Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Eur J Immunol ; 52(5): 730-736, 2022 05.
Article in English | MEDLINE | ID: mdl-35133647

ABSTRACT

Conformational change of the ß2 integrin lymphocyte function-associated antigen 1 (LFA-1) is an early marker of T cell activation. A protocol using the mAb clone m24 recognizing the active, extended high-affinity conformation has been previously described for the assessment of functional CD4+ and CD8+ T cells in response to MHC-peptide stimulation. We investigated the applicability of the m24 mAb to detect the activation of γδ T cells in response to different soluble and immobilized stimuli. m24 mAb staining was associated with the expression of cytokines and was detectable as early as 10 min after stimulation, but with different kinetics depending on the nature of the stimulus. Hence, we conclude that this assay is suitable for the detection of functional γδ T cells and allows the assessment of activation more rapidly than alternative methods such as cytokine detection. Intracellular staining, protein trafficking inhibitors, or prior knowledge of the stimulating moiety recognized are no longer required for monitoring γδ T cell activation.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocyte Subsets , CD8-Positive T-Lymphocytes , Cytokines/metabolism , Integrins/metabolism , Lymphocyte Activation
2.
Cell Death Dis ; 15(4): 290, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658567

ABSTRACT

High-grade serous ovarian cancer (HGSOC) represents the most common and lethal subtype of ovarian cancer. Despite initial response to platinum-based standard therapy, patients commonly suffer from relapse that likely originates from drug-tolerant persister (DTP) cells. We generated isogenic clones of treatment-naïve and cisplatin-tolerant persister HGSOC cells. In addition, single-cell RNA sequencing of barcoded cells was performed in a xenograft model with HGSOC cell lines after platinum-based therapy. Published single-cell RNA-sequencing data from neo-adjuvant and non-treated HGSOC patients and patient data from TCGA were analyzed. DTP-derived cells exhibited morphological alterations and upregulation of epithelial-mesenchymal transition (EMT) markers. An aggressive subpopulation of DTP-derived cells showed high expression of the stress marker ATF3. Knockdown of ATF3 enhanced the sensitivity of aggressive DTP-derived cells to cisplatin-induced cell death, implying a role for ATF3 stress response in promoting a drug tolerant persister cell state. Furthermore, single cell lineage tracing to detect transcriptional changes in a HGSOC cell line-derived xenograft relapse model showed that cells derived from relapsed solid tumors express increased levels of EMT and multiple endoplasmic reticulum (ER) stress markers, including ATF3. Single cell RNA sequencing of epithelial cells from four HGSOC patients also identified a small cell population resembling DTP cells in all samples. Moreover, analysis of TCGA data from 259 HGSOC patients revealed a significant progression-free survival advantage for patients with low expression of the ATF3-associated partial EMT genes. These findings suggest that increased ATF3 expression together with partial EMT promote the development of aggressive DTP, and thereby relapse in HGSOC patients.


Subject(s)
Activating Transcription Factor 3 , Cisplatin , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Ovarian Neoplasms , Humans , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Female , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Animals , Mice , Xenograft Model Antitumor Assays , Gene Expression Regulation, Neoplastic/drug effects
3.
J Immunother Cancer ; 11(6)2023 06.
Article in English | MEDLINE | ID: mdl-37286306

ABSTRACT

BACKGROUND: The need for reliable clinical biomarkers to predict which patients with melanoma will benefit from immune checkpoint blockade (ICB) remains unmet. Several different parameters have been considered in the past, including routine differential blood counts, T cell subset distribution patterns and quantification of peripheral myeloid-derived suppressor cells (MDSC), but none has yet achieved sufficient accuracy for clinical utility. METHODS: Here, we investigated potential cellular biomarkers from clinical routine blood counts as well as several myeloid and T cell subsets, using flow cytometry, in two independent cohorts of a total of 141 patients with stage IV M1c melanoma before and during ICB. RESULTS: Elevated baseline frequencies of monocytic MDSCs (M-MDSC) in the blood were confirmed to predict shorter overall survival (OS) (HR 2.086, p=0.030) and progression-free survival (HR 2.425, p=0.001) in the whole patient cohort. However, we identified a subgroup of patients with highly elevated baseline M-MDSC frequencies that fell below a defined cut-off during therapy and found that these patients had a longer OS that was similar to that of patients with low baseline M-MDSC frequencies. Importantly, patients with high M-MDSC frequencies exhibited a skewed baseline distribution of certain other immune cells but these did not influence patient survival, illustrating the paramount utility of MDSC assessment. CONCLUSION: We confirmed that in general, highly elevated frequencies of peripheral M-MDSC are associated with poorer outcomes of ICB in metastatic melanoma. However, one reason for an imperfect correlation between high baseline MDSCs and outcome for individual patients may be the subgroup of patients identified here, with rapidly decreasing M-MDSCs on therapy, in whom the negative effect of high M-MDSC frequencies was lost. These findings might contribute to developing more reliable predictors of late-stage melanoma response to ICB at the individual patient level. A multifactorial model seeking such markers yielded only MDSC behavior and serum lactate dehydrogenase as predictors of treatment outcome.


Subject(s)
Melanoma , Myeloid-Derived Suppressor Cells , Humans , Melanoma/pathology , Biomarkers , Treatment Outcome , Flow Cytometry
4.
Front Immunol ; 13: 906352, 2022.
Article in English | MEDLINE | ID: mdl-35874702

ABSTRACT

Immune checkpoint blockade (ICB) is standard-of-care for patients with metastatic melanoma. It may re-invigorate T cells recognizing tumors, and several tumor antigens have been identified as potential targets. However, little is known about the dynamics of tumor antigen-specific T cells in the circulation, which might provide valuable information on ICB responses in a minimally invasive manner. Here, we investigated individual signatures composed of up to 167 different melanoma-associated epitope (MAE)-specific CD8+ T cells in the blood of stage IV melanoma patients before and during anti-PD-1 treatment, using a peptide-loaded multimer-based high-throughput approach. Additionally, checkpoint receptor expression patterns on T cell subsets and frequencies of myeloid-derived suppressor cells and regulatory T cells were quantified by flow cytometry. Regression analysis using the MAE-specific CD8+ T cell populations was applied to identify those that correlated with overall survival (OS). The abundance of MAE-specific CD8+ T cell populations, as well as their dynamics under therapy, varied between patients. Those with a dominant increase of these T cell populations during PD-1 ICB had a longer OS and progression-free survival than those with decreasing or balanced signatures. Patients with a dominantly increased MAE-specific CD8+ T cell signature also exhibited an increase in TIM-3+ and LAG-3+ T cells. From these results, we created a model predicting improved/reduced OS by combining data on dynamics of the three most informative MAE-specific CD8+ T cell populations. Our results provide insights into the dynamics of circulating MAE-specific CD8+ T cell populations during ICB, and should contribute to a better understanding of biomarkers of response and anti-cancer mechanisms.


Subject(s)
Melanoma , Programmed Cell Death 1 Receptor , Antigens, Neoplasm , CD8-Positive T-Lymphocytes , Epitopes/metabolism , Humans , Melanoma/drug therapy , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocyte Subsets
5.
J Immunother Cancer ; 9(12)2021 12.
Article in English | MEDLINE | ID: mdl-34933966

