Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Blood ; 138(19): 1843-1854, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34046681

ABSTRACT

Bruton tyrosine kinase inhibitors (BTKis) are a preferred treatment of patients with chronic lymphocytic leukemia (CLL). Indefinite therapy with BTKis, although effective, presents clinical challenges. Combination therapy can deepen responses, shorten treatment duration, and possibly prevent or overcome drug resistance. We previously reported on a CD19/CD3-bispecific antibody (bsAb) that recruits autologous T-cell cytotoxicity against CLL cells in vitro. Compared with observations with samples from treatment-naïve patients, T cells from patients being treated with ibrutinib expanded more rapidly and exerted superior cytotoxic activity in response to the bsAb. In addition to BTK, ibrutinib also inhibits interleukin-2 inducible T-cell kinase (ITK). In contrast, acalabrutinib, does not inhibit ITK. Whether ITK inhibition contributes to the observed immune effects is unknown. To better understand how BTKis modulate T-cell function and cytotoxic activity, we cultured peripheral blood mononuclear cells (PBMCs) from BTKi-naive and ibrutinib- or acalabrutinib-treated CLL patients with CD19/CD3 bsAb in vitro. T-cell expansion, activation, differentiation, and cytotoxicity were increased in PBMCs from patients on treatment with either BTKi compared with that observed for BKTi-naïve patients. BTKi therapy transcriptionally downregulated immunosuppressive effectors expressed by CLL cells, including cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and CD200. CTLA-4 blockade with ipilimumab in vitro increased the cytotoxic activity of the bsAb in BTKi-naïve but not BTKi-treated PBMCS. Taken together, BTKis enhance bsAb-induced cytotoxicity by relieving T cells of immunosuppressive restraints imposed by CLL cells. The benefit of combining bsAb immunotherapy with BTKis needs to be confirmed in clinical trials.


Subject(s)
Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Antibodies, Bispecific/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Piperidines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Adenine/therapeutic use , Adult , Aged , Aged, 80 and over , Antigens, CD19/immunology , Benzamides/therapeutic use , CD3 Complex/immunology , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Ipilimumab/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Male , Middle Aged , Pyrazines/therapeutic use , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
2.
Blood ; 137(2): 185-189, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33259596

ABSTRACT

Vaccinations are effective in preventing infections; however, it is unknown if patients with chronic lymphocytic leukemia (CLL) who are treatment naïve (TN) or receiving Bruton tyrosine kinase inhibitors (BTKi's) respond to novel adjuvanted vaccines. Understanding the effect of BTKi's on humoral immunity is timely because BTKi's are widely used and vaccination against coronavirus disease 2019 is urgently needed. In 2 open-label, single-arm clinical trials, we measured the effect of BTKi's on de novo immune response against recombinant hepatitis B vaccine (HepB-CpG) and recall response against recombinant zoster vaccine (RZV) in CLL patients who were TN or on BTKi. The primary end point was serologic response to HepB-CpG (anti-hepatitis B surface antibodies ≥10 mIU/mL) and RZV (≥fourfold increase in anti-glycoprotein E). The response rate to HepB-CpG was lower in patients on BTKi (3.8%; 95% confidence interval [CI], 0.7-18.9) than patients who were TN (28.1%; 95% CI, 15.6-45.4; P = .017). In contrast, the response rate to RZV did not differ significantly between the BTKi (41.5%; 95% CI, 27.8-56.6) and TN cohorts (59.1%; 95% CI, 38.7-76.7; P = .2). BTKi's were associated with a decreased de novo immune response following HepB-CpG, whereas recall immune response following RZV was not significantly affected by BTKi therapy. These trials were registered at www.clinicaltrials.gov as #NCT03685708 (Hep-CpG) and #NCT03702231 (RZV).


Subject(s)
Hepatitis B Vaccines/immunology , Herpes Zoster Vaccine/immunology , Immunity , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Protein Kinase Inhibitors/adverse effects , Vaccines, Synthetic/immunology , Adjuvants, Immunologic , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Aged , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Male , Middle Aged , Patient Outcome Assessment , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Vaccination
3.
Blood ; 136(1): 93-105, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32202637

ABSTRACT

Inhibition of the B-cell receptor pathway, and specifically of Bruton tyrosine kinase (BTK), is a leading therapeutic strategy in B-cell malignancies, including chronic lymphocytic leukemia (CLL). Target occupancy is a measure of covalent binding to BTK and has been applied as a pharmacodynamic parameter in clinical studies of BTK inhibitors. However, the kinetics of de novo BTK synthesis, which determines occupancy, and the relationship between occupancy, pathway inhibition and clinical outcomes remain undefined. This randomized phase 2 study investigated the safety, efficacy, and pharmacodynamics of a selective BTK inhibitor acalabrutinib at 100 mg twice daily (BID) or 200 mg once daily (QD) in 48 patients with relapsed/refractory or high-risk treatment-naïve CLL. Acalabrutinib was well tolerated and yielded an overall response rate (ORR) of partial response or better of 95.8% (95% confidence interval [CI], 78.9-99.9) and an estimated progression-free survival (PFS) rate at 24 months of 91.5% (95% CI, 70.0-97.8) with BID dosing and an ORR of 79.2% (95% CI, 57.9-92.9) and an estimated PFS rate at 24 months of 87.2% (95% CI, 57.2-96.7) with QD dosing. BTK resynthesis was faster in patients with CLL than in healthy volunteers. BID dosing maintained higher BTK occupancy and achieved more potent pathway inhibition compared with QD dosing. Small increments in occupancy attained by BID dosing relative to QD dosing compounded over time to augment downstream biological effects. The impact of BTK occupancy on long-term clinical outcomes remains to be determined. This trial was registered at www.clinicaltrials.gov as #NCT02337829.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Antineoplastic Agents/therapeutic use , Benzamides/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Neoplasm Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Pyrazines/therapeutic use , Agammaglobulinaemia Tyrosine Kinase/biosynthesis , Agammaglobulinaemia Tyrosine Kinase/genetics , Aged , Aged, 80 and over , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Benzamides/administration & dosage , Benzamides/adverse effects , Drug Administration Schedule , Enzyme Induction , Female , Headache/chemically induced , Hematologic Diseases/chemically induced , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/enzymology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Male , Middle Aged , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Pain/chemically induced , Progression-Free Survival , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Pyrazines/administration & dosage , Pyrazines/adverse effects , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics , RNA-Seq , Transcriptome , Treatment Outcome
4.
Blood Adv ; 7(15): 4089-4101, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37219524

ABSTRACT

Chronic lymphocytic leukemia (CLL) is an immunosuppressive disease characterized by increased infectious morbidity and inferior antitumor activity of immunotherapies. Targeted therapy with Bruton's tyrosine kinase inhibitors (BTKis) or the Bcl-2 inhibitor venetoclax has profoundly improved treatment outcomes in CLL. To overcome or prevent drug resistance and extend the duration of response after a time-limited therapy, combination regimens are tested. Anti-CD20 antibodies that recruit cell- and complement-mediated effector functions are commonly used. Epcoritamab (GEN3013), an anti-CD3×CD20 bispecific antibody that recruits T-cell effector functions, has demonstrated potent clinical activity in patients with relapsed CD20+ B-cell non-Hodgkin lymphoma. Development of CLL therapy is ongoing. To characterize epcoritamab-mediated cytotoxicity against primary CLL cells, peripheral blood mononuclear cells from treatment-naive and BTKi-treated patients, including patients progressing on therapy, were cultured with epcoritamab alone or in combination with venetoclax. Ongoing treatment with BTKi and high effector-to-target ratios were associated with superior in vitro cytotoxicity. Cytotoxic activity was independent of CD20 expression on CLL cells and observed in samples from patients whose condition progressed while receiving BTKi. Epcoritamab induced significant T-cell expansion, activation, and differentiation into Th1 and effector memory cells in all patient samples. In patient-derived xenografts, epcoritamab reduced the blood and spleen disease burden compared with that in mice receiving a nontargeting control. In vitro, the combination of venetoclax with epcoritamab induced superior killing of CLL cells than either agent alone. These data support the investigation of epcoritamab in combination with BTKis or venetoclax to consolidate responses and target emergent drug-resistant subclones.


Subject(s)
Antibodies, Bispecific , Antineoplastic Agents , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Mice , Animals , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukocytes, Mononuclear , Antineoplastic Agents/therapeutic use , Proto-Oncogene Proteins c-bcl-2 , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use
5.
Clin Cancer Res ; 29(18): 3612-3621, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37227160

ABSTRACT

PURPOSE: To determine the role of CD49d for response to Bruton's tyrosine kinase inhibitors (BTKi) in patients with chronic lymphocytic leukemia (CLL). PATIENTS AND METHODS: In patients treated with acalabrutinib (n = 48), CD49d expression, VLA-4 integrin activation, and tumor transcriptomes of CLL cells were assessed. Clinical responses to BTKis were investigated in acalabrutinib- (n = 48; NCT02337829) and ibrutinib-treated (n = 73; NCT01500733) patients. RESULTS: In patients treated with acalabrutinib, treatment-induced lymphocytosis was comparable for both subgroups but resolved more rapidly for CD49d+ cases. Acalabrutinib inhibited constitutive VLA-4 activation but was insufficient to block BCR and CXCR4-mediated inside-out activation. Transcriptomes of CD49d+ and CD49d- cases were compared using RNA sequencing at baseline and at 1 and 6 months on treatment. Gene set enrichment analysis revealed increased constitutive NF-κB and JAK-STAT signaling, enhanced survival, adhesion, and migratory capacity in CD49d+ over CD49d- CLL that was maintained during therapy. In the combined cohorts of 121 BTKi-treated patients, 48 (39.7%) progressed on treatment with BTK and/or PLCG2 mutations detected in 87% of CLL progressions. Consistent with a recent report, homogeneous and bimodal CD49d-positive cases (the latter having concurrent CD49d+ and CD49d- CLL subpopulations, irrespective of the traditional 30% cutoff value) had a shorter time to progression of 6.6 years, whereas 90% of cases homogenously CD49d- were estimated progression-free at 8 years (P = 0.0004). CONCLUSIONS: CD49d/VLA-4 emerges as a microenvironmental factor that contributes to BTKi resistance in CLL. The prognostic value of CD49d is improved by considering bimodal CD49d expression. See related commentary by Tissino et al., p. 3560.


Subject(s)
Integrin alpha4beta1 , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Progression-Free Survival , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Clinical Relevance , Protein Kinase Inhibitors/pharmacology
6.
J Immunother Cancer ; 10(11)2022 11.
Article in English | MEDLINE | ID: mdl-36442911

ABSTRACT

BACKGROUND: Despite numerous therapeutic options, safe and curative therapy is unavailable for most patients with chronic lymphocytic leukemia (CLL). A drawback of current therapies such as the anti-CD20 monoclonal antibody (mAb) rituximab is the elimination of all healthy B cells, resulting in impaired humoral immunity. We previously reported the identification of a patient-derived, CLL-binding mAb, JML-1, and identified sialic acid-binding immunoglobulin-like lectin-6 (Siglec-6) as the target of JML-1. Although little is known about Siglec-6, it appears to be an attractive target for cancer immunotherapy due to its absence on most healthy cells and tissues. METHODS: We used a target-specific approach to mine for additional patient-derived anti-Siglec-6 mAbs. To assess the therapeutic utility of targeting Siglec-6 in the context of CLL, T cell-recruiting bispecific antibodies (T-biAbs) that bind to Siglec-6 and CD3 were engineered into single-chain variable fragment-Fc and dual-affinity retargeting (DART)-Fc constructs. T-biAbs were evaluated for their activity in vitro, ex vivo, and in vivo. RESULTS: We discovered the anti-Siglec-6 mAbs RC-1 and RC-2, which bind with higher affinity than JML-1 yet maintain similar specificity. Both JML-1 and RC-1 T-biAbs were effective at activating T cells and killing Siglec-6+ target cells. The RC-1 clone in the DART-Fc format was the most potent T-biAb tested and was the only anti-Siglec-6 T-biAb that eliminated Siglec-6+ primary CLL cells via autologous T cells at pathological T-to-CLL cell ratios. Tested at healthy T-to-B cell ratios, it also eliminated a Siglec-6+ fraction of primary B cells from healthy donors. The subpicomolar potency of the DART-Fc format was attributed to the reduction in the length and flexibility of the cytolytic synapse. Furthermore, the RC-1 T-biAb was effective at clearing MEC1 CLL cells in vivo and demonstrated a circulatory half-life of over 7 days. CONCLUSION: Siglec-6-targeting T-biAbs are highly potent and specific for eliminating Siglec-6+ leukemic and healthy B cells while sparing Siglec-6- healthy B cells, suggesting a unique treatment strategy for CLL with diminished suppression of humoral immunity. Our data corroborate reports that T-biAb efficacy is dependent on synapse geometry and reveal that synapse architecture can be tuned via antibody engineering. Our fully human anti-Siglec-6 antibodies and T-biAbs have potential for cancer immunotherapy. TRIAL REGISTRATION NUMBER: NCT00923507.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , T-Lymphocytes , B-Lymphocytes , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Immunotherapy
7.
Clin Cancer Res ; 27(16): 4624-4633, 2021 08 15.
Article in English | MEDLINE | ID: mdl-33875521

