Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Brain ; 145(10): 3472-3487, 2022 10 21.
Article in English | MEDLINE | ID: mdl-35551349

ABSTRACT

Many genetic risk factors for Parkinson's disease have lipid-related functions and lipid-modulating drugs such as statins may be protective against Parkinson's disease. Moreover, the hallmark Parkinson's disease pathological protein, α-synuclein, has lipid membrane function and pathways dysregulated in Parkinson's disease such as the endosome-lysosome system and synaptic signalling rely heavily on lipid dynamics. Despite the potential role for lipids in Parkinson's disease, most research to date has been protein-centric, with large-scale, untargeted serum and CSF lipidomic comparisons between genetic and idiopathic Parkinson's disease and neurotypical controls limited. In particular, the extent to which lipid dysregulation occurs in mutation carriers of one of the most common Parkinson's disease risk genes, LRRK2, is unclear. Further, the functional lipid pathways potentially dysregulated in idiopathic and LRRK2 mutation Parkinson's disease are underexplored. To better determine the extent of lipid dysregulation in Parkinson's disease, untargeted high-performance liquid chromatography-tandem mass spectrometry was performed on serum (n = 221) and CSF (n = 88) obtained from a multi-ethnic population from the Michael J. Fox Foundation LRRK2 Clinical Cohort Consortium. The cohort consisted of controls, asymptomatic LRRK2 G2019S carriers, LRRK2 G2019S carriers with Parkinson's disease and Parkinson's disease patients without a LRRK2 mutation. Age and sex were adjusted for in analyses where appropriate. Approximately 1000 serum lipid species per participant were analysed. The main serum lipids that distinguished both Parkinson's disease patients and LRRK2 mutation carriers from controls included species of ceramide, triacylglycerol, sphingomyelin, acylcarnitine, phosphatidylcholine and lysophosphatidylethanolamine. Significant alterations in sphingolipids and glycerolipids were also reflected in Parkinson's disease and LRRK2 mutation carrier CSF, although no correlations were observed between lipids identified in both serum and CSF. Pathway analysis of altered lipid species indicated that sphingolipid metabolism, insulin signalling and mitochondrial function were the major metabolic pathways dysregulated in Parkinson's disease. Importantly, these pathways were also found to be dysregulated in serum samples from a second Parkinson's disease cohort (n = 315). Results from this study demonstrate that dysregulated lipids in Parkinson's disease generally, and in LRRK2 mutation carriers, are from functionally and metabolically related pathways. These findings provide new insight into the extent of lipid dysfunction in Parkinson's disease and therapeutics manipulating these pathways may be beneficial for Parkinson's disease patients. Moreover, serum lipid profiles may be novel biomarkers for both genetic and idiopathic Parkinson's disease.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Insulins , Parkinson Disease , Humans , Parkinson Disease/metabolism , alpha-Synuclein , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Sphingomyelins , Biomarkers , Ceramides , Phosphatidylcholines , Triglycerides
2.
Mov Disord ; 36(6): 1451-1455, 2021 06.
Article in English | MEDLINE | ID: mdl-33570220

ABSTRACT

BACKGROUND: Homozygous and compound heterozygous variants in glucocerebrosidase (GBA) can cause Gaucher disease (GD), whereas heterozygous variants increase the risk of developing Parkinson's disease (PD). GD patients display altered peripheral immune proteins. However, it is unknown if these are altered in GBA carriers with PD. OBJECTIVES: To determine whether plasma cytokines and immune biomarkers associated with GD are also altered in GBA carriers with or without PD. METHODS: Inflammatory cytokines and established GD biomarkers, ferritin, CD162, CCL18, and chitotriosidase (28 biomarkers) were measured in GBA pathogenic variant carriers with (n = 135) and without (n = 83) PD, and non-carriers with (n = 75) and without PD (n = 77). RESULTS: PD patients with biallelic pathogenic variants in GBA had elevated plasma levels of ferritin, CCL18, and MIP1α. These biomarkers were not elevated in heterozygous GBA carriers. CONCLUSION: GD plasma biomarkers are not promising candidates for stratifying the risk for PD in carriers of heterozygous GBA pathogenic variants. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Gaucher Disease , Parkinson Disease , Biomarkers , Cytokines/genetics , Gaucher Disease/genetics , Glucosylceramidase/genetics , Humans , Mutation , Parkinson Disease/genetics
3.
Hum Mol Genet ; 27(8): 1311-1331, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29409023