ABSTRACT

BACKGROUND: Anti-programmed cell death protein 1 (PD-1) antibodies are now routinely administered for metastatic melanoma and for increasing numbers of other cancers, but still only a fraction of patients respond. Better understanding of the modes of action and predictive biomarkers for clinical outcome is urgently required. Cancer rejection is mostly T cell-mediated. We previously showed that the presence of NY-ESO-1-reactive and/or Melan-A-reactive T cells in the blood correlated with prolonged overall survival (OS) of patients with melanoma with a heterogeneous treatment background. Here, we investigated whether such reactive T cells can also be informative for clinical outcomes in metastatic melanoma under PD-1 immune-checkpoint blockade (ICB). METHODS: Peripheral blood T cell stimulation by NY-ESO-1 and Melan-A overlapping peptide libraries was assessed before and during ICB in two independent cohorts of a total of 111 patients with stage IV melanoma. In certain cases, tumor-infiltrating lymphocytes could also be assessed for such responses. These were characterized using intracellular cytokine staining for interferon gamma (IFN-γ), tumor negrosis factor (TNF) and CD107a. Digital pathology analysis was performed to quantify NY-ESO-1 and Melan-A expression by tumors. Endpoints were OS and progression-free survival (PFS). RESULTS: The initial presence in the circulation of NY-ESO-1- or Melan-A-reactive T cells which became no longer detectable during ICB correlated with validated, prolonged PFS (HR:0.1; p>0.0001) and OS (HR:0.2; p=0.021). An evaluation of melanoma tissue from selected cases suggested a correlation between tumor-resident NY-ESO-1- and Melan-A-reactive T cells and disease control, supporting the notion of a therapy-associated sequestration of cells from the periphery to the tumor predominantly in those patients benefitting from ICB. CONCLUSIONS: Our findings suggest a PD-1 blockade-dependent infiltration of melanoma-reactive T cells from the periphery into the tumor and imply that this seminally contributes to effective treatment.


Subject(s)
Antigens, Neoplasm/metabolism , Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes/immunology , Immune Checkpoint Inhibitors/therapeutic use , MART-1 Antigen/metabolism , Melanoma/mortality , Membrane Proteins/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Aged , Aged, 80 and over , Antigens, Neoplasm/immunology , Biomarkers, Tumor/immunology , Female , Follow-Up Studies , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Lymphocytes, Tumor-Infiltrating/immunology , MART-1 Antigen/immunology , Male , Melanoma/drug therapy , Melanoma/immunology , Melanoma/pathology , Membrane Proteins/immunology , Middle Aged , Prognosis , Survival Rate
6.
Cell Death Dis ; 10(11): 851, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31699970

ABSTRACT

Patients with high-grade serous ovarian cancer (HGSC) frequently receive platinum-based chemotherapeutics, such as cisplatin. Cisplatin binds to DNA and induces DNA-damage culminating in mitochondria-mediated apoptosis. Interestingly, mitochondrial DNA is critically affected by cisplatin but its relevance in cell death induction is scarcely investigated. We find that cisplatin sensitive HGSC cell lines contain higher mitochondrial content and higher levels of mitochondrial ROS (mtROS) than cells resistant to cisplatin induced cell death. In clonal sub-lines from OVCAR-3 mitochondrial content and basal oxygen consumption rate correlate with sensitivity to cisplatin induced apoptosis. Mitochondria are in two ways pivotal for cisplatin sensitivity because not only knock-down of BAX and BAK but also the ROS scavenger glutathione diminish cisplatin induced apoptosis. Mitochondrial ROS correlates with mitochondrial content and reduction of mitochondrial biogenesis by knock-down of transcription factors PGC1α or TFAM attenuates both mtROS induction and cisplatin induced apoptosis. Increasing mitochondrial ROS by inhibition or knock-down of the ROS-protective uncoupling protein UCP2 enhances cisplatin induced apoptosis. Similarly, enhancing ROS by high-dose ascorbic acid or H2O2 augments cisplatin induced apoptosis. In summary, mitochondrial content and the resulting mitochondrial capacity to produce ROS critically determine HGSC cell sensitivity to cisplatin induced apoptosis. In line with this observation, data from the human protein atlas (www.proteinatlas.org) indicates that high expression of mitochondrial marker proteins (TFAM and TIMM23) is a favorable prognostic factor in ovarian cancer patients. Thus, we propose mitochondrial content as a biomarker for the response to platinum-based therapies. Functionally, this might be exploited by increasing mitochondrial content or mitochondrial ROS production to enhance sensitivity to cisplatin based anti-cancer therapies.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis , Biomarkers, Tumor/metabolism , Cisplatin/pharmacology , Mitochondria/pathology , Ovarian Neoplasms/pathology , Reactive Oxygen Species/metabolism , DNA Damage , Drug Resistance, Neoplasm , Female , Humans , Mitochondria/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Prognosis , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL