective effects. MH was reported to modulate cannabinoid CB2 receptors as an inverse agonist for cAMP production and an agonist for intracellular [Ca2+]. It was recently shown that MH inhibits cAMP formation via CB2 receptors. In this study, the exact modulation of MH on CB2 receptor activity was elucidated and its endocannabinoid substrate-specific inhibition (SSI) of cyclooxygenase-2 (COX-2) and CNS bioavailability are described for the first time. METHODS: CB2 receptor modulation ([35S]GTPγS, cAMP, and ß-arrestin) by MH was measured in hCB2-transfected CHO-K1 cells and native conditions (HL60 cells and mouse spleen). The COX-2 SSI was investigated in RAW264.7 cells and in Swiss albino mice by targeted metabolomics using LC-MS/MS. RESULTS: MH is a CB2 receptor agonist and a potent COX-2 SSI. It induced partial agonism in both the [35S]GTPγS binding and ß-arrestin recruitment assays while being a full agonist in the cAMP pathway. MH selectively inhibited PGE2 glycerol ester formation (over PGE2) in RAW264.7 cells and significantly increased the levels of 2-AG in mouse brain in a dose-dependent manner (3 to 20 mg kg(-1)) without affecting other metabolites. After 7 h from intraperitoneal (i.p.) injection, MH was quantified in significant amounts in the brain (corresponding to 200 to 300 nM). CONCLUSIONS: LC-MS/MS quantification shows that MH is bioavailable to the brain and under condition of inflammation exerts significant indirect effects on 2-AG levels. The biphenyl scaffold might serve as valuable source of dual CB2 receptor modulators and COX-2 SSIs as demonstrated by additional MH analogs that show similar effects. The combination of CB2 agonism and COX-2 SSI offers a yet unexplored polypharmacology with expected synergistic effects in neuroinflammatory diseases, thus providing a rationale for the diverse neuroprotective effects reported for MH in animal models.
Subject(s)
Anti-Inflammatory Agents/pharmacology , Arachidonic Acids/metabolism , Biphenyl Compounds/pharmacology , Brain/drug effects , Cyclooxygenase 2/metabolism , Endocannabinoids/metabolism , Glycerides/metabolism , Lignans/pharmacology , Animals , Arachidonic Acids/pharmacokinetics , Arrestins/metabolism , Brain/metabolism , CHO Cells , Cell Line, Transformed , Cricetulus , Cyclic AMP/metabolism , Dose-Response Relationship, Drug , Endocannabinoids/pharmacokinetics , Female , Glycerides/pharmacokinetics , Guanosine 5'-O-(3-Thiotriphosphate)/pharmacokinetics , Macrophages , Mice , Silicone Elastomers/pharmacokinetics , Sulfur Isotopes/pharmacokinetics , Tritium/pharmacokinetics , beta-ArrestinsABSTRACT
The endocannabinoid (EC) system is implicated in many chronic liver diseases, including hepatitis C viral (HCV) infection. Cannabis consumption is associated with fibrosis progression in patients with chronic hepatitis C (CHC), however, the role of ECs in the development of CHC has never been explored. To study this question, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) were quantified in samples of HCV patients and healthy controls by gas and liquid chromatography mass spectrometry. Fatty acid amide hydrolase (FAAH) and monoaclyglycerol lipase (MAGL) activity was assessed by [3H]AEA and [3H]2-AG hydrolysis, respectively. Gene expression and cytokine release were assayed by TaqMan PCR and ELISpot, respectively. AEA and 2-AG levels were increased in plasma of HCV patients, but not in liver tissues. Hepatic FAAH and MAGL activity was not changed. In peripheral blood mononuclear cells (PBMC), ECs inhibited IFN-γ, TNF-α, and IL-2 secretion. Inhibition of IL-2 by endogenous AEA was stronger in PBMC from HCV patients. In hepatocytes, 2-AG induced the expression of IL-6, -17A, -32 and COX-2, and enhanced activation of hepatic stellate cells (HSC) co-cultivated with PBMC from subjects with CHC. In conclusion, ECs are increased in plasma of patients with CHC and might reveal immunosuppressive and profibrogenic effects.
Subject(s)
Arachidonic Acids/metabolism , Endocannabinoids/metabolism , Glycerides/metabolism , Hepatic Stellate Cells/pathology , Hepatitis C, Chronic/immunology , Hepatitis C, Chronic/pathology , Polyunsaturated Alkamides/metabolism , Adult , Amidohydrolases/metabolism , Arachidonic Acids/blood , Cells, Cultured , Cytokines/metabolism , Endocannabinoids/blood , Female , Glycerides/blood , Hepatic Stellate Cells/metabolism , Hepatitis C, Chronic/enzymology , Humans , Immunity, Cellular , Male , Middle Aged , Monoacylglycerol Lipases/metabolism , Polyunsaturated Alkamides/bloodABSTRACT
Purified membrane proteins are ternary complexes consisting of protein, lipid, and detergent. Information about the amounts of detergent and endogenous phospholipid molecules bound to purified membrane proteins is largely lacking. In this systematic study, three model membrane proteins of different oligomeric states were purified in nine different detergents at commonly used concentrations and characterized biochemically and biophysically. Detergent-binding capacities and phospholipid contents of the model proteins were determined and compared. The insights on ternary complexes obtained from the experimental results, when put into a general context, are summarized as follows. 1), The amount of detergent and 2) the amount of endogenous phospholipids bound to purified membrane proteins are dependent on the size of the hydrophobic lipid-accessible protein surface areas and the physicochemical properties of the detergents used. 3), The size of the detergent and lipid belt surrounding the hydrophobic lipid-accessible surface of purified membrane proteins can be tuned by the appropriate choice of detergent. 4), The detergents n-nonyl-ß-D-glucopyranoside and Cymal-5 have exceptional delipidating effects on ternary complexes. 5), The types of endogenous phospholipids bound to membrane proteins can vary depending on the detergent used for solubilization and purification. 6), Furthermore, we demonstrate that size-exclusion chromatography can be a suitable method for estimating the molecular mass of ternary complexes. The findings presented suggest a strategy to control and tune the numbers of detergent and endogenous phospholipid molecules bound to membrane proteins. These two parameters are potentially important for the successul crystallization of membrane proteins for structure determination by crystallographic approaches.
Subject(s)
Detergents/metabolism , Membrane Proteins/isolation & purification , Membrane Proteins/metabolism , Phospholipids/metabolism , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Chromatography, Gel , Desulfovibrio vulgaris/metabolism , Escherichia coli/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Membrane Transport Proteins/metabolism , Models, Molecular , Molecular Weight , Phosphatidylethanolamines/metabolism , Phosphatidylglycerols/metabolism , Protein Binding , Urea TransportersABSTRACT
High-content screening led to the identification of the N-isobutylamide guineensine from Piper nigrum as novel nanomolar inhibitor (EC50=290nM) of cellular uptake of the endocannabinoid anandamide (AEA). Noteworthy, guineensine did not inhibit endocannabinoid degrading enzymes fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL) nor interact with cannabinoid receptors or fatty acid binding protein 5 (FABP5), a major cytoplasmic AEA carrier. Activity-based protein profiling showed no inhibition of serine hydrolases. Guineensine also inhibited the cellular uptake of 2-arachidonoylglycerol (2-AG). Preliminary structure-activity relationships between natural guineensine analogs indicate the importance of the alkyl chain length interconnecting the pharmacophoric isobutylamide and benzodioxol moieties for AEA cellular uptake inhibition. Guineensine dose-dependently induced cannabimimetic effects in BALB/c mice shown by strong catalepsy, hypothermia, reduced locomotion and analgesia. The catalepsy and analgesia were blocked by the CB1 receptor antagonist rimonabant (SR141716A). Guineensine is a novel plant natural product which specifically inhibits endocannabinoid uptake in different cell lines independent of FAAH. Its scaffold may be useful to identify yet unknown targets involved in endocannabinoid transport.
Subject(s)
Alkenes/pharmacology , Analgesics/pharmacology , Arachidonic Acids/metabolism , Endocannabinoids/metabolism , Heterocyclic Compounds, 2-Ring/pharmacology , Polyunsaturated Alkamides/metabolism , Alkenes/administration & dosage , Alkenes/chemistry , Amidohydrolases/metabolism , Analgesics/administration & dosage , Animals , Biological Transport/drug effects , Brain/drug effects , Brain/enzymology , Brain/metabolism , Cannabinoid Receptor Antagonists/pharmacology , Catalepsy/chemically induced , Dose-Response Relationship, Drug , Fatty Acid-Binding Proteins , Glycerides/metabolism , Heterocyclic Compounds, 2-Ring/administration & dosage , Heterocyclic Compounds, 2-Ring/chemistry , Humans , Hypothermia/chemically induced , Locomotion/drug effects , Male , Mice , Mice, Inbred BALB C , Monoacylglycerol Lipases/metabolism , Neoplasm Proteins , Piper/chemistry , Piperidines/pharmacology , Pyrazoles/pharmacology , Receptors, Cannabinoid/metabolism , Rimonabant , Serine Endopeptidases , Structure-Activity Relationship , U937 CellsABSTRACT
The genus Jacaranda, an important representative of the tribe Tecomeae in the family Bignoniaceae, is interesting from both biological and chemical perspectives. In this review, a contemporary summary of biological and pharmacological research on Jacaranda species will be presented and critically evaluated. Significant findings in the treatment of protozoa-caused diseases as well as of skin illnesses have been presented in ethnobotanical reports and recent studies were performed on crude extracts for certain Jacaranda species. Jacaranone, the most important constituent isolated is known to possess anti-cancer activity. Recently, high cutaneous toxicity together with moderate activity against leishmaniasis was described. Very few additional data are available on the biological activities and cytotoxicity of pure compounds from Jacaranda. Thirteen of the forty-nine distinguished species of Jacaranda have been reported in scientific literature as ethnobotanically used or phytochemically investigated. However, information about a chemical profile is available only for six species. The following article gives a critical assessment of the literature to date and aims to show that the pharmaceutical potential of this genus has been underestimated and deserves closer attention.
Subject(s)
Antineoplastic Agents, Phytogenic , Antiprotozoal Agents , Bignoniaceae/chemistry , Medicine, Traditional , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/pharmacology , Humans , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacologyABSTRACT
The remarkable absence of arachidonic acid (AA) in seed plants prompted us to systematically study the presence of C20 polyunsaturated fatty acids, stearic acid, oleic acid, jasmonic acid (JA), N-acylethanolamines (NAEs) and endocannabinoids (ECs) in 71 plant species representative of major phylogenetic clades. Given the difficulty of extrapolating information about lipid metabolites from genetic data we employed targeted metabolomics using LC-MS/MS and GC-MS to study these signaling lipids in plant evolution. Intriguingly, the distribution of AA among the clades showed an inverse correlation with JA which was less present in algae, bryophytes and monilophytes. Conversely, ECs co-occurred with AA in algae and in the lower plants (bryophytes and monilophytes), thus prior to the evolution of cannabinoid receptors in Animalia. We identified two novel EC-like molecules derived from the eicosatetraenoic acid juniperonic acid, an omega-3 structural isomer of AA, namely juniperoyl ethanolamide and 2-juniperoyl glycerol in gymnosperms, lycophytes and few monilophytes. Principal component analysis of the targeted metabolic profiles suggested that distinct NAEs may occur in different monophyletic taxa. This is the first report on the molecular phylogenetic distribution of apparently ancient lipids in the plant kingdom, indicating biosynthetic plasticity and potential physiological roles of EC-like lipids in plants.
Subject(s)
Arachidonic Acid/metabolism , Endocannabinoids/metabolism , Evolution, Molecular , Metabolome , Plants/metabolism , Arachidonic Acid/genetics , Endocannabinoids/genetics , Lipid Metabolism , Phylogeny , Plants/genetics , Signal TransductionABSTRACT
Free arachidonic acid is functionally interlinked with different lipid signaling networks including those involving prostanoid pathways, the endocannabinoid system, N-acylethanolamines, as well as steroids. A sensitive and specific LC-MS/MS method for the quantification of arachidonic acid, prostaglandin E2, thromboxane B2, anandamide, 2-arachidonoylglycerol, noladin ether, lineoyl ethanolamide, oleoyl ethanolamide, palmitoyl ethanolamide, steroyl ethanolamide, aldosterone, cortisol, dehydroepiandrosterone, progesterone, and testosterone in human plasma was developed and validated. Analytes were extracted using acetonitrile precipitation followed by solid phase extraction. Separations were performed by UFLC using a C18 column and analyzed on a triple quadrupole MS with electron spray ionization. Analytes were run first in negative mode and, subsequently, in positive mode in two independent LC-MS/MS runs. For each analyte, two MRM transitions were collected in order to confirm identity. All analytes showed good linearity over the investigated concentration range (r>0.98). Validated LLOQs ranged from 0.1 to 190ng/mL and LODs ranged from 0.04 to 12.3ng/mL. Our data show that this LC-MS/MS method is suitable for the quantification of a diverse set of bioactive lipids in plasma from human donors (n=32). The determined plasma levels are in agreement with the literature, thus providing a versatile method to explore pathophysiological processes in which changes of these lipids are implicated.
Subject(s)
Arachidonic Acid/blood , Chromatography, Liquid/methods , Endocannabinoids/blood , Ethanolamines/blood , Prostaglandins/blood , Steroids/blood , Tandem Mass Spectrometry/methods , HumansABSTRACT
AIM OF THE STUDY: For the assessment of the in vitro anti-protozoal potential of plants traditionally used in Ecuador in the treatment of leishmaniasis, a combined approach based on interviews with healers as well as a literature search was carried out. MATERIALS AND METHODS: From three regions of Ecuador, 256 local healers called "Agents of Traditional Medicine" (ATMs) were interviewed about their knowledge of the use of plants to treat and heal the illness recognized by the ATMs as leishmaniasis. From literature sources, 14 plants were identified as being used in the treatment of leishmaniasis. Subsequently, plant material was collected from a representative selection of 39 species. A total of 140 extracts were screened in vitro against Leishmania donovani, Plasmodium falciparum, Trypanosoma brucei rhodesiense and Trypanosoma cruzi. Additionally, these extracts were evaluated for their anti-microbial activities using five gram-positive and -negative bacteria as well as Candida albicans. RESULTS AND CONCLUSIONS: The survey resulted in 431 use-records for 145 plant-taxa used for the treatment of leishmaniasis. The 10 most frequently reported taxa accounted for 37.7% of all records. In the case of leishmaniasis, activity was observed for Elephantopus mollis, Minquartia guianensis, Bocconia integrifolia, Gouania lupuloides, Scoparia dulcis, an as-yet-unidentified species of Piper and Brugmansia. For the leaves of M. guianensis and the twigs and bark of G. lupuloides a good selectivity index (SI) was found. IC(50) values and the SI of active plant extracts are presented.