ABSTRACT
OBJECTIVE: The potential of magnetization transfer imaging (MTI) and diffusion tensor imaging (DTI) for the detection and evolution of new multiple sclerosis (MS) lesions was analyzed. METHODS: Nineteen patients with MS obtained conventional MRI, MTI, and DTI examinations bimonthly for 12 months and again after 24 months at 1.5 T MRI. MTI was acquired with balanced steady-state free precession (bSSFP) in 10 min (1.3 mm3 isotropic resolution) yielding both magnetization transfer ratio (MTR) and quantitative magnetization transfer (qMT) parameters (pool size ratio (F), exchange rate (kf), and relaxation times (T1/T2)). DTI provided fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). RESULTS: At the time of their appearance on MRI, the 21 newly detected MS lesions showed significantly reduced MTR/F/kf and prolonged T1/T2 parameters, as well as significantly reduced FA and increased AD/MD/RD. Significant differences were already observed for MTR 4 months and for qMT parameters 2 months prior to lesions' detection on MRI. DTI did not show any significant pre-lesional differences. Slightly reversed trends were observed for most lesions up to 8 months after their detection for qMT and less pronounced for MTR and three diffusion parameters, while appearing unchanged on MRI. CONCLUSIONS: MTI provides more information than DTI in MS lesions and detects tissue changes 2 to 4 months prior to their appearance on MRI. After lesions' detection, qMT parameter changes promise to be more sensitive than MTR for the lesions' evolutional assessment. Overall, bSSFP-based MTI adumbrates to be more sensitive than MRI and DTI for the early detection and follow-up assessment of MS lesions. CLINICAL RELEVANCE STATEMENT: When additionally acquired in routine MRI, fast bSSFP-based MTI can complement the MRI/DTI longitudinal lesion assessment by detecting MS lesions 2-4 months earlier than with MRI, which could implicate earlier clinical decisions and better follow-up/treatment assessment in MS patients. KEY POINTS: ⢠Magnetization transfer imaging provides more information than DTI in multiple sclerosis lesions and can detect tissue changes 2 to 4 months prior to their appearance on MRI. ⢠After lesions' detection, quantitative magnetization transfer changes are more pronounced than magnetization transfer ratio changes and therefore promise to be more sensitive for the lesions' evolutional assessment. ⢠Balanced steady-state free precession-based magnetization transfer imaging is more sensitive than MRI and DTI for the early detection and follow-up assessment of multiple sclerosis lesions.
Subject(s)
Diffusion Tensor Imaging , Multiple Sclerosis , Humans , Diffusion Tensor Imaging/methods , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , AnisotropyABSTRACT
BACKGROUND: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system characterized by two major and interconnected hallmarks: inflammation and progressive neurodegeneration. OBJECTIVE: The aim of this work was to compare neurodegenerative processes, in the form of global and regional brain volume loss rates, in healthy controls (HCs) and in patients with relapsing MS (RMS) treated with ocrelizumab, which suppresses acute inflammation. METHODS: Whole brain, white matter, cortical gray matter, thalamic, and cerebellar volume loss rates were assessed in 44 HCs that were part of a substudy in the OPERA II randomized controlled trial (NCT01412333) and 59 patients with RMS enrolled in the same substudy as well as age- and sex-matched patients in OPERA I (NCT01247324) and II. Volume loss rates were computed using random coefficients models over a period of 2 years. RESULTS: Ocrelizumab-treated patients showed global and regional brain volume loss rates that were approaching that of HCs. CONCLUSION: These findings are consistent with an important role of inflammation on overall tissue loss and the role of ocrelizumab in reducing this phenomenon.
Subject(s)
Healthy Aging , Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis/chemically induced , Immunologic Factors/adverse effects , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Magnetic Resonance Imaging , Recurrence , InflammationABSTRACT
Background Deep learning-based segmentation could facilitate rapid and reproducible T1 lesion load assessments, which is crucial for disease management in multiple sclerosis (MS). T1 unenhancing and contrast-enhancing lesions in MS are those that enhance or do not enhance after administration of a gadolinium-based contrast agent at T1-weighted MRI. Purpose To develop deep learning models for automated assessment of T1 unenhancing and contrast-enhancing lesions; to investigate if joint training improved performance; to reproduce a known ocrelizumab treatment response; and to evaluate the association of baseline T1-weighted imaging metrics with clinical outcomes in relapsing MS clinical trials. Materials and Methods Joint and individual deep learning models (U-Nets) were developed retrospectively on multimodal MRI data sets from large multicenter OPERA trials of relapsing MS (August 2011 to May 2015). The joint model included cross-network connections and a combined loss function. Models were trained on OPERA I data sets with three-fold cross-validation. OPERA II data sets were the internal test set. Dice coefficients, lesion true-positive and false-positive rates, and areas under the receiver operating characteristic curve (AUCs) were used to evaluate model performance. Association of baseline imaging metrics with clinical outcomes was assessed with Cox proportional hazards models. Results A total of 796 patients (3030 visits; mean age, 37 years ± 9; 521 women) from the OPERA II trial were evaluated. The joint model achieved a mean Dice coefficient of 0.77 and 0.74, lesion true-positive rate of 0.88 and 0.86, and lesion false-positive rate of 0.04 and 0.19 for T1 contrast-enhancing and T1 unenhancing lesion segmentation, respectively. Joint training improved performance for smaller T1 contrast-enhancing lesions (≤0.06 mL; individual training AUC: 0.75; joint training AUC: 0.87; P < .001). A significant ocrelizumab treatment effect (P < .001) was seen in reducing the mean number of T1 contrast-enhancing lesions at 24, 48, and 96 weeks (manual assessment at 24 weeks: 10 lesions in 366 patients with ocrelizumab, 141 lesions in 355 patients with interferon, 93% reduction; manual assessment at 48 weeks: six lesions in 355 patients with ocrelizumab, 150 lesions in 317 patients with interferon, 96% reduction; manual assessment at 96 weeks: five lesions in 340 patients with ocrelizumab, 157 lesions in 294 patients with interferon, 97% reduction; joint model assessment at 24 weeks: 19 lesions in 365 patients with ocrelizumab, 128 lesions in 354 patients with interferon, 86% reduction; joint model assessment at 48 weeks: 14 lesions in 355 patients with ocrelizumab, 121 lesions in 317 patients with interferon, 90% reduction; joint model assessment at 96 weeks: 10 lesions in 340 patients with ocrelizumab, 144 lesions in 294 patients with interferon, 94% reduction) and the mean number of new T1 unenhancing lesions across all follow-up examinations (manual assessment: 504 lesions in 1060 visits for ocrelizumab-treated patients, 1438 lesions in 965 visits for interferon-treated patients, 68% reduction; joint model assessment: 205 lesions in 1053 visits for ocrelizumab-treated patients, 661 lesions in 957 visits for interferon-treated patients, 78% reduction). Baseline T1 unenhancing total lesion volume was associated with clinical outcomes (manual hazard ratio [HR]: 1.12, P = .02; joint model HR: 1.11, P = .03). Conclusion Joint architecture and training improved segmentation of MRI T1 contrast-enhancing multiple sclerosis lesions, and both deep learning models had sufficiently high performance to detect an ocrelizumab treatment response consistent with manual assessments. ClinicalTrials.gov: NCT01247324 and NCT01412333 © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Talbott in this issue.
Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Deep Learning , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/drug therapy , Adult , Contrast Media , Datasets as Topic , Female , Humans , Immunologic Factors/therapeutic use , Male , Retrospective StudiesABSTRACT
Cerebellar symptoms in multiple sclerosis (MS) are well described; however, the exact contribution of cerebellar damage to MS disability has not been fully explored. Longer-term observational periods are necessary to better understand the dynamics of pathological changes within the cerebellum and their clinical consequences. Cerebellar lobe and single lobule volumes were automatically segmented on 664 3D-T1-weighted MPRAGE scans (acquired at a single 1.5 T scanner) of 163 MS patients (111 women; mean age: 47.1 years; 125 relapsing-remitting (RR) and 38 secondary progressive (SP) MS, median EDSS: 3.0) imaged annually over 4 years. Clinical scores (EDSS, 9HPT, 25FWT, PASAT, SDMT) were determined per patient per year with a maximum clinical follow-up of 11 years. Linear mixed-effect models were applied to assess the association between cerebellar volumes and clinical scores and whether cerebellar atrophy measures may predict future disability progression. SPMS patients exhibited faster posterior superior lobe volume loss over time compared to RRMS, which was related to increase of EDSS over time. In RRMS, cerebellar volumes were significant predictors of motor scores (e.g. average EDSS, T25FWT and 9HPT) and SDMT. Atrophy of motor-associated lobules (IV-VI + VIII) was a significant predictor of future deterioration of the 9HPT of the non-dominant hand. In SPMS, the atrophy rate of the posterior superior lobe (VI + Crus I) was a significant predictor of future PASAT performance deterioration. Regional cerebellar volume reduction is associated with motor and cognitive disability in MS and may serve as a predictor for future disease progression, especially of dexterity and impaired processing speed.
Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Atrophy/pathology , Cerebellum/diagnostic imaging , Cerebellum/pathology , Disability Evaluation , Female , Humans , Magnetic Resonance Imaging , Middle Aged , Multiple Sclerosis/pathology , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/pathologyABSTRACT
BACKGROUND: In multiple sclerosis (MS), thalamic integrity is affected directly by demyelination and neuronal loss, and indirectly by gray/white matter lesions outside the thalamus, altering thalamic neuronal projections. OBJECTIVE: To assess the efficacy of ocrelizumab compared with interferon beta-1a (IFNß1a)/placebo on thalamic volume loss and the effect of switching to ocrelizumab on volume change in the Phase III trials in relapsing MS (RMS, OPERA I/II; NCT01247324/NCT01412333) and in primary progressive MS (PPMS, ORATORIO; NCT01194570). METHODS: Thalamic volume change was computed using paired Jacobian integration and analyzed using an adjusted mixed-effects repeated measurement model. RESULTS: Over the double-blind period, ocrelizumab treatment significantly reduced thalamic volume loss with the largest effect size (Cohen's d: RMS: 0.561 at week 96; PPMS: 0.427 at week 120) compared with whole brain, cortical gray matter, and white matter volume loss. At the end of up to 7 years of follow-up, patients initially randomized to ocrelizumab still showed less thalamic volume loss than those switching from IFNß1a (p < 0.001) or placebo (p < 0.001). CONCLUSION: Ocrelizumab effectively reduced thalamic volume loss compared with IFNß1a/placebo. Early treatment effects on thalamic tissue preservation persisted over time. Thalamic volume loss could be a potential sensitive marker of persisting tissue damage.
Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Clinical Trials, Phase III as Topic , Double-Blind Method , Humans , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Interferon beta-1a/therapeutic use , Magnetic Resonance Imaging , Multiple Sclerosis/drug therapy , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Randomized Controlled Trials as TopicABSTRACT
There is evidence that multiple sclerosis (MS) pathology leads to distinct patterns of volume loss over time (VLOT) in different central nervous system (CNS) structures. We aimed to use such patterns to identify patient subgroups. MS patients of all classical disease phenotypes underwent annual clinical, blood, and MRI examinations over 6 years. Spinal, striatal, pallidal, thalamic, cortical, white matter, and T2-weighted lesion volumes as well as serum neurofilament light chain (sNfL) were quantified. CNS VLOT patterns were identified using principal component analysis and patients were classified using hierarchical cluster analysis. 225 MS patients were classified into four distinct Groups A, B, C, and D including 14, 59, 141, and 11 patients, respectively). These groups did not differ in baseline demographics, disease duration, disease phenotype distribution, and lesion-load expansion. Interestingly, Group A showed pronounced spinothalamic VLOT, Group B marked pallidal VLOT, Group C small between-structure VLOT differences, and Group D myelocortical volume increase and pronounced white matter VLOT. Neurologic deficits were more severe and progressed faster in Group A that also had higher mean sNfL levels than all other groups. Group B experienced more frequent relapses than Group C. In conclusion, there are distinct patterns of VLOT across the CNS in MS patients, which do not overlap with clinical MS subtypes and are independent of disease duration and lesion-load but are partially associated to sNfL levels, relapse rates, and clinical worsening. Our findings support the need for a more biologic classification of MS subtypes including volumetric and body-fluid markers.
Subject(s)
Brain , Disease Progression , Multiple Sclerosis , Spinal Cord , Adult , Aged , Atrophy/pathology , Brain/diagnostic imaging , Brain/pathology , Female , Humans , Image Processing, Computer-Assisted , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Multiple Sclerosis/classification , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Neuroimaging , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Young AdultABSTRACT
BACKGROUND AND PURPOSE: In an era of individualized multiple sclerosis (MS) patient management, biomarkers for accurate prediction of future clinical outcomes are needed. We aimed to evaluate the potential of short-term magnetic resonance imaging (MRI) atrophy measures and serum neurofilament light chain (sNfL) as predictors of the dynamics of disability accumulation in relapse-onset MS. METHODS: Brain gray and white matter, thalamic, striatal, pallidal and cervical spinal cord volumes, and lesion load were measured over three available time points (mean time span 2.24 ± 0.70 years) for 183 patients (140 relapsing-remitting [RRMS] and 43 secondary-progressive MS (SPMS); 123 female, age 46.4 ± 11.0 years; disease duration 15.7 ± 9.3 years), and their respective annual changes were calculated. Baseline sNfL was also measured at the third available time point for each patient. Subsequently, patients underwent annual clinical examinations over 5.4 ± 3.7 years including Expanded Disability Status Scale (EDSS) scoring, the nine-hole peg test and the timed 25-foot walk test. RESULTS: Higher annual spinal cord atrophy rates and lesion load increase predicted higher future EDSS score worsening over time in SPMS. Lower baseline thalamic volumes predicted higher walking speed worsening over time in RRMS. Lower baseline gray matter, as well as higher white matter and spinal cord atrophy rates, lesion load increase, baseline striatal volumes and baseline sNfL, predicted higher future hand dexterity worsening over time. All models showed reasonable to high prediction accuracy. CONCLUSION: This study demonstrates the capability of short-term MRI metrics to accurately predict future dynamics of disability progression in a real-world relapse-onset MS cohort. The present study represents a step towards the utilization of structural MRI measurements in patient care.
Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Adult , Atrophy/pathology , Brain/diagnostic imaging , Brain/pathology , Disability Evaluation , Disease Progression , Female , Gray Matter/pathology , Humans , Magnetic Resonance Imaging/methods , Middle Aged , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/pathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/pathologyABSTRACT
In multiple sclerosis (MS), cortical atrophy is correlated with clinical and neuropsychological measures. We aimed to examine the differences in the temporospatial evolution of cortical thickness (CTh) between MS-subtypes and to study the association of CTh with T2-weighted white matter lesions (T2LV) and clinical progression. Two hundred and forty-three MS patients (180 relapsing-remitting [RRMS], 51 secondary-progressive [SPMS], and 12 primary-progressive [PPMS]) underwent annual clinical (incl. expanded disability status scale [EDSS]) and MRI-examinations over 6 years. T2LV and CTh were measured. CTh did not differ between MS-subgroups. Higher total T2LV was associated with extended bilateral CTh-reduction on average, but did not correlate with CTh-changes over time. In RRMS, CTh- and EDSS-changes over time were negatively correlated in large bilateral prefrontal, frontal, parietal, temporal, and occipital areas. In SPMS, CTh was not associated with the EDSS. In PPMS, CTh- and EDSS-changes over time were correlated in small clusters predominantly in left parietal areas. Increase of brain lesion load does not lead to an immediate CTh-reduction. Although CTh did not differ between MS-subtypes, a dissociation in the correlation between CTh- and EDSS-changes over time between RRMS and progressive-MS was shown, possibly underlining the contribution of subcortical pathology to clinical progression in progressive-MS.
Subject(s)
Cerebral Cortex/pathology , Cerebral Cortical Thinning/pathology , Disease Progression , Multiple Sclerosis, Chronic Progressive/pathology , Multiple Sclerosis, Relapsing-Remitting/pathology , White Matter/pathology , Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortical Thinning/diagnostic imaging , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/physiopathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Severity of Illness Index , White Matter/diagnostic imagingABSTRACT
BACKGROUND: Teriflunomide 14 mg significantly reduced brain volume loss (BVL) and confirmed disability worsening (CDW) compared with placebo in the TEMSO core study. OBJECTIVE: To investigate the relationship between BVL from Baseline to Year 2 in the TEMSO core study and long-term CDW (Year 7) in the TEMSO long-term extension (NCT00803049). METHODS: Structural Image Evaluation using Normalization of Atrophy determined BVL. Long-term CDW was assessed by Expanded Disability Status Scale confirmed for 12 and 24 weeks. An additional analysis evaluated the relative contribution of BVL (Year 2) and other outcomes as potential mediators of the effect of teriflunomide 14 mg on 12-week CDW. RESULTS: Patients with the least BVL were significantly less likely to have 12- and 24-week CDW at Year 7 compared with patients with the most BVL. A mediation analysis revealed that BVL (Year 2) explained 51.3% of the treatment effect on CDW; new or enlarging T2w lesions over 2 years explained 30.8%, and relapses in the first 2 years explained 38.5%. CONCLUSIONS: These results highlight the potential predictive value of BVL earlier in the disease course on long-term disability outcomes. The mediation analysis suggests that teriflunomide may prevent disability worsening largely through its effects on BVL.
Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Brain/diagnostic imaging , Crotonates , Humans , Hydroxybutyrates , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Nitriles , ToluidinesABSTRACT
BACKGROUND: Subcortical T2-weighted (T2w) lesions are very common in older adults and have been associated with dementia. However, little is known about the strategic lesion distribution and how lesion patterns relate to vascular risk factors and cognitive impairment. AIM: The aim of this study was to analyze the association between T2w lesion load and location, vascular risk factors, and cognitive impairment in a large cohort of older adults. METHODS: 1017 patients participating in a large prospective cohort study (INtervention project on cerebroVAscular disease and Dementia in the district of Ebersberg, INVADE II) were analyzed. Cerebral T2w white matter and deep grey matter lesions, the so-called white matter hyperintensities (WMHs), were outlined semi-automatically on fluid attenuated inversion recovery images and normalized to standard stereotaxic space (MNI152) by non-linear registration. Patients were assigned to either a low-risk or a high-risk group. The risk assessment considered ankle brachial index, intima media thickness, carotid artery stenosis, atrial fibrillation, previous cerebro-/cardiovascular events and peripheral artery disease as well as a score based on cholesterol levels, blood pressure and smoking. Separate lesion distributions were obtained for the two risk groups and compared using voxel-based lesion-symptom mapping. Moreover, we assessed the relation between lesion location and cognitive impairment (demographically adjusted z-scores of the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Assessment Battery Plus, CERAD-NAB Plus) using voxel-based statistics (αâ¯=â¯0.05). RESULTS: A total of 878 out of 1017 subjects (86%) had evaluable MRI data and were included in the analyses (mean age: 68.2⯱â¯7.6 years, female: 515). Patients in the high-risk group were characterized by a significantly higher age, a higher proportion of men, a higher lesion load (pâ¯<â¯0.001), and a worse performance in some of the cognitive subdomain scores (pâ¯<â¯0.05). Voxels with significant associations to the subjects' cerebrovascular risk profiles were mainly found at locations of the corpus callosum, superior corona radiata, superior longitudinal fasciculus, internal and external capsule, and putamen. While several cognitive domains have shown significant associations with the participants' total lesion burden (pâ¯<â¯0.05), no focal WMH locations were found to be associated with cognitive impairment. CONCLUSION: Age, gender, several cognitive scores, and WMH lesion load were shown to be significantly associated with vascular risk factors in a population of older, but cognitively preserved adults. Vascular risk factors seem to promote lesion formation most severely at well-defined locations. While lesion load showed weak associations to some cognitive scores, no focal locations causing specific cognitive disturbances were identified in this large cohort of older adults.
Subject(s)
Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/pathology , Cognitive Dysfunction/etiology , Magnetic Resonance Imaging/methods , Neuroimaging/methods , White Matter/pathology , Aged , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/physiopathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Female , Humans , Male , Middle Aged , Prospective Studies , Risk Factors , White Matter/diagnostic imagingABSTRACT
PURPOSE: The purpose of this project was to construct a physical brain phantom for MRI, mimicking structure and T1 relaxation properties of white matter (WM) and gray matter (GM). METHODS: The phantom design comprised 2 compartments, 1 resembling the WM and 1 resembling the GM. Their T1 relaxation times, as assessed using an inversion recovery turbo spin echo sequence, were reproduced using an agar gel doped with contrast agent (CA) and their folding patterns were simulated through a molding-casting procedure using 3D-printed casts and flexible silicone molds. Three versions of the assembling procedure were adopted to build: Phantom1 without any separation; Phantom2 with a varnish layer; and Phantom3 with a thin wax layer between the compartments. RESULTS: Phantom1 was characterized by an immediate diffusion of CA between the 2 compartments. Phantom2 and Phantom3, instead, showed relaxation times and shape comparable with the target ones identified in a healthy control subject (WM: 754 ± 40 ms; GM: 1277 ± 96 ms). Moreover, both compartments revealed intact gyri and sulci. However, the diffusion of CA made Phantom2 stable only for a short period of time. Phantom3 showed stability within a time window of several days but the wax layer between the WM and GM was visible in the MRI. CONCLUSION: Structural and intensity properties of the constructed phantoms are useful in evaluating and validating steps from image acquisition to image processing. Moreover, the described constructing procedure and its modular design make it adjustable to a variety of applications.
Subject(s)
Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging , Phantoms, Imaging , White Matter/diagnostic imaging , Agar , Anthropometry , Contrast Media , Healthy Volunteers , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Printing, Three-DimensionalABSTRACT
OBJECTIVES: In neuromyelitis optica spectrum disorders (NMOSD) thalamic damage is controversial, but thalamic nuclei were never studied separately. We aimed at assessing volume loss of thalamic nuclei in NMOSD. We hypothesised that only specific nuclei are damaged, by attacks affecting structures from which they receive afferences: the lateral geniculate nucleus (LGN), due to optic neuritis (ON) and the ventral posterior nucleus (VPN), due to myelitis. METHODS: Thirty-nine patients with aquaporin 4-IgG seropositive NMOSD (age: 50.1±14.1 years, 36 women, 25 with prior ON, 36 with prior myelitis) and 37 healthy controls (age: 47.8 ± 12.5 years, 32 women) were included in this cross-sectional study. Thalamic nuclei were assessed in magnetic resonance images, using a multi-atlas-based approach of automated segmentation. Retinal optical coherence tomography was also performed. RESULTS: Patients with ON showed smaller LGN volumes (181.6±44.2 mm3) compared with controls (198.3±49.4 mm3; B=-16.97, p=0.004) and to patients without ON (206.1±50 mm3 ; B=-23.74, p=0.001). LGN volume was associated with number of ON episodes (Rho=-0.536, p<0.001), peripapillary retinal nerve fibre layer thickness (B=0.70, p<0.001) and visual function (B=-0.01, p=0.002). Although VPN was not smaller in patients with myelitis (674.3±67.5 mm3) than controls (679.7±68.33; B=-7.36, p=0.594), we found reduced volumes in five patients with combined myelitis and brainstem attacks (B=-76.18, p=0.017). Volumes of entire thalamus and other nuclei were not smaller in patients than controls. CONCLUSION: These findings suggest attack-related anterograde degeneration rather than diffuse thalamic damage in NMOSD. They also support a potential role of LGN volume as an imaging marker of structural brain damage in these patients.
Subject(s)
Geniculate Bodies/diagnostic imaging , Neuromyelitis Optica/diagnostic imaging , Ventral Thalamic Nuclei/diagnostic imaging , Adult , Atrophy , Case-Control Studies , Female , Geniculate Bodies/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Myelitis, Transverse/diagnostic imaging , Myelitis, Transverse/pathology , Neuromyelitis Optica/pathology , Optic Neuritis/diagnostic imaging , Optic Neuritis/pathology , Organ Size , Prospective Studies , Thalamic Nuclei/diagnostic imaging , Thalamic Nuclei/pathology , Ventral Thalamic Nuclei/pathologyABSTRACT
BACKGROUND: Little is known on longer term changes of spinal cord volume (SCV) in primary progressive multiple sclerosis (PPMS). OBJECTIVE: Longitudinal evaluation of SCV loss in PPMS and its correlation to clinical outcomes, compared to relapse-onset multiple sclerosis (MS) subtypes. METHODS: A total of 60 MS age-, sex- and disease duration-matched patients (12 PPMS, each 24 relapsing-remitting (RRMS) and secondary progressive MS (SPMS)) were analysed annually over 6 years of follow-up. The upper cervical SCV was measured on 3D T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE) images using a semi-automatic software (CORDIAL), along with the total brain volume (TBV), brain T2 lesion volume (T2LV) and Expanded Disability Status Scale (EDSS). RESULTS: PPMS showed faster SCV loss over time than RRMS ( p < 0.01) and by trend ( p = 0.066) compared with SPMS. In contrast to relapse-onset MS, in PPMS SCV loss progressed independent of TBV and T2LV changes. Moreover, in PPMS, SCV was the only magnetic resonance imaging (MRI) measurement associated with EDSS increase over time ( p < 0.01), as opposed to RRMS and SPMS. CONCLUSION: SCV loss is a strong predictor of clinical outcomes in PPMS and has shown to be faster and independent of brain MRI metrics compared to relapse-onset MS.
Subject(s)
Disease Progression , Multiple Sclerosis, Chronic Progressive/pathology , Multiple Sclerosis, Relapsing-Remitting/pathology , Spinal Cord/pathology , Adult , Aged , Atrophy/pathology , Biomarkers , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Prognosis , Spinal Cord/diagnostic imagingABSTRACT
BACKGROUND: We compared the magnetic resonance imaging (MRI) features between Japanese and Caucasian patients with multiple sclerosis (MS), and identified the relationships between MRI features and disability. METHODS: From the baseline data of phase II fingolimod trials, 95 Japanese and 246 Caucasian relapsing-remitting MS patients were enrolled. The number, volume, and distribution of brain MRI lesions were evaluated using T2-weighted (T2W) images. Cross-sectional total normalized brain volume (NBV), normalized cortical gray matter volume, normalized deep gray matter volume (NDGMV), normalized white matter volume (NWMV), and normalized thalamic volume were measured. RESULTS: Japanese patients had significantly lower Expanded Disability Status Scale (EDSS) scores than Caucasian patients (mean 2.0 vs. 2.3, p = 0.008), despite a similar disease duration. Japanese patients showed a trend towards fewer T2W-lesions (median 50 vs. 65, p = 0.08) and significantly lower frequencies of cerebellar and parietal lobe lesions (p = 0.02 for both) than Caucasian patients. There were no differences in T2W-lesion volume between races, whereas Japanese patients had a significantly larger T2W-lesion volume per lesion compared with Caucasian patients (median 140 mm3 vs. 85 mm3, p < 0.0001). T2W-lesion volumes were positively correlated with EDSS scores in Japanese patients (p < 0.0001). In both races, NBV, normalized cortical gray matter volume, NDGMV, and thalamic volume were negatively correlated with disease duration and EDSS scores (p < 0.01 for all). NWMV was negatively correlated with disease duration and EDSS scores only in Caucasian patients (p = 0.03 and p = 0.004, respectively). NBV, NDGMV, NWMV, and thalamic volume were consistently smaller in Japanese compared with Caucasian patients throughout the entire examined disease duration (p = 0.046, p = 0.01, p = 0.005, and p = 0.04, respectively). Japanese patients had a significantly faster reduction in NDGMV (p = 0.001), particularly for thalamic volume (p = 0.001), with disease duration compared with Caucasian patients. CONCLUSIONS: Gray matter atrophy is a common denominator for disability in Japanese and Caucasian patients. Additional contributory factors for disability include T2W-lesion volume in Japanese patients and white matter atrophy in Caucasian patients. Less frequent parietal and cerebellar involvement with fewer T2W-lesions may underlie milder disability in Japanese patients.
Subject(s)
Brain/diagnostic imaging , Disabled Persons , Disease Progression , Magnetic Resonance Imaging/methods , Multiple Sclerosis , Adult , Cross-Sectional Studies , Disability Evaluation , Female , Humans , Image Processing, Computer-Assisted , Japan , Male , Middle Aged , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/ethnology , Multiple Sclerosis/physiopathology , Reference Values , Severity of Illness Index , White PeopleABSTRACT
There is a limited correlation between white matter (WM) lesion load as determined by magnetic resonance imaging and disability in multiple sclerosis (MS). The reasons for this so-called clinico-radiological paradox are diverse and may, at least partly, relate to the fact that not just the overall lesion burden, but also the exact anatomical location of lesions predict the severity and type of disability. We aimed at studying the relationship between lesion distribution and disability using a voxel-based lesion probability mapping approach in a very large dataset of MS patients. T2-weighted lesion masks of 2348 relapsing-remitting MS patients were spatially normalized to standard stereotaxic space by non-linear registration. Relations between supratentorial WM lesion locations and disability measures were assessed using a non-parametric ANCOVA (Expanded Disability Status Scale [EDSS]; Multiple Sclerosis Functional Composite, and subscores; Modified Fatigue Impact Scale) or multinomial ordinal logistic regression (EDSS functional subscores). Data from 1907 (81%) patients were included in the analysis because of successful registration. The lesion mapping showed similar areas to be associated with the different disability scales: periventricular regions in temporal, frontal, and limbic lobes were predictive, mainly affecting the posterior thalamic radiation, the anterior, posterior, and superior parts of the corona radiata. In summary, significant associations between lesion location and clinical scores were found in periventricular areas. Such lesion clusters appear to be associated with impairment of different physical and cognitive abilities, probably because they affect commissural and long projection fibers, which are relevant WM pathways supporting many different brain functions.
Subject(s)
Brain/diagnostic imaging , Clinical Trials as Topic/statistics & numerical data , Image Processing, Computer-Assisted/methods , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Adolescent , Adult , Databases, Factual , Disability Evaluation , Fatigue/etiology , Female , Humans , Image Processing, Computer-Assisted/statistics & numerical data , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Middle Aged , Probability , White Matter/diagnostic imaging , Young AdultABSTRACT
BACKGROUND: Structural Image Evaluation using Normalization of Atrophy (SIENA) is used to measure brain atrophy in multiple sclerosis (MS). However, brain extraction is prone to artefacts in the upper and lower parts of the brain. To overcome these shortcomings, some pivotal MS trials used a central slab instead of the whole brain as input for SIENA. The aim of this study was to compare the internal consistency and statistical dispersion of atrophy measures, associations with clinical outcomes and required sample sizes in clinical trials between these two approaches. METHODS: Brain volume change was assessed using SIENA in 119 MS patients with 5-years follow-up on 3D T1-weighted Magnetization Prepared Rapid Gradient Echo datasets using the whole brain or a central slab ranging from -10 to +60 mm Montreal Neurological Institute atlas coordinates. The statistical analysis included the quartile coefficient of dispersion, partial correlations with clinical outcomes and sample size calculations. Clinical outcome measures comprised the Expanded Disability Status Scale, MS Functional Composite and Symbol Digit Modalities Test. RESULTS: Annualized brain atrophy rates were higher using central slab than whole brain as input for SIENA (-0.51 ± 0.49 vs. -0.37 ± 0.39% per year, p < 0.001). Central and whole brain volume change showed comparable statistical dispersion and similarly correlated with clinical outcomes at 5-years follow-up. Sample size calculations estimated 14% fewer patients required to detect a given treatment effect when using the central slab instead of the whole brain option in SIENA. CONCLUSION: Central slab and whole brain SIENA produced comparable statistical dispersion with similar associations to clinical outcomes.
Subject(s)
Brain/pathology , Image Interpretation, Computer-Assisted/methods , Multiple Sclerosis/pathology , Adult , Atrophy/pathology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle AgedABSTRACT
A concern for researchers planning multisite studies is that scanner and T1-weighted sequence-related biases on regional volumes could overshadow true effects, especially for studies with a heterogeneous set of scanners and sequences. Current approaches attempt to harmonize data by standardizing hardware, pulse sequences, and protocols, or by calibrating across sites using phantom-based corrections to ensure the same raw image intensities. We propose to avoid harmonization and phantom-based correction entirely. We hypothesized that the bias of estimated regional volumes is scaled between sites due to the contrast and gradient distortion differences between scanners and sequences. Given this assumption, we provide a new statistical framework and derive a power equation to define inclusion criteria for a set of sites based on the variability of their scaling factors. We estimated the scaling factors of 20 scanners with heterogeneous hardware and sequence parameters by scanning a single set of 12 subjects at sites across the United States and Europe. Regional volumes and their scaling factors were estimated for each site using Freesurfer's segmentation algorithm and ordinary least squares, respectively. The scaling factors were validated by comparing the theoretical and simulated power curves, performing a leave-one-out calibration of regional volumes, and evaluating the absolute agreement of all regional volumes between sites before and after calibration. Using our derived power equation, we were able to define the conditions under which harmonization is not necessary to achieve 80% power. This approach can inform choice of processing pipelines and outcome metrics for multisite studies based on scaling factor variability across sites, enabling collaboration between clinical and research institutions.
Subject(s)
Artifacts , Brain/anatomy & histology , Image Interpretation, Computer-Assisted/instrumentation , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Models, Statistical , Algorithms , Computer Simulation , Equipment Design , Equipment Failure Analysis , Europe , Humans , Image Enhancement/instrumentation , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity , United StatesABSTRACT
BACKGROUND: Previous studies have demonstrated that white matter (WM) lesions bias automated brain tissue classifications and cerebral volume measurements. However, filling WM lesions using the intensity of neighbouring normal-appearing WM has been shown to increase the accuracy of automated volume measurements in the brain. In the present study, we investigate the influence of WM lesions on cortical thickness (CTh) measures and assessed the impact of lesion filling on both cross-sectional/longitudinal and global/regional measurements of CTh in multiple sclerosis (MS) patients. METHODS: Fifty MS patients were studied at baseline as well as after three and six years of follow-up. CTh was estimated using a fully automated pipeline (CIVET) on T1-weighted magnetic resonance images data acquired at 1.5 Tesla without (original) and with WM lesion filling (filled). WM lesions were semi-automatically segmented and then filled with the mean intensity of the neighbouring voxels. For both original and filled T1 images we investigated and compared the main CIVET's steps: tissue classification, surfaces generation and CTh measurement. RESULTS: On the original T1 images, the majority of WM lesion volume (72%) was wrongly classified as gray matter (GM). After lesion filling the accuracy of WM lesions classification improved significantly (p < 0.001, 94% of WM lesion volume correctly classified) as well as the WM surface generation (p < 0.0001). The mean CTh computed on the original T1 images, overall time points, was significantly thinner (p < 0.001) compared the CTh estimated on the filled T1 images. The vertex-wise longitudinal analysis performed on the filled T1 images showed an increased number of vertices in the fronto-temporal region with a significantly decrease of CTh over time compared the analysis performed on the original images. CONCLUSION: These results indicate that WM lesions bias the CTh estimation both cross-sectionally as well as longitudinally. The lesion filling approach significantly improved the accuracy of the regional CTh estimation and has an impact also on the global estimation of CTh.
Subject(s)
Cerebral Cortex/pathology , Magnetic Resonance Imaging/methods , Multiple Sclerosis/pathology , Pattern Recognition, Automated/methods , Signal Processing, Computer-Assisted , White Matter/pathology , Adult , Cross-Sectional Studies , Female , Follow-Up Studies , Gray Matter/pathology , Humans , Longitudinal Studies , Male , Middle Aged , Organ Size , Retrospective Studies , Time Factors , Young AdultABSTRACT
BACKGROUND: Similar to induced pluripotent cells (iPSCs), induced neural stem cells (iNSCs) can be directly converted from human somatic cells such as dermal fibroblasts and peripheral blood monocytes. While previous studies have demonstrated the resemblance of iNSCs to neural stem cells derived from primary sources and embryonic stem cells, respectively, a comprehensive analysis of the correlation between iNSCs and their physiological counterparts remained to be investigated. METHODS: Nowadays, single-cell sequencing technologies provide unique opportunities for in-depth cellular benchmarking of complex cell populations. Our study involves the comprehensive profiling of converted human iNSCs at a single-cell transcriptomic level, alongside conventional methods, like flow cytometry and immunofluorescence stainings. RESULTS: Our results show that the iNSC conversion yields a homogeneous cell population expressing bona fide neural stem cell markers. Extracting transcriptomic signatures from published single cell transcriptomic atlas data and comparison to the iNSC transcriptome reveals resemblance to embryonic neuroepithelial cells of early neurodevelopmental stages observed in vivo at 5 weeks of development. CONCLUSION: Our data underscore the physiological relevance of directly converted iNSCs, making them a valuable in vitro system for modeling human central nervous system development and establishing translational applications in cell therapy and compound screening.