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder and mutations in superoxide dismutase 1 (SOD1) account for 20% of familial ALS cases. The aetiology of ALS remains unclear, but protein misfolding, endoplasmic reticulum (ER) stress and neuronal apoptosis are implicated. We previously established that protein disulphide isomerase (PDIA1) is protective against ER stress and apoptosis in neuronal cells expressing mutant SOD1, and recently mutations in PDIA1 and related PDI family member endoplasmic reticulum protein 57 (ERp57/PDIA3), were associated with ALS. Here, we examined whether ERp57 is also protective against mutant SOD1 or whether distinct specificity exists amongst individual PDI family members. Neuronal cells co-expressing SOD1 and ERp57 were examined for inclusion formation, ER stress, ubiquitin proteasome system (UPS) dysfunction and apoptosis. Over-expression of ERp57 inhibited inclusion formation, ER stress, UPS dysfunction and apoptosis, whereas silencing of ERp57 expression enhanced mutant SOD1 inclusion formation, ER stress and toxicity, indicating a protective role for ERp57 against SOD1 misfolding. ERp57 also inhibited the formation of mutant SOD1 inclusions and apoptosis in primary cortical neurons, thus confirming results obtained from cell lines. ERp57 partially co-localized with TAR DNA-binding protein-43 (TDP-43)-positive inclusions in spinal cords from sporadic ALS patients, thus linking ERp57 to protein misfolding in human sporadic disease. Our results therefore imply that ERp57 has a protective role against pathological events induced by mutant SOD1 and they link ERp57 to the misfolding of TDP-43. This study therefore has implications for the design of novel therapeutics based on the activities of the PDI family of proteins.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , Endoplasmic Reticulum Stress/genetics , Neurons/metabolism , Protein Disulfide-Isomerases/genetics , Superoxide Dismutase-1/genetics , Aged , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Apoptosis , Cell Line , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Embryo, Mammalian , Female , Gene Expression Regulation , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Mutation , Neurons/pathology , Primary Cell Culture , Protein Disulfide-Isomerases/antagonists & inhibitors , Protein Disulfide-Isomerases/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Spinal Cord/metabolism , Spinal Cord/pathology , Superoxide Dismutase-1/metabolism
4.
J Neurol Neurosurg Psychiatry ; 91(2): 162-171, 2020 02.
Article in English | MEDLINE | ID: mdl-31690696

ABSTRACT

OBJECTIVE: Since the first report of CHCHD10 gene mutations in amyotrophiclateral sclerosis (ALS)/frontotemporaldementia (FTD) patients, genetic variation in CHCHD10 has been inconsistently linked to disease. A pathological assessment of the CHCHD10 protein in patient neuronal tissue also remains to be reported. We sought to characterise the genetic and pathological contribution of CHCHD10 to ALS/FTD in Australia. METHODS: Whole-exome and whole-genome sequencing data from 81 familial and 635 sporadic ALS, and 108 sporadic FTD cases, were assessed for genetic variation in CHCHD10. CHCHD10 protein expression was characterised by immunohistochemistry, immunofluorescence and western blotting in control, ALS and/or FTD postmortem tissues and further in a transgenic mouse model of TAR DNA-binding protein 43 (TDP-43) pathology. RESULTS: No causal, novel or disease-associated variants in CHCHD10 were identified in Australian ALS and/or FTD patients. In human brain and spinal cord tissues, CHCHD10 was specifically expressed in neurons. A significant decrease in CHCHD10 protein level was observed in ALS patient spinal cord and FTD patient frontal cortex. In a TDP-43 mouse model with a regulatable nuclear localisation signal (rNLS TDP-43 mouse), CHCHD10 protein levels were unaltered at disease onset and early in disease, but were significantly decreased in cortex in mid-stage disease. CONCLUSIONS: Genetic variation in CHCHD10 is not a common cause of ALS/FTD in Australia. However, we showed that in humans, CHCHD10 may play a neuron-specific role and a loss of CHCHD10 function may be linked to ALS and/or FTD. Our data from the rNLS TDP-43 transgenic mice suggest that a decrease in CHCHD10 levels is a late event in aberrant TDP-43-induced ALS/FTD pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , Mitochondrial Proteins/genetics , Aged , Amyotrophic Lateral Sclerosis/immunology , Amyotrophic Lateral Sclerosis/pathology , Animals , Australia , Blotting, Western , Brain/pathology , Female , Fluorescent Antibody Technique , Frontotemporal Dementia/immunology , Frontotemporal Dementia/pathology , Genetic Variation/genetics , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Motor Cortex/pathology , Spinal Cord/pathology , Exome Sequencing , Whole Genome Sequencing
5.
Cell Mol Life Sci ; 75(2): 335-354, 2018 01.
Article in English | MEDLINE | ID: mdl-28852778

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders that have common molecular and pathogenic characteristics, such as aberrant accumulation and ubiquitylation of TDP-43; however, the mechanisms that drive this process remain poorly understood. We have recently identified CCNF mutations in familial and sporadic ALS and FTD patients. CCNF encodes cyclin F, a component of an E3 ubiquitin-protein ligase (SCFcyclin F) complex that is responsible for ubiquitylating proteins for degradation by the ubiquitin-proteasome system. In this study, we examined the ALS/FTD-causing p.Ser621Gly (p.S621G) mutation in cyclin F and its effect upon downstream Lys48-specific ubiquitylation in transfected Neuro-2A and SH-SY5Y cells. Expression of mutant cyclin FS621G caused increased Lys48-specific ubiquitylation of proteins in neuronal cells compared to cyclin FWT. Proteomic analysis of immunoprecipitated Lys48-ubiquitylated proteins from mutant cyclin FS621G-expressing cells identified proteins that clustered within the autophagy pathway, including sequestosome-1 (p62/SQSTM1), heat shock proteins, and chaperonin complex components. Examination of autophagy markers p62, LC3, and lysosome-associated membrane protein 2 (Lamp2) in cells expressing mutant cyclin FS621G revealed defects in the autophagy pathway specifically resulting in impairment in autophagosomal-lysosome fusion. This finding highlights a potential mechanism by which cyclin F interacts with p62, the receptor responsible for transporting ubiquitylated substrates for autophagic degradation. These findings demonstrate that ALS/FTD-causing mutant cyclin FS621G disrupts Lys48-specific ubiquitylation, leading to accumulation of substrates and defects in the autophagic machinery. This study also demonstrates that a single missense mutation in cyclin F causes hyper-ubiquitylation of proteins that can indirectly impair the autophagy degradation pathway, which is implicated in ALS pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Autophagy/genetics , Cyclins/genetics , Frontotemporal Dementia/genetics , Ubiquitination/genetics , Amyotrophic Lateral Sclerosis/complications , Cells, Cultured , Frontotemporal Dementia/complications , HEK293 Cells , Humans , Lysine/metabolism , Mutation, Missense/physiology
6.
Neurodegener Dis ; 17(6): 304-312, 2017.
Article in English | MEDLINE | ID: mdl-29131108

ABSTRACT

BACKGROUND: Mutations in the genes encoding the heterogeneous nuclear ribonucleoproteins hnRNPA1 and hnRNPA2/B1 have been reported in a multisystem proteinopathy that includes amyotrophic lateral sclerosis (ALS) and inclusion body myopathy associated with Paget disease of the bone and frontotemporal dementia. Mutations were also described in the prion-like domain of hnRNPA1 in patients with classic ALS. Another hnRNP protein, hnRNPA3, has been found to be associated with the ALS/frontotemporal dementia protein C9orf72. OBJECTIVE: To further assess their role in ALS, we examined these hnRNPs in spinal cord tissue from sporadic (SALS) and familial ALS (FALS) patients, including C9orf72 repeat expansion-positive patients, and controls. We also sought to determine the prevalence of HNRNPA1, HNRNPA2B1, and HNRNPA3 mutations in Australian ALS patients. METHODS: Immunostaining was used to assess hnRNPs in ALS patient spinal cords. Mutation analysis of the HNRNPA1, HNRNPA2B1, and HNRNPA3 genes was performed in FALS and of their prion-like domains in SALS patients. RESULTS: Immunostaining of spinal motor neurons of ALS patients with the C9orf72 repeat expansion showed significant mislocalisation of hnRNPA3, and no differences in hnRNPA1 or A2/B1 localisation, compared to controls. No novel or known mutations were identified in HNRNPA1, HNRNPA2B1, or HNRNPA3 in Australian ALS patients. CONCLUSIONS: hnRNPA3 pathology was identified in motor neurons of ALS patients with C9orf72 repeat expansions, implicating hnRNPA3 in the pathogenesis of C9orf72-linked ALS. hnRNPA3 warrants further investigation into the pathogenesis of ALS linked to C9orf72. This study also determined that HNRNP mutations are not a common cause of FALS and SALS in Australia.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Motor Neurons/pathology , Polymorphism, Single Nucleotide/genetics , Spinal Cord/pathology , Australia/epidemiology , C9orf72 Protein/genetics , Case-Control Studies , DNA Mutational Analysis , Female , Humans , Male
7.
NPJ Parkinsons Dis ; 10(1): 20, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212656

ABSTRACT

Parkinson's disease (PD) is a chronic neurodegenerative disorder that affects the motor system. Increasing evidence indicates that lysosomal dysfunction is pivotal in the pathogenesis of PD, typically characterized by dysregulation of sphingolipids in lysosomes. ATP-binding cassette subfamily A member 5 (ABCA5) is a lysosomal transporter that mediates the removal of excess sphingomyelin from lysosomes. We therefore investigated whether the expression levels of ABCA5 are associated with sphingomyelin levels and α-synuclein pathology in PD. Firstly, we undertook a comprehensive assessment of the six sphingolipid classes that are part of the lysosomal salvage pathway in the disease-affected amygdala and disease-unaffected visual cortex using liquid chromatography-mass spectrometry. We found that sphingomyelin levels were significantly increased in PD compared to controls and correlated with disease duration only in the amygdala, whereas, the five other sphingolipid classes were slightly altered or unaltered. Concomitantly, the expression of ABCA5 was upregulated in the PD amygdala compared to controls and correlated strongly with sphingomyelin levels. Using neuronal cells, we further verified that the expression of ABCA5 was dependent on cellular levels of sphingomyelin. Interestingly, sphingomyelin levels were strongly associated with α-synuclein in the amygdala and were related to α-synuclein expression. Finally, we revealed that sphingomyelin levels were also increased in PD plasma compared to controls, and that five identical sphingomyelin species were increased in both the brain and the plasma. When put together, these results suggest that in regions accumulating α-synuclein in PD, ABCA5 is upregulated to reduce lysosomal sphingomyelin levels potentially as a protective measure. This process may provide new targets for therapeutic intervention and biomarker development for PD.

8.
NPJ Parkinsons Dis ; 10(1): 123, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918434

ABSTRACT

Identifying biological factors which contribute to the clinical progression of heterogeneous motor and non-motor phenotypes in Parkinson's disease may help to better understand the disease process. Several lipid-related genetic risk factors for Parkinson's disease have been identified, and the serum lipid signature of Parkinson's disease patients is significantly distinguishable from controls. However, the extent to which lipid profiles are associated with clinical outcomes remains unclear. Untargeted high-performance liquid chromatography-tandem mass spectrometry identified >900 serum lipids in Parkinson's disease subjects at baseline (n = 122), and the potential for machine learning models using these lipids to predict motor and non-motor clinical scores after 2 years (n = 67) was assessed. Machine learning models performed best when baseline serum lipids were used to predict the 2-year future Unified Parkinson's disease rating scale part three (UPDRS III) and Geriatric Depression Scale scores (both normalised root mean square error = 0.7). Feature analysis of machine learning models indicated that species of lysophosphatidylethanolamine, phosphatidylcholine, platelet-activating factor, sphingomyelin, diacylglycerol and triacylglycerol were top predictors of both motor and non-motor scores. Serum lipids were overall more important predictors of clinical outcomes than subject sex, age and mutation status of the Parkinson's disease risk gene LRRK2. Furthermore, lipids were found to better predict clinical scales than a panel of 27 serum cytokines previously measured in this cohort (The Michael J. Fox Foundation LRRK2 Clinical Cohort Consortium). These results suggest that lipid changes may be associated with clinical phenotypes in Parkinson's disease.

9.
Biomolecules ; 12(11)2022 10 30.
Article in English | MEDLINE | ID: mdl-36358947

ABSTRACT

Genetic alterations in the LRRK2 gene, encoding leucine-rich repeat kinase 2, are a common risk factor for Parkinson's disease. How LRRK2 alterations lead to cell pathology is an area of ongoing investigation, however, multiple lines of evidence suggest a role for LRRK2 in lipid pathways. It is increasingly recognized that in addition to being energy reservoirs and structural entities, some lipids, including neural lipids, participate in signaling cascades. Early investigations revealed that LRRK2 localized to membranous and vesicular structures, suggesting an interaction of LRRK2 and lipids or lipid-associated proteins. LRRK2 substrates from the Rab GTPase family play a critical role in vesicle trafficking, lipid metabolism and lipid storage, all processes which rely on lipid dynamics. In addition, LRRK2 is associated with the phosphorylation and activity of enzymes that catabolize plasma membrane and lysosomal lipids. Furthermore, LRRK2 knockout studies have revealed that blood, brain and urine exhibit lipid level changes, including alterations to sterols, sphingolipids and phospholipids, respectively. In human LRRK2 mutation carriers, changes to sterols, sphingolipids, phospholipids, fatty acyls and glycerolipids are reported in multiple tissues. This review summarizes the evidence regarding associations between LRRK2 and lipids, and the functional consequences of LRRK2-associated lipid changes are discussed.


Subject(s)
Parkinson Disease , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Phosphorylation , Mutation , Sphingolipids , Phospholipids , Sterols
10.
Mol Neurodegener ; 15(1): 51, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32907630

ABSTRACT

BACKGROUND: Pathological forms of TAR DNA-binding protein 43 (TDP-43) are present in motor neurons of almost all amyotrophic lateral sclerosis (ALS) patients, and mutations in TDP-43 are also present in ALS. Loss and gain of TDP-43 functions are implicated in pathogenesis, but the mechanisms are unclear. While the RNA functions of TDP-43 have been widely investigated, its DNA binding roles remain unclear. However, recent studies have implicated a role for TDP-43 in the DNA damage response. METHODS: We used NSC-34 motor neuron-like cells and primary cortical neurons expressing wildtype TDP-43 or TDP-43 ALS associated mutants (A315T, Q331K), in which DNA damage was induced by etoposide or H2O2 treatment. We investigated the consequences of depletion of TDP-43 on DNA repair using small interfering RNAs. Specific non homologous end joining (NHEJ) reporters (EJ5GFP and EJ2GFP) and cells lacking DNA-dependent serine/threonine protein kinase (DNA-PK) were used to investigate the role of TDP-43 in DNA repair. To investigate the recruitment of TDP-43 to sites of DNA damage we used single molecule super-resolution microscopy and a co-immunoprecipitation assay. We also investigated DNA damage in an ALS transgenic mouse model, in which TDP-43 accumulates pathologically in the cytoplasm. We also examined fibroblasts derived from ALS patients bearing the TDP-43 M337V mutation for evidence of DNA damage. RESULTS: We demonstrate that wildtype TDP-43 is recruited to sites of DNA damage where it participates in classical NHEJ DNA repair. However, ALS-associated TDP-43 mutants lose this activity, which induces DNA damage. Furthermore, DNA damage is present in mice displaying TDP-43 pathology, implying an active role in neurodegeneration. Additionally, DNA damage triggers features typical of TDP-43 pathology; cytoplasmic mis-localisation and stress granule formation. Similarly, inhibition of NHEJ induces TDP-43 mis-localisation to the cytoplasm. CONCLUSIONS: This study reveals that TDP-43 functions in DNA repair, but loss of this function triggers DNA damage and is associated with key pathological features of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , DNA Damage/physiology , DNA End-Joining Repair/physiology , DNA-Binding Proteins/metabolism , Adult , Aged , Animals , Female , Humans , Male , Mice , Middle Aged , Motor Neurons/metabolism
11.
Article in English | MEDLINE | ID: mdl-31702460

ABSTRACT

Background: Ongoing disease gene discoveries continue to drive our understanding of the molecular and cellular mechanisms underlying ALS. Causative genes from 60% of ALS families have been identified using modern genetic techniques, but the causal gene defect is yet to be identified in the remaining 40% of families. These remaining families often do not follow true Mendelian inheritance patterns and are challenging to solve using traditional genetic analysis alone. In vitro and in vivo studies have become critical in assessing and validating these ALS candidate genes.Objectives: In this study, we aim to develop and validate the utility of an in vitro functional pipeline for the discovery and validation of novel ALS candidate genes.Methods: A panel of cell based-assays were applied to candidate genes to examine the presence/absence of known ALS pathologies in cell lines as well as human autopsy tissues. These include immunofluorescence, flow cytometry and western blotting to study toxicity, neuronal inclusion formation, interaction with TDP-43, aberrant protein degradation and accumulation in detergent-insoluble cellular fractions. Immunohistochemistry and immunofluorescence were also used to examine if candidates were present in neuronal inclusions from ALS patient spinal cord tissues.Results: The in vitro pipeline was applied to five candidate genes from an ALS family that is negative for known ALS gene mutations. Two candidates were prioritized as top candidates based on their capacity to induce known ALS cellular pathologies. In transfected cells, the variants in these two genes caused a significantly higher toxicity than wild type, formed detergent insoluble inclusions and was able to co-aggregate with TDP-43 in neuronal cells. The variants have also led to protein degradation defects. One of the candidates also co-localised with TDP-43-positive neuronal inclusions in sporadic ALS patient post-mortem tissues, a signature pathology of ALS.Discussion and conclusions: We have demonstrated the utility of a functional prioritization pipeline and successfully prioritized two novel candidate ALS genes. These genes, and its associated pathways, will be further investigated through the development of animal models to establish if there is support for its role in ALS. New ALS genes offer fresh diagnostic and therapeutic targets and tools for the generation of novel animal models to better understand disease biology and offer preclinical testing of candidate treatments for ALS in the future.

12.
Int J Biochem Cell Biol ; 89: 216-220, 2017 08.
Article in English | MEDLINE | ID: mdl-28652210

ABSTRACT

Cyclin F, encoded by CCNF, is the substrate recognition component of the Skp1-Cul1-F-box E3 ubiquitin ligase complex, SCFcyclin F. E3 ubiquitin ligases play a key role in ubiquitin-proteasome mediated protein degradation, an essential component of protein homeostatic mechanisms within the cell. By recognising and regulating the availability of several protein substrates, SCFcyclin F plays a role in regulating various cellular processes including replication and repair of DNA and cell cycle checkpoint control. Cyclin F dysfunction has been implicated in various forms of cancer and CCNF mutations were recently linked to familial and sporadic amyotrophic lateral sclerosis and frontotemporal dementia, offering a new lead to understanding the pathogenic mechanisms underlying neurodegeneration. In this review, we evaluate the current literature on the function of cyclin F with an emphasis on its roles in cancer and neurodegeneration.


Subject(s)
Cyclins/metabolism , Neoplasms/metabolism , Neurodegenerative Diseases/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cyclins/chemistry , Cyclins/genetics , Gene Expression Regulation , Humans , Neoplasms/pathology , Neurodegenerative Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL