Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Cell ; 152(3): 599-611, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23374352

ABSTRACT

Tumor cells have high-energetic and anabolic needs and are known to adapt their metabolism to be able to survive and keep proliferating under conditions of nutrient stress. We show that PKCζ deficiency promotes the plasticity necessary for cancer cells to reprogram their metabolism to utilize glutamine through the serine biosynthetic pathway in the absence of glucose. PKCζ represses the expression of two key enzymes of the pathway, PHGDH and PSAT1, and phosphorylates PHGDH at key residues to inhibit its enzymatic activity. Interestingly, the loss of PKCζ in mice results in enhanced intestinal tumorigenesis and increased levels of these two metabolic enzymes, whereas patients with low levels of PKCζ have a poor prognosis. Furthermore, PKCζ and caspase-3 activities are correlated with PHGDH levels in human intestinal tumors. Taken together, this demonstrates that PKCζ is a critical metabolic tumor suppressor in mouse and human cancer.


Subject(s)
Adenocarcinoma/metabolism , Adenoma/metabolism , Colonic Neoplasms/metabolism , Protein Kinase C/metabolism , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism , Animals , Biosynthetic Pathways , Cell Transformation, Neoplastic , Glucose/metabolism , Humans , Mice , Serine/biosynthesis , Specific Pathogen-Free Organisms , Stress, Physiological
2.
J Clin Lab Anal ; 33(9): e23001, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31441123

ABSTRACT

BACKGROUND: Identification and characterization of genetic variants and their effects on human health may allow to establish relationships between genetic background and susceptibility to developing cardiovascular diseases. LDLR and PCSK9 polymorphisms have been associated with higher lipid levels and risk of cardiovascular diseases. Thus, the main aim of this study was to evaluate genotype distribution and relative allelic frequency of LDLR rs5925 (1959C > T) and PCSK9 rs505151 (23968 A > G) genetic variants and their effects on lipid levels of healthy subjects from northern Chile. METHODS: A total of 178 healthy individuals were recruited for this study. The genotyping of rs5925 (LDLR) and rs505151 (PCSK9) polymorphisms was performed by PCR-RFLP and qPCR, respectively. In addition, glucose and lipid levels were determined and associated with the genetic data. RESULTS: Genotype distribution for LDLR rs5925 polymorphism was as follows: CC = 19%; CT = 53%; and TT = 28% (HWE: χ2  = 0.80; P = .37), and for PCSK9 rs505151 genetic variant was as follows: AA = 93%; AG = 7%; and GG = 0% (HWE: χ2  = 0.22; P = .64). The frequency of T (rs5925) and G (rs505151) mutated alleles was 0.55 and 0.03, respectively. Data showed that individuals carrying LDLR mutated allele (T) presented lower values of total cholesterol, triglycerides, and LDL-cholesterol when compared to CC homozygous genotype (P < .05). Subgroup analysis revealed that women carrying the PCSK9 mutated allele (G) exhibited higher values of total cholesterol, triglycerides, HDL-C, and LDL-C when compared to male group carrying the same genotype (P < .05). CONCLUSIONS: The effect of LDLR rs5925 and PCSK9 rs505151 gene polymorphisms on lipid levels is associated with gender among healthy subjects from northern Chile.


Subject(s)
Genetic Predisposition to Disease , Lipids/blood , Polymorphism, Single Nucleotide/genetics , Proprotein Convertase 9/genetics , Receptors, LDL/genetics , Adult , Chile , Female , Gene Frequency/genetics , Humans , Male , Young Adult
3.
EMBO J ; 27(16): 2181-93, 2008 Aug 20.
Article in English | MEDLINE | ID: mdl-18650932

ABSTRACT

The atypical PKC-interacting protein, Par-4, inhibits cell survival and tumorigenesis in vitro, and its genetic inactivation in mice leads to reduced lifespan, enhanced benign tumour development and low-frequency carcinogenesis. Here, we demonstrate that Par-4 is highly expressed in normal lung but reduced in human lung cancer samples. We show, in a mouse model of lung tumours, that the lack of Par-4 dramatically enhances Ras-induced lung carcinoma formation in vivo, acting as a negative regulator of Akt activation. We also demonstrate in cell culture, in vivo, and in biochemical experiments that Akt regulation by Par-4 is mediated by PKCzeta, establishing a new paradigm for Akt regulation and, likely, for Ras-induced lung carcinogenesis, wherein Par-4 is a novel tumour suppressor.


Subject(s)
Lung Neoplasms/enzymology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/metabolism , Receptors, Thrombin/metabolism , Animals , Cell Line , Cell Nucleus/enzymology , Enzyme Activation , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lung/enzymology , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Phosphorylation , Protein Binding , Protein Kinase C/metabolism , Receptors, Thrombin/deficiency , Receptors, Thrombin/genetics , Signal Transduction , Transcription Factor RelA/metabolism , X-Linked Inhibitor of Apoptosis Protein
4.
Proc Natl Acad Sci U S A ; 106(31): 12962-7, 2009 Aug 04.
Article in English | MEDLINE | ID: mdl-19470463

ABSTRACT

Prostate cancer is one of the most common neoplasias in men. The tumor suppressor Par-4 is an important negative regulator of the canonical NF-kappaB pathway and is highly expressed in prostate. Here we show that Par-4 expression is lost in a high percentage of human prostate carcinomas, and this occurs in association with phosphatase and tensin homolog deleted from chromosome 10 (PTEN) loss. Par-4 null mice, similar to PTEN-heterozygous mice, only develop benign prostate lesions, but, importantly, concomitant Par-4 ablation and PTEN-heterozygosity lead to invasive prostate carcinoma in mice. This strong tumorigenic cooperation is anticipated in the preneoplastic prostate epithelium by an additive increase in Akt activation and a synergistic stimulation of NF-kappaB. These results establish the cooperation between Par-4 and PTEN as relevant for the development of prostate cancer and implicate the NF-kappaB pathway as a critical event in prostate tumorigenesis.


Subject(s)
Apoptosis Regulatory Proteins/physiology , NF-kappa B/metabolism , PTEN Phosphohydrolase/physiology , Prostatic Neoplasms/pathology , Adenocarcinoma/pathology , Animals , Apoptosis Regulatory Proteins/genetics , Humans , Male , Mice , Mutation , Neoplasm Invasiveness , PTEN Phosphohydrolase/genetics , Protein Kinase C/physiology , Proto-Oncogene Proteins c-akt/metabolism
5.
Front Genet ; 12: 640956, 2021.
Article in English | MEDLINE | ID: mdl-34616421

ABSTRACT

Characterization of allelic variants is relevant to demonstrate associations among genetic background and susceptibility to develop cardiovascular diseases, which are the main cause of death in Chile. Association of APOB, APOE, and MTHFR polymorphisms with higher lipid levels and the risk of developing hypertension and cardiovascular diseases have been described. Thus, the aim of this study was to assess genotype distribution and relative allelic frequency of ApoB rs693, ApoE rs7412, ApoE rs429358, MTHFR rs1801131, and MTHFR rs1801133 allelic variants and their effects on lipid profile in young healthy men and women from Northern Chile. A group of 193 healthy subjects were enrolled for this study. Genotyping of rs693 (APOB), rs7412 and rs429358 (APOE), and rs1801131 and rs1801133 (MTHFR) polymorphisms were performed by real time PCR. In addition, lipid profiles were determined and associated to genetic data. The genotype distribution was APOB rs693 (CC = 37%, CT = 41%, and TT = 22%), APOE rs7412/rs429358 (E4 = 0.06, E3 = 0.91, and E2 = 0.03), MTHFR rs1801131 (AA = 57%, AC = 30%, and CC = 13%), and MTHFR rs1801133 (CC = 20%, CT = 47%, and TT = 33%). The association of the genetic variants with plasma lipid levels showed that women, but not men, carrying APOB mutated allele (T) and Apo E4 allele presented lower values of total cholesterol when compared with C/C homozygous genotype or E3 allele, respectively (p < 0.05). In addition, a subgroup analysis revealed that ApoB C/C homozygous women exhibited higher values of HDL-C when compared with men carrying identical genotype (p < 0.01). On the other hand, women carrying E4 allele exhibited lower values of triglycerides when compared with male carrying identical genotype (p < 0.05). Finally, women carrying mutate allele (C) for MTHFR rs1801131 showed lower levels of triglycerides when compared with A/A homozygous genotype (p < 0.05) and lower levels of LDL-C for MTHFR rs1801133 in females carrying (T) allele when compared with males carrying identical genotype (p < 0.05). In summary, the present data showed that APOB, APOE, and MTHFR single nucleotide polymorphisms are associated to lipid levels in a gender-dependent manner among healthy subjects from Northern Chile, especially in women.

6.
Plant Physiol Biochem ; 148: 103-113, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31954280

ABSTRACT

Trivalent aluminum ions (Al3+) in acidic soils are a major constraint for crop productivity inhibiting root elongation and promoting cell death. Al3+-toxicity has adverse biochemical and physiological effects on plant root growth. Sulfur is an essential macronutrient assimilated from the soil in the form of sulfate. However, the implication of sulfate nutritional status in the modulation of short-term Al3+-tolerance mechanisms in plant roots has not been previously reported. Here, we evaluated the effects of increased sulfate supply on short-term Al3+-toxicity in roots of Lolium perenne, measuring Al, Ca, Mg and S uptake, lipid peroxidation, total SOD activity, and transcriptional levels of Cu/Zn and Fe-SOD genes. First, the nitrogen sulfur ratio (N/S) in the TF nutrient solutions used in this study were computed to confirm that L. perenne plants were grown in sulfate deficiency (120 µM), optimal supply (240 µM), or overdoses conditions (360 µM), without affecting dry root biomass. Sulfate supplementation (>240 µM, and N/S ratio < 16) played a significant protection to Al3+-stress that prevents morphological changes in root tips, inhibits lipid peroxidation and differentially up-regulates total SOD activity, due changes in SOD gene expression. The results support the importance of sulfate nutritional status, on plant tissue homeostasis, enhancing the physiological tolerance mechanisms modulating lipid peroxidation damage induced by short-term Al3+-toxicity.


Subject(s)
Lolium , Plant Roots , Stress, Physiological , Sulfates , Lipid Peroxidation/drug effects , Lolium/drug effects , Nutrients/pharmacology , Plant Roots/drug effects , Soil/chemistry , Sulfates/pharmacology
7.
Circ Res ; 100(7): 1071-8, 2007 Apr 13.
Article in English | MEDLINE | ID: mdl-17332428

ABSTRACT

Regulating the balance between synthesis and proteasomal degradation of cellular proteins is essential for tissue growth and maintenance, but the critical pathways regulating protein ubiquitination and degradation are incompletely defined. Although participation of calpain calcium-activated proteases in post-necrotic myocardial autolysis is well characterized, their importance in homeostatic turnover of normal cardiac tissue is controversial. Hence, we evaluated the consequences of physiologic calpain (calcium-activated protease) activity in cultured cardiomyocytes and unstressed mouse hearts. Comparison of in vitro proteolytic activities of cardiac-expressed calpains 1 and 2 revealed calpain 1, but not calpain 2, activity at physiological calcium concentrations. Physiological calpain 1 activation was evident in adenoviral transfected cultured cardiomyocytes as proteolysis of specific substrates, generally increased protein ubiquitination, and accelerated protein turnover, that were each inhibited by coexpression of the inhibitor protein calpastatin. Conditional forced expression of calpain 1, but not calpain 2, in mouse hearts demonstrated substrate-specific proteolytic activity under basal conditions, with hyperubiquitination of cardiac proteins and increased 26S proteasome activity. Loss of myocardial calpain activity by forced expression of calpastatin diminished ubiquitination of 1 or more specific myocardial proteins, without affecting overall ubiquitination or proteasome activity, and resulted in a progressive dilated cardiomyopathy characterized by accumulation of intracellular protein aggregates, formation of autophagosomes, and degeneration of sarcomeres. Thus, calpain 1 is upstream of, and necessary for, ubiquitination and proteasomal degradation of a subset of myocardial proteins whose abnormal accumulation produces autophagosomes and degeneration of cardiomyocytes with functional decompensation.


Subject(s)
Calpain/deficiency , Homeostasis , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Proteins/metabolism , Animals , Calcium/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Calpain/antagonists & inhibitors , Calpain/genetics , Calpain/metabolism , Cardiomyopathy, Dilated/chemically induced , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Cells, Cultured , Heart Failure/etiology , Heart Failure/pathology , Mice , Mice, Transgenic , Microscopy, Electron , Myocardium/metabolism , Myocardium/pathology , Osmolar Concentration , Proteasome Endopeptidase Complex/metabolism , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Substrate Specificity , Transfection , Ubiquitin/metabolism
8.
Mol Cell Biol ; 29(1): 104-15, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18955501

ABSTRACT

Gene alterations in tumor cells that confer the ability to grow under nutrient- and mitogen-deficient conditions constitute a competitive advantage that leads to more-aggressive forms of cancer. The atypical protein kinase C (PKC) isoform, PKCzeta, has been shown to interact with the signaling adapter p62, which is important for Ras-induced lung carcinogenesis. Here we show that PKCzeta-deficient mice display increased Ras-induced lung carcinogenesis, suggesting a new role for this kinase as a tumor suppressor in vivo. We also show that Ras-transformed PKCzeta-deficient lungs and embryo fibroblasts produced more interleukin-6 (IL-6), which we demonstrate here plays an essential role in the ability of Ras-transformed cells to grow under nutrient-deprived conditions in vitro and in a mouse xenograft system in vivo. We also show that PKCzeta represses histone acetylation at the C/EBPbeta element in the IL-6 promoter. Therefore, PKCzeta, by controlling the production of IL-6, is a critical signaling molecule in tumorigenesis.


Subject(s)
Interleukin-6/genetics , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Promoter Regions, Genetic/genetics , Protein Kinase C/metabolism , Animals , Cell Line , Cell Proliferation , Cell Transformation, Neoplastic/pathology , Gene Expression Regulation, Neoplastic , Genes, ras , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , NF-kappa B/metabolism , Protein Kinase C/deficiency , Serum , Transcription, Genetic
9.
Cancer Cell ; 13(4): 343-54, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18394557

ABSTRACT

The balance between cell death and survival, two critical aspects of oncogenic transformation, determines the outcome of tumorigenesis. Nuclear factor-kappaB (NF-kappaB) is a critical regulator of survival; it is induced by the oncogene Ras and, when inhibited, accounts for the cell death response of Ras-transformed cells. Here, we show that the signaling adaptor p62 is induced by Ras, its levels are increased in human tumors, and it is required for Ras-induced survival and transformation. p62-/- mice are resistant to Ras-induced lung adenocarcinomas. p62 is necessary for Ras to trigger IkappaB kinase (IKK) through the polyubiquitination of tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6), and its deficiency produces increased reactive oxygen species (ROS) levels, which account for the enhanced cell death and reduced tumorigenicity of Ras in the absence of p62.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Transformation, Neoplastic , DNA-Binding Proteins/metabolism , NF-kappa B/metabolism , Neoplasms/metabolism , Neoplasms/pathology , RNA-Binding Proteins/metabolism , Animals , Cell Line, Tumor , Cell Survival , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Reactive Oxygen Species/metabolism , Signal Transduction , Transcription, Genetic , ras Proteins/metabolism
10.
Hum Mol Genet ; 16(22): 2740-50, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17720980

ABSTRACT

Galphaq, encoded by the human GNAQ gene, is an effector subunit of the Gq heterotrimeric G-protein and the convergence point for signaling of multiple Gq-coupled neurohormonal receptors. To identify naturally occurring mutations that could modify GNAQ transcription, we examined genomic DNA isolated from 355 normal subjects for genetic variants in transcription factor binding motifs. Of seven variants identified, the most common was a GC to TT dinucleotide substitution at -694/-695 (allele frequency of 0.467 in Caucasians and 0.329 in African Americans) within a GC-rich domain containing consensus binding sites for Sp-1, c-rel and EGR-1. In promoter-reporter analyses, the TT substitution increased promoter activity in cultured neonatal rat cardiac myocytes and human HEK fibroblasts by approximately 30% at baseline and after stimulation with phorbol ester. Two other relatively common polymorphisms, -173G/A and -168G/A, did not affect promoter activity. Since altered expression/activity of Galphaq is implicated in heart disease, we re-sequenced the GNAQ promoter in 1052 prospectively followed heart failure patients. The TT variant was not increased in heart failure, but was associated with decreased survival time among African Americans, with an adjusted RR of death/cardiac transplant of 1.95 (95% CI = 1.21-3.13) for heterozygotes and 2.4 (95% CI = 1.36-4.26) for homozygotes. Gel mobility shift assays showed that this GC/TT substitution eliminated Sp-1 binding without affecting c-rel or EGR-1 binding to this promoter fragment. Thus, the GNAQ -694/-695 promoter polymorphism alters transcription factor binding, increases promoter activity and adversely affects outcome in human heart failure.


Subject(s)
Black or African American/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , Gene Expression Regulation , Heart Failure/mortality , Polymorphism, Genetic , Promoter Regions, Genetic/genetics , Transcription, Genetic , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Binding Sites , Case-Control Studies , Early Growth Response Protein 1 , Electrophoretic Mobility Shift Assay , Female , GC Rich Sequence , Gene Frequency , Heart Failure/epidemiology , Heart Failure/genetics , Humans , Male , Middle Aged , Rats , Survival Rate
11.
J Biol Chem ; 281(3): 1442-8, 2006 Jan 20.
Article in English | MEDLINE | ID: mdl-16291751

ABSTRACT

Up-regulation of myocardial Nix and BNip3 is associated with apoptosis in cardiac hypertrophy and ischemia, respectively. To identify mechanisms of gene regulation for these critical cardiac apoptosis effectors, the determinants of Nix and BNip3 promoter activation were elucidated by luciferase reporter gene expression in neonatal rat cardiac myocytes. BNip3 transcription was increased by hypoxia but not by phenylephrine (10 microM), angiotensin II (100 nM), or isoproterenol (10 microM). In contrast, Nix transcription was increased by phenylephrine but not by isoproterenol, angiotensin II, or hypoxia. Since phenylephrine stimulates cardiomyocyte hypertrophy via protein kinase C (PKC), the effects of phorbol myristate acetate (PMA, 10 nM for 24 h) and adenoviral PKC expression were assessed. PMA and PKC alpha, but not PKC epsilon or dominant negative PKC alpha, increased Nix transcription. Multiple Nix promoter GC boxes bound transcription factor Sp-1, and basal and PMA- or PKC alpha-stimulated Nix promoter activity was suppressed by mithramycin inhibition of Sp1-DNA interactions. In vivo determinants of Nix expression were evaluated in Nix promoter-luciferase (NixP) transgenic mice that underwent ischemia-reperfusion (1 h/24 h), transverse aortic coarctation (TAC), or cross-breeding with the G(q) overexpression model of hypertrophy. Luciferase activity increased in G alpha(q)-NixP hearts 3.2 +/- 0.4-fold and in TAC hearts 2.8 +/- 0.4-fold but did not increase with infarction-reperfusion. NixP activity was proportional to the extent of TAC hypertrophy and was inhibited by mithramycin. These studies revealed distinct mechanisms of transcriptional regulation for cardiac Nix and BNip3. BNip3 is hypoxia-inducible, whereas Nix expression was induced by G alpha(q)-mediated hypertrophic stimuli. PKC alpha, a G(q) effector, transduced Nix transcriptional induction via Sp1.


Subject(s)
Apoptosis/physiology , Heart/physiology , Heart/physiopathology , Membrane Proteins/metabolism , Membrane Proteins/physiology , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/physiology , Proto-Oncogene Proteins/physiology , Animals , Genes, Reporter , Heart Ventricles/physiopathology , Luciferases/genetics , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondrial Proteins/genetics , Muscle Cells/physiology , Promoter Regions, Genetic , Proto-Oncogene Proteins/genetics , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Stress, Mechanical , Transcription, Genetic , Transfection , Ventricular Function
12.
J Cardiovasc Pharmacol ; 46(3): 255-61, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16116328

ABSTRACT

Administration of the beta-adrenergic agonist isoproterenol results in cardiac apoptosis. The effect of short-term beta-adrenergic stimulation by isoproterenol on the activity of plasma, lung, and left ventricular (LV) angiotensin I-converting enzyme (ACE) activity and its association with the development of cardiac apoptosis was investigated. beta-Adrenergic stimulation for 24 hours produced an early increase only in the proapoptotic proteins bax and bcl-XS without changes in the levels of the antiapoptotic protein bcl-XL. The ratio between these bcl family proteins was indicative of apoptosis and correlated with an early and significant increase (300%) in DNA laddering. However, after 5 days of the beta-adrenergic stimulation, the ratio changed in favor of antiapoptotic proteins and correlated with the absence of DNA fragmentation. In addition, LV and plasma ACE activities increased markedly with isoproterenol over the study period up to 5 days. ACE activity also regulated expression of the antiapoptotic gene bcl-XL. The administration of perindopril (an ACE inhibitor) prevented the observed increase in bax and bcl-XS levels and attenuated (50% decrease, P<0.05) the effect of isoproterenol on DNA fragmentation. Thus, early and transient cardiac apoptosis triggered by the beta-adrenergic agonist isoproterenol is reversed in the presence of perindopril.


Subject(s)
Adrenergic beta-Agonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Apoptosis/drug effects , Heart/drug effects , Myocardium/cytology , Perindopril/pharmacology , Animals , DNA Fragmentation , Isoproterenol/pharmacology , Lung/enzymology , Male , Myocardium/enzymology , Peptidyl-Dipeptidase A/metabolism , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley , bcl-2-Associated X Protein/metabolism , bcl-X Protein/biosynthesis , bcl-X Protein/metabolism
13.
J Biol Chem ; 278(40): 38484-94, 2003 Oct 03.
Article in English | MEDLINE | ID: mdl-12881532

ABSTRACT

Cells adapt to hyperosmotic conditions by several mechanisms, including accumulation of sorbitol via induction of the polyol pathway. Failure to adapt to osmotic stress can result in apoptotic cell death. In the present study, we assessed the role of aldose reductase, the key enzyme of the polyol pathway, in cardiac myocyte apoptosis. Hyperosmotic stress, elicited by exposure of cultured rat cardiac myocytes to the nonpermeant solutes sorbitol and mannitol, caused identical cell shrinkage and adaptive hexose uptake stimulation. In contrast, only sorbitol induced the polyol pathway and triggered stress pathways as well as apoptosis-related signaling events. Sorbitol resulted in activation of the extracellular signal-regulated kinase (ERK), p54 c-Jun N-terminal kinase (JNK), and protein kinase B. Furthermore, sorbitol treatment resulting in induction and activation of aldose reductase, decreased expression of the antiapoptotic protein Bcl-xL, increased DNA fragmentation, and glutathione depletion. Apoptosis was attenuated by aldose reductase inhibition with zopolrestat and also by glutathione replenishment with N-acetylcysteine. In conclusion, our data show that hypertonic shrinkage of cardiac myocytes alone is not sufficient to induce cardiac myocyte apoptosis. Hyperosmolarity-induced cell death is sensitive to the nature of the osmolyte and requires induction of aldose reductase as well as a decrease in intracellular glutathione levels.


Subject(s)
Aldehyde Reductase/metabolism , Apoptosis , Mannitol/pharmacology , Myocardium/pathology , Protein Serine-Threonine Kinases , Sorbitol/pharmacology , Animals , Animals, Newborn , Biological Transport , Blotting, Western , Cells, Cultured , DNA Fragmentation , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Glucose/pharmacology , Glutathione/metabolism , JNK Mitogen-Activated Protein Kinases , Mitogen-Activated Protein Kinases/metabolism , Myocardium/cytology , Myocardium/metabolism , Osmosis , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Sorbitol/metabolism , Time Factors , bcl-X Protein , p38 Mitogen-Activated Protein Kinases
14.
Rev. chil. cardiol ; 17(2): 102-14, abr.-jun. 1998. ilus
Article in Spanish | LILACS | ID: lil-231651

ABSTRACT

Recientes estudios han establecido que las fuerzas mecánicas producen efectos importantes en la estructura y función de los distintos tipos celulares del sistema cardiovascular. El estrés mecánico no sólo afecta las propiedades mecánicas de los cardiomiocitos sino que también a la homeostasis de otras células cardíacas y a la composición y estructura de la matriz extracelular. La estimulación mecánica crónica, clínicamente representada por la hípertensión arterial, produce el desarrollo de hipertrofia y fibrosis, procesos celulares centrales de la remodelación cardíaca patológica, ya sea en forma directa o a través de la liberación y/o producción de diversas substancias neuroendocrinas y factores de crecimiento locales. Aunque no se han identificado y caracterizado del todo aquellos elementos que sensan y transducen molecularmente dichos cambios mecánicos, en esta revisión se recopilan los últimos avances en la mecanotransducción cardíaca y su relación con el proceso de remodelación cardíaca patológica, los cuales abren nuevas expectivas farmacoterapéuticas


Subject(s)
Myocardium/cytology , Stress, Mechanical , Angiotensin II , Extracellular Matrix , Hypertrophy, Left Ventricular , Integrins , Ion Channels , Somatomedins , Transforming Growth Factor beta
15.
Rev. chil. cardiol ; 20(4): 351-364, nov.-dic. 2001. ilus
Article in Spanish | LILACS | ID: lil-314868

ABSTRACT

La apoptosis junto a la paraptosis y la necrosis constituyen las principales formas de muerte celular conocidas hasta la fecha. La apoptosis se caracteriza por una disminución del volumen celular y a laformación de cuerpos apoptóticos, manteniendo íntegra la membrana plasmática, evitando así el vaciamiento del contenido intracelular y el desarrollo de un proceso inflamatorio. En el cardiomiocito se han descrito dos vías apoptóticas: la tipo I (extrínseca o mediada a través de receptores de muerte) y la tipo II (intrínseca o mitocondrial). Ambas vías convergen en la caspasa 3, que es la responsable de la ejecución final de la apoptosis. Existe apoptosis en varias enfermedades cardíacas, como por ejemplo en la insuficiencia cardíaca de origen isquémico y no isquémico, en el infarto al miocardio y en las arritmias. Debido a que los cardiomiocitos son incapaces de proliferar, su muerte conduce a la pérdida de masa cardíaca, disminución de la capacidad contráctil del miocardio y remodelamiento. Dado que la apoptosis del cardiomiocito contribuye directamente a un deterioro funcional irreversible del corazón y favorece el desarrollo de diversas cardiopatías, el conocimiento de sus mecanismos y blancos moleculares proporcionará novedosas estrategias terapéuticas para la prevención y tratamiento de las diferentes cardiopatías


Subject(s)
Humans , Apoptosis , Heart Diseases , Apoptosis , Caspases , Norepinephrine
SELECTION OF CITATIONS
SEARCH DETAIL