Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Cell ; 187(13): 3165-3186, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38906093

ABSTRACT

Patterned morphologies, such as segments, spirals, stripes, and spots, frequently emerge during embryogenesis through self-organized coordination between cells. Yet, complex patterns also emerge in adults, suggesting that the capacity for spontaneous self-organization is a ubiquitous property of biological tissues. We review current knowledge on the principles and mechanisms of self-organized patterning in embryonic tissues and explore how these principles and mechanisms apply to adult tissues that exhibit features of patterning. We discuss how and why spontaneous pattern generation is integral to homeostasis and healing of tissues, illustrating it with examples from regenerative biology. We examine how aberrant self-organization underlies diverse pathological states, including inflammatory skin disorders and tumors. Lastly, we posit that based on such blueprints, targeted engineering of pattern-driving molecular circuits can be leveraged for synthetic biology and the generation of organoids with intricate patterns.


Subject(s)
Body Patterning , Animals , Humans , Embryonic Development , Homeostasis , Organoids/metabolism , Aging
2.
Nature ; 618(7966): 808-817, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37344645

ABSTRACT

Niche signals maintain stem cells in a prolonged quiescence or transiently activate them for proper regeneration1. Altering balanced niche signalling can lead to regenerative disorders. Melanocytic skin nevi in human often display excessive hair growth, suggesting hair stem cell hyperactivity. Here, using genetic mouse models of nevi2,3, we show that dermal clusters of senescent melanocytes drive epithelial hair stem cells to exit quiescence and change their transcriptome and composition, potently enhancing hair renewal. Nevus melanocytes activate a distinct secretome, enriched for signalling factors. Osteopontin, the leading nevus signalling factor, is both necessary and sufficient to induce hair growth. Injection of osteopontin or its genetic overexpression is sufficient to induce robust hair growth in mice, whereas germline and conditional deletions of either osteopontin or CD44, its cognate receptor on epithelial hair cells, rescue enhanced hair growth induced by dermal nevus melanocytes. Osteopontin is overexpressed in human hairy nevi, and it stimulates new growth of human hair follicles. Although broad accumulation of senescent cells, such as upon ageing or genotoxic stress, is detrimental for the regenerative capacity of tissue4, we show that signalling by senescent cell clusters can potently enhance the activity of adjacent intact stem cells and stimulate tissue renewal. This finding identifies senescent cells and their secretome as an attractive therapeutic target in regenerative disorders.


Subject(s)
Hair , Melanocytes , Signal Transduction , Animals , Mice , Hair/cytology , Hair/growth & development , Hair Follicle/cytology , Hair Follicle/physiology , Hyaluronan Receptors/metabolism , Melanocytes/cytology , Melanocytes/metabolism , Nevus/metabolism , Nevus/pathology , Osteopontin/metabolism , Stem Cells/cytology
3.
J Am Acad Dermatol ; 88(2): 395-403, 2023 02.
Article in English | MEDLINE | ID: mdl-36370907

ABSTRACT

BACKGROUND: Vitiligo is a chronic autoimmune disorder characterized by depigmented patches of the skin. OBJECTIVE: To evaluate the efficacy and safety of ritlecitinib, an oral JAK3 (Janus kinase)/TEC (tyrosine kinase expressed in hepatocelluar carcinoma) inhibitor, in patients with active nonsegmental vitiligo in a phase 2b trial (NCT03715829). METHODS: Patients were randomized to once-daily oral ritlecitinib ± 4-week loading dose (200/50 mg, 100/50 mg, 30 mg, or 10 mg) or placebo for 24 weeks (dose-ranging period). Patients subsequently received ritlecitinib 200/50 mg daily in a 24-week extension period. The primary efficacy endpoint was percent change from baseline in Facial-Vitiligo Area Scoring Index at week 24. RESULTS: A total of 364 patients were treated in the dose-ranging period. Significant differences from placebo in percent change from baseline in Facial-Vitiligo Area Scoring Index were observed for the ritlecitinib 50 mg groups with (-21.2 vs 2.1; P < .001) or without (-18.5 vs 2.1; P < .001) a loading dose and ritlecitinib 30 mg group (-14.6 vs 2.1; P = .01). Accelerated improvement was observed after treatment with ritlecitinib 200/50 mg in the extension period (n = 187). No dose-dependent trends in treatment-emergent or serious adverse events were observed across the 48-week treatment. LIMITATIONS: Patients with stable vitiligo only were excluded. CONCLUSIONS: Oral ritlecitinib was effective and well tolerated over 48 weeks in patients with active nonsegmental vitiligo.


Subject(s)
Vitiligo , Humans , Vitiligo/drug therapy , Vitiligo/pathology , Double-Blind Method , Skin/pathology , Janus Kinases , Protein Kinase Inhibitors/adverse effects , Chronic Disease , Treatment Outcome
4.
J Chem Inf Model ; 62(12): 3023-3033, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35679463

ABSTRACT

Here, we show that alchemical free energy calculations can quantitatively compute the effect of mutations at the protein-protein interface. As a test case, we have used the protein complex formed by the small Rho-GTPase CDC42 and its downstream effector PAK1, a serine/threonine kinase. Notably, the CDC42/PAK1 complex offers a wealth of structural, mutagenesis, and binding affinity data because of its central role in cellular signaling and cancer progression. In this context, we have considered 16 mutations in the CDC42/PAK1 complex and obtained excellent agreement between computed and experimental data on binding affinity. Importantly, we also show that a careful analysis of the side-chain conformations in the mutated amino acids can considerably improve the computed estimates, solving issues related to sampling limitations. Overall, this study demonstrates that alchemical free energy calculations can conveniently be integrated into the design of experimental mutagenesis studies.


Subject(s)
Protein Serine-Threonine Kinases , p21-Activated Kinases , Mutagenesis , Mutation , Proteins/genetics , p21-Activated Kinases/genetics
5.
PLoS Genet ; 14(3): e1007290, 2018 03.
Article in English | MEDLINE | ID: mdl-29584722

ABSTRACT

PIKfyve, VAC14, and FIG4 form a complex that catalyzes the production of PI(3,5)P2, a signaling lipid implicated in process ranging from lysosome maturation to neurodegeneration. While previous studies have identified VAC14 and FIG4 mutations that lead to both neurodegeneration and coat color defects, how PIKfyve regulates melanogenesis is unknown. In this study, we sought to better understand the role of PIKfyve in melanosome biogenesis. Melanocyte-specific PIKfyve knockout mice exhibit greying of the mouse coat and the accumulation of single membrane vesicle structures in melanocytes resembling multivesicular endosomes. PIKfyve inhibition blocks melanosome maturation, the processing of the melanosome protein PMEL, and the trafficking of the melanosome protein TYRP1. Taken together, these studies identify a novel role for PIKfyve in controlling the delivery of proteins from the endosomal compartment to the melanosome, a role that is distinct from the role of PIKfyve in the reformation of lysosomes from endolysosomes.


Subject(s)
Melanosomes/metabolism , Phosphatidylinositol 3-Kinases/physiology , Animals , Flavoproteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Melanins/metabolism , Membrane Proteins , Mice , Mice, Knockout , Organelles/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide Phosphatases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Protein Transport
6.
PLoS Genet ; 13(7): e1006913, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28753606

ABSTRACT

Genes and pathways that allow cells to cope with oncogene-induced stress represent selective cancer therapeutic targets that remain largely undiscovered. In this study, we identify a RhoJ signaling pathway that is a selective therapeutic target for BRAF mutant cells. RhoJ deletion in BRAF mutant melanocytes modulates the expression of the pro-apoptotic protein BAD as well as genes involved in cellular metabolism, impairing nevus formation, cellular transformation, and metastasis. Short-term treatment of nascent melanoma tumors with PAK inhibitors that block RhoJ signaling halts the growth of BRAF mutant melanoma tumors in vivo and induces apoptosis in melanoma cells in vitro via a BAD-dependent mechanism. As up to 50% of BRAF mutant human melanomas express high levels of RhoJ, these studies nominate the RhoJ-BAD signaling network as a therapeutic vulnerability for fledgling BRAF mutant human tumors.


Subject(s)
Melanoma/genetics , Proto-Oncogene Proteins B-raf/genetics , bcl-Associated Death Protein/biosynthesis , p21-Activated Kinases/genetics , rho GTP-Binding Proteins/genetics , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Enzyme Inhibitors/administration & dosage , Gene Expression Regulation, Neoplastic/drug effects , Humans , Melanocytes/drug effects , Melanocytes/pathology , Melanoma/drug therapy , Melanoma/pathology , Mutation , Neoplasm Metastasis , Nevus/genetics , Nevus/pathology , Signal Transduction/drug effects , bcl-Associated Death Protein/genetics , p21-Activated Kinases/antagonists & inhibitors
8.
bioRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38106189

ABSTRACT

Cutaneous melanomas are clinically and histologically heterogeneous. Most display activating mutations in Braf or Nras and complete loss of function of one or more tumor suppressor genes. Mouse models that replicate such mutations produce fast-growing, pigmented tumors. However, mice that combine Braf activation with only heterozygous loss of Pten also produce tumors and, as we show here, in an Albino background this occurs even with Braf activation alone. Such tumors arise rarely, grow slowly, and express low levels of pigmentation genes. The timing of their appearance was consistent with a single step stochastic event, but no evidence could be found that it required de novo mutation, suggesting instead the involvement of an epigenetic transition. Single-cell transcriptomic analysis revealed such tumors to be heterogeneous, including a minor cell type we term LNM ( L ow-pigment, N eural- and extracellular M atrix-signature) that displays gene expression resembling "neural crest"-like cell subsets detected in the fast-growing tumors of more heavily-mutated mice, as well as in human biopsy and xenograft samples. We provide evidence that LNM cells pre-exist in normal skin, are expanded by Braf activation, can transition into malignant cells, and persist with malignant cells through multiple rounds of transplantation. We discuss the possibility that LNM cells not only serve as a pre-malignant state in the production of some melanomas, but also as an important intermediate in the development of drug resistance.

9.
J Med Chem ; 67(12): 10401-10424, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38866385

ABSTRACT

We previously reported trisubstituted pyrimidine lead compounds, namely, ARN22089 and ARN25062, which block the interaction between CDC42 with its specific downstream effector, a PAK protein. This interaction is crucial for the progression of multiple tumor types. Such inhibitors showed anticancer efficacy in vivo. Here, we describe a second class of CDC42 inhibitors with favorable drug-like properties. Out of the 25 compounds here reported, compound 15 (ARN25499) stands out as the best lead compound with an improved pharmacokinetic profile, increased bioavailability, and efficacy in an in vivo PDX tumor mouse model. Our results indicate that these CDC42 inhibitors represent a promising chemical class toward the discovery of anticancer drugs, with ARN25499 as an additional lead candidate for preclinical development.


Subject(s)
Antineoplastic Agents , cdc42 GTP-Binding Protein , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Humans , Mice , cdc42 GTP-Binding Protein/antagonists & inhibitors , cdc42 GTP-Binding Protein/metabolism , Cell Line, Tumor , Drug Discovery , Structure-Activity Relationship , Xenograft Model Antitumor Assays , Pyrimidines/pharmacokinetics , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Female
10.
Cancer Cell ; 42(6): 1051-1066.e7, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38861924

ABSTRACT

PD-1 blockade unleashes potent antitumor activity in CD8+ T cells but can also promote immunosuppressive T regulatory (Treg) cells, which may worsen the response to immunotherapy. Tumor-Treg inhibition is a promising strategy to improve the efficacy of checkpoint blockade immunotherapy; however, our understanding of the mechanisms supporting tumor-Tregs during PD-1 immunotherapy is incomplete. Here, we show that PD-1 blockade increases tumor-Tregs in mouse models of melanoma and metastatic melanoma patients. Mechanistically, Treg accumulation is not caused by Treg-intrinsic inhibition of PD-1 signaling but depends on an indirect effect of activated CD8+ T cells. CD8+ T cells produce IL-2 and colocalize with Tregs in mouse and human melanomas. IL-2 upregulates the anti-apoptotic protein ICOS on tumor-Tregs, promoting their accumulation. Inhibition of ICOS signaling before PD-1 immunotherapy improves control over immunogenic melanoma. Thus, interrupting the intratumor CD8+ T cell:Treg crosstalk represents a strategy to enhance the therapeutic efficacy of PD-1 immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Immune Checkpoint Inhibitors , Immunotherapy , Inducible T-Cell Co-Stimulator Protein , Interleukin-2 , Melanoma , Programmed Cell Death 1 Receptor , T-Lymphocytes, Regulatory , Animals , CD8-Positive T-Lymphocytes/immunology , T-Lymphocytes, Regulatory/immunology , Humans , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Melanoma/immunology , Melanoma/therapy , Melanoma/drug therapy , Inducible T-Cell Co-Stimulator Protein/metabolism , Immunotherapy/methods , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Interleukin-2/immunology , Mice, Inbred C57BL , Signal Transduction , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Cell Line, Tumor
11.
Exp Dermatol ; 22(3): 202-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23489423

ABSTRACT

Aldehyde dehydrogenase 1A1 (ALDH1A1), an enzyme that catalyses the conversion of lipid aldehydes to lipid carboxylic acids, plays pleiotropic roles in UV-radiation resistance, melanogenesis and stem cell maintenance. In this study, a combination of RNAi and pharmacologic approaches were used to determine which ALDH1A1 substrates and products regulate melanogenesis. Initial studies revealed that neither the UV-induced lipid aldehyde 4-hydroxy-2-nonenal nor the ALDH1A1 product all-trans retinoic acid appreciably induced melanogenesis. In contrast, both the ALDH1A1 substrate 9-cis retinal and its corresponding product 9-cis retinoic acid potently induced the accumulation of MITF mRNA, Tyrosinase mRNA and melanin. ALDH1A1 depletion inhibited the ability of 9-cis retinal but not 9-cis retinoic acid to stimulate melanogenesis, indicating that ALDH1A1 regulates melanogenesis by catalysing the conversion of 9-cis retinal to 9-cis retinoic acid. The addition of potent ALDH1A inhibitors (cyanamide or Angeli's salt) suppressed Tyrosinase and MITF mRNA accumulation in vitro and also melanin accumulation in skin equivalents, suggesting that 9-cis retinoids regulate melanogenesis in the intact epidermis. Taken together, these studies not only identify cyanamide as a potential novel treatment for hyperpigmentary disorders, but also identify 9-cis retinoic acid as a pigment stimulatory agent that may have clinical utility in the treatment of hypopigmentary disorders, such as vitiligo.


Subject(s)
Aldehyde Dehydrogenase/metabolism , Melanins/metabolism , Skin Pigmentation/physiology , Skin/metabolism , Tretinoin/metabolism , Aldehyde Dehydrogenase 1 Family , Alitretinoin , Cell Line, Tumor , Cells, Cultured , Cyanamide/pharmacology , Humans , Melanocytes/drug effects , Melanocytes/metabolism , Melanocytes/pathology , Melanoma/metabolism , Melanoma/pathology , Microphthalmia-Associated Transcription Factor/metabolism , Monophenol Monooxygenase/metabolism , Retinal Dehydrogenase , Skin/drug effects , Skin/pathology , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Tretinoin/pharmacology
12.
J Drugs Dermatol ; 12(5): 563-7, 2013 May.
Article in English | MEDLINE | ID: mdl-23652952

ABSTRACT

BACKGROUND: The treatment of hyperpigmentation in darker-skinned patients (Fitzpatrick skin phototypes III-VI) has remained challenging for dermatologists. No studies have been conducted on hyperpigmentation under the eyes, axilla, and neck in darker-skinned patients. This survey was designed to assess current treatments of hyperpigmentation in these areas. MATERIALS/METHODS: With approval from the institutional review board at the University of California, Irvine, an electronic survey was sent to practicing dermatologists that contained 18 questions regarding the approach to evaluating and treating hyperpigmentation under the eyes, in the axilla, and along the neck. RESULTS: Fifty dermatologists completed the survey, and 46 (92%) reported treating patients with darker skin. The ethnic groups treated were Latino (97.8%), African American (97.8%), Middle Eastern (77.6%), and Asian (88.9%). Thirty-six reported treating patients with hyperpigmentation under the eyes, and 22 (61.1%) thought the hyperpigmentation was a result of idiopathic increase in melanin deposition. Forty-two responded to treating hyperpigmentation in the axilla, most of whom thought it was related to acanthosis nigricans (69.0%) or contact dermatitis (59.5%). Forty responded to treating hyperpigmentation on the neck, most of whom treated the condition with hydroquinone (66%). Treatments for these 3 areas were not found to be effective. CONCLUSIONS: Hyperpigmentation under the eyes, under the arms, or on the neck is a significant problem in darker-skinned patients that is refractory to currently available treatments, highlighting the necessity of developing treatment approaches directed toward this population. Two cases of hyperpigmentation on the neck are presented, describing a new entity that primarily affects dark-skinned individuals.


Subject(s)
Hyperpigmentation/therapy , Practice Patterns, Physicians'/statistics & numerical data , Skin Pigmentation , Adult , Aged , Axilla , Dermatology/statistics & numerical data , Ethnicity , Face , Female , Health Care Surveys , Humans , Hyperpigmentation/etiology , Melanins/metabolism , Neck
13.
bioRxiv ; 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37645823

ABSTRACT

Punch grafting procedures, where small pieces of normal skin are transplanted into stable vitiligo patches, results in repigmentation in only half of patients treated, yet the factors that determine whether a patient responds to treatment or not are still unknown. Reflectance confocal microscopy (RCM) is adept at visualizing melanocyte migration and epidermal changes over large areas while multiphoton microscopy (MPM) can capture metabolic changes in keratinocytes. With the overall goal of identifying optical biomarkers for early treatment response, we followed 12 vitiligo lesions undergoing punch grafting. Dendritic melanocytes adjacent to the graft site were observed before clinical evidence of repigmentation in treatment responsive patients but not in treatment non-responsive patients, suggesting that the early visualization of melanocytes is indicative of a therapeutic response. Keratinocyte metabolic changes in vitiligo skin adjacent to the graft site also correlated with treatment response, indicating that a keratinocyte microenvironment that more closely resembles normal skin is more hospitable for migrating melanocytes. Taken together, these studies suggest that successful melanocyte transplantation requires both the introduction of new melanocytes and modulation of the local tissue microenvironment.

14.
J Med Chem ; 66(8): 5981-6001, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37026468

ABSTRACT

CDC42 GTPases (RHOJ, CDC42, and RHOQ) are overexpressed in multiple tumor types and activate pathways critical for tumor growth, angiogenesis, and metastasis. Recently, we reported the discovery of a novel lead compound, ARN22089, which blocks the interaction of CDC42 GTPases with specific downstream effectors. ARN22089 blocks tumor growth in BRAF mutant mouse melanoma models and patient-derived xenografts (PDXs) in vivo. ARN22089 also inhibits tumor angiogenesis in three-dimensional vascularized microtumor models in vitro. Notably, ARN22089 belongs to a novel class of trisubstituted pyrimidines. Based on these results, we describe an extensive structure-activity relationship of ∼30 compounds centered on ARN22089. We discovered and optimized two novel inhibitors (27, ARN25062, and 28, ARN24928), which are optimal back-up/follow-up leads with favorable drug-like properties and in vivo efficacy in PDX tumors. These findings further demonstrate the potential of this class of CDC42/RHOJ inhibitors for cancer treatment, with lead candidates ready for advanced preclinical studies.


Subject(s)
Neoplasms , rho GTP-Binding Proteins , Animals , Humans , Mice , Cell Line, Tumor , Neovascularization, Pathologic , p21-Activated Kinases/metabolism , Protein Binding
15.
J Biol Chem ; 286(14): 12509-23, 2011 Apr 08.
Article in English | MEDLINE | ID: mdl-21317285

ABSTRACT

Recent studies implicate a role for WD repeat domain, phosphoinositide-interacting 1 (WIPI1) in the biogenesis of melanosomes, cell type-specific lysosome-related organelles. In this study, we determined that WIPI1, an ATG18 homologue that is shown to localize to both autophagosomes and early endosomes, inhibited mammalian target of rapamycin (MTOR) signaling, leading to increased transcription of melanogenic enzymes and the formation of mature melanosomes. WIPI1 suppressed the target of rapamycin complex 1 (TORC1) activity, resulting in glycogen synthase kinase 3ß inhibition, ß-Catenin stabilization, and increased transcription of microphthalmia transcription factor and its target genes. WIPI1-depleted cells accumulated stage I melanosomes but lacked stage III-IV melanosomes. Inhibition of TORC1 by rapamycin treatment resulted in the accumulation of stage IV melanosomes but not autophagosomes, whereas starvation resulted in the formation of autophagosomes but not melanin accumulation. Taken together, our studies define a distinct role for WIPI1 and TORC1 signaling in controlling the transcription of melanogenic enzymes and melanosome maturation, a process that is distinct from starvation-induced autophagy.


Subject(s)
Carrier Proteins/metabolism , Melanosomes/metabolism , Transcription Factors/metabolism , Autophagy-Related Proteins , Carrier Proteins/genetics , Cell Line, Tumor , Chromatin Immunoprecipitation , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Melanosomes/ultrastructure , Membrane Proteins , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Polymerase Chain Reaction , Protein Binding , RNA Interference , Signal Transduction/drug effects , Sirolimus/pharmacology , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , beta Catenin/genetics , beta Catenin/metabolism
16.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: mdl-35653192

ABSTRACT

Vitiligo is an autoimmune skin disease characterized by the destruction of melanocytes by autoreactive CD8+ T cells. Melanocyte destruction in active vitiligo is mediated by CD8+ T cells, but the persistence of white patches in stable disease is poorly understood. The interaction between immune cells, melanocytes, and keratinocytes in situ in human skin has been difficult to study due to the lack of proper tools. We combine noninvasive multiphoton microscopy (MPM) imaging and single-cell RNA-Seq (scRNA-Seq) to identify subpopulations of keratinocytes in stable vitiligo patients. We show that, compared with nonlesional skin, some keratinocyte subpopulations are enriched in lesional vitiligo skin and shift their energy utilization toward oxidative phosphorylation. Systematic investigation of cell-to-cell communication networks show that this small population of keratinocyte secrete CXCL9 and CXCL10 to potentially drive vitiligo persistence. Pseudotemporal dynamics analyses predict an alternative differentiation trajectory that generates this new population of keratinocytes in vitiligo skin. Further MPM imaging of patients undergoing punch grafting treatment showed that keratinocytes favoring oxidative phosphorylation persist in nonresponders but normalize in responders. In summary, we couple advanced imaging with transcriptomics and bioinformatics to discover cell-to-cell communication networks and keratinocyte cell states that can perpetuate inflammation and prevent repigmentation.


Subject(s)
Vitiligo , CD8-Positive T-Lymphocytes , Humans , Keratinocytes , Melanocytes , Skin
17.
Cell Rep ; 39(1): 110641, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385746

ABSTRACT

CDC42 family GTPases (RHOJ, RHOQ, CDC42) are upregulated but rarely mutated in cancer and control both the ability of tumor cells to invade surrounding tissues and the ability of endothelial cells to vascularize tumors. Here, we use computer-aided drug design to discover a chemical entity (ARN22089) that has broad activity against a panel of cancer cell lines, inhibits S6 phosphorylation and MAPK activation, activates pro-inflammatory and apoptotic signaling, and blocks tumor growth and angiogenesis in 3D vascularized microtumor models (VMT) in vitro. Additionally, ARN22089 has a favorable pharmacokinetic profile and can inhibit the growth of BRAF mutant mouse melanomas and patient-derived xenografts in vivo. ARN22089 selectively