ABSTRACT

PURPOSE: In chronic lymphocytic leukemia (CLL), the T-cell receptor (TCR) repertoire is skewed and tumor-derived antigens are hypothesized as drivers of oligoclonal expansion. Ibrutinib, a standard treatment for CLL, inhibits not only Bruton tyrosine kinase of the B-cell receptor signaling pathway, but also IL2-inducible kinase of the TCR signaling pathway. T-cell polarization and activation are affected by ibrutinib, but it is unknown whether T cells contribute to clinical response. EXPERIMENTAL DESIGN: High-throughput TCRß sequencing was performed in 77 longitudinal samples from 26 patients with CLL treated with ibrutinib. TCRß usage in CD4+ and CD8+ T cells and granzyme B expression were assessed by flow cytometric analysis. Antitumor cytotoxicity of T cells expanded with autologous CLL cells or with antigen-independent anti-CD3/CD28/CD137 beads was tested. RESULTS: The clonality of the TCR repertoire increased at the time of response. With extended treatment, TCR clonality remained stable in patients with sustained remission and decreased in patients with disease progression. Expanded clonotypes were rarely shared between patients, indicating specificity for private antigens. Flow cytometry demonstrated a predominance of CD8+ cells among expanded clonotypes. Importantly, bulk T cells from responding patients were cytotoxic against autologous CLL cells in vitro and selective depletion of major expanded clonotypes reduced CLL cell killing. CONCLUSIONS: In patients with CLL, established T-cell responses directed against tumor are suppressed by disease and reactivated by ibrutinib.See related commentary by Zent, p. 4465.


Subject(s)
Adenine/analogs & derivatives , CD8-Positive T-Lymphocytes/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Piperidines/therapeutic use , Adenine/therapeutic use , Cells, Cultured , Humans
8.
J Clin Oncol ; 39(6): 576-585, 2021 02 20.
Article in English | MEDLINE | ID: mdl-33026937

ABSTRACT

PURPOSE: Randomized trials established the superiority of ibrutinib-based therapy over chemoimmunotherapy in chronic lymphocytic leukemia. Durability of progression-free survival (PFS) with ibrutinib can vary by patient subgroup. Clinical tools for prognostication and risk-stratification are needed. PATIENTS AND METHODS: Patients treated with ibrutinib in phase II and III trials provided the discovery data set and were subdivided into discovery and internal validation cohorts. An external validation cohort included 84 patients enrolled in our investigator-initiated phase II trial. Univariable analysis of 18 pretreatment parameters was performed using PFS and overall survival (OS) end-points. Multivariable analysis and machine-learning algorithms identified four factors for a prognostic model that was validated in internal and external cohorts. RESULTS: Factors independently associated with inferior PFS and OS were as follows: TP53 aberration, prior treatment, ß-2 microglobulin ≥ 5 mg/L, and lactate dehydrogenase > 250 U/L. Each of these four factors contributed one point to a prognostic model that stratified patients into three risk groups: three to four points, high risk; two points, intermediate risk; zero to one point, low risk. The 3-year PFS rates for all 804 patients combined were 47%, 74%, and 87% for the high-, the intermediate-, and the low-risk group, respectively (P < .0001). The 3-year OS rates were 63%, 83%, and 93%, respectively (P < .0001). The model remained significant when applied to treatment-naïve and relapsed/refractory cohorts individually. For 84 patients in the external cohort, BTK and PLCG2 mutations were tested cross-sectionally and at progression. The cumulative incidences of mutations were strongly correlated with the model. In the external cohort, Richter's transformation occurred in 17% of the high-risk group, and in no patient in the low-risk group. CONCLUSION: Patients at increased risk of ibrutinib failure can be identified at treatment initiation and considered for clinical trials.


Subject(s)
Adenine/analogs & derivatives , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Piperidines/therapeutic use , Adenine/pharmacology , Adenine/therapeutic use , Adult , Aged , Aged, 80 and over , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Male , Middle Aged , Piperidines/pharmacology , Prognosis , Progression-Free Survival , Treatment Outcome
9.
Blood Cancer Discov ; 2(6): 630-647, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34778802

ABSTRACT

The use of Bruton tyrosine kinase (BTK) inhibitors to block B-cell receptor (BCR)-dependent NF-κB activation in lymphoid malignancies has been a major clinical advance, yet acquired therapeutic resistance is a recurring problem. We modeled the development of resistance to the BTK inhibitor ibrutinib in the activated B-cell (ABC) subtype of diffuse large B-cell lymphoma, which relies on chronic active BCR signaling for survival. The primary mode of resistance was epigenetic, driven in part by the transcription factor TCF4. The resultant phenotypic shift altered BCR signaling such that the GTPase RAC2 substituted for BTK in the activation of phospholipase Cγ2, thereby sustaining NF-κB activity. The interaction of RAC2 with phospholipase Cγ2 was also increased in chronic lymphocytic leukemia cells from patients with persistent or progressive disease on BTK inhibitor treatment. We identified clinically available drugs that can treat epigenetic ibrutinib resistance, suggesting combination therapeutic strategies. SIGNIFICANCE: In diffuse large B-cell lymphoma, we show that primary resistance to BTK inhibitors is due to epigenetic rather than genetic changes that circumvent the BTK blockade. We also observed this resistance mechanism in chronic lymphocytic leukemia, suggesting that epigenetic alterations may contribute more to BTK inhibitor resistance than currently thought.See related commentary by Pasqualucci, p. 555. This article is highlighted in the In This Issue feature, p. 549.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Protein Kinase Inhibitors , Agammaglobulinaemia Tyrosine Kinase/genetics , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Protein Kinase Inhibitors/pharmacology
10.
Leuk Lymphoma ; 62(8): 1816-1827, 2021 08.
Article in English | MEDLINE | ID: mdl-33653216

ABSTRACT

High-risk cytogenetics and minimal residual disease (MRD) after chemoimmunotherapy (CIT) predict unfavorable outcome in chronic lymphocytic leukemia (CLL). This phase 2 study investigated risk-adapted CIT in treatment-naïve CLL (NCT01145209). Patients with high-risk cytogenetics received induction with fludarabine, cyclophosphamide, and ofatumumab. Those without high-risk cytogenetics received fludarabine and ofatumumab. After induction, MRD positive (MRD+) patients received 4 doses of ofatumumab consolidation. MRD negative (MRD-) patients had no intervention. Of 28 evaluable for response, all responded to induction and 10 (36%) achieved MRD-. Two-year progression-free survival (PFS) was 71.4% (CI95, 56.5-90.3%). There was no significant difference in median PFS between the high-risk and the standard-risk groups. Ofatumumab consolidation didn't convert MRD + to MRD-. In the MRD + group, we saw selective loss of CD20 antigens during therapy. In conclusion, risk-adapted CIT is feasible in treatment-naïve CLL. Ofatumumab consolidation didn't improve depth of response in MRD + patients. Loss of targetable CD20 likely reduces efficacy of consolidation therapy.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Humans , Immunotherapy , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Treatment Outcome
11.
Clin Cancer Res ; 26(12): 2800-2809, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32054731

ABSTRACT

PURPOSE: To determine the pharmacodynamic relationship between target occupancy of Bruton tyrosine kinase (BTK) and inhibition of downstream signaling. PATIENTS AND METHODS: Patients with chronic lymphocytic leukemia (CLL) enrolled in a phase II clinical trial (NCT02337829) with the covalent, selective BTK inhibitor acalabrutinib donated blood samples for pharmacodynamic analyses. Study design included randomization to acalabrutinib 100 mg twice daily or 200 mg once daily and dose interruptions on day 4 and 5 of the first week. BTK occupancy and readouts of intracellular signaling were assessed sequentially between 4 and 48 hours from last dose. RESULTS: Four hours from last dose, BTK occupancy exceeded 96% and at trough, was higher with twice daily, median 95.3%, than with once daily dosing, median 87.6% (P < 0.0001). By 48 hours from last dose, median free BTK increased to 25.6%. Due to covalent binding of acalabrutinib, free BTK is generated by de novo synthesis. The estimated rate of BTK synthesis varied widely between patients ranging from 3.6% to 31.4% per day. Acalabrutinib reduced phosphorylation of BTK and inhibited downstream B-cell receptor (BCR) and NFκB signaling. During dosing interruptions up to 48 hours, expression of BCR target genes rebounded, while phosphorylation of signaling molecules remained repressed. In vitro cross-linking of IgM on CLL cells obtained 36 to 48 hours from last dose upregulated CD69, with high correlation between cellular free BTK and response (R = 0.7, P ≤ 0.0001). CONCLUSIONS: Higher BTK occupancy was achieved with twice daily over once daily dosing, resulting in deeper and more sustained inhibition of BCR signaling.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Antineoplastic Agents/therapeutic use , Benzamides/therapeutic use , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic/drug effects , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Neoplasm Recurrence, Local/drug therapy , Pyrazines/therapeutic use , Adult , Aged , Aged, 80 and over , Female , Follow-Up Studies , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/enzymology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Middle Aged , Neoplasm Recurrence, Local/enzymology , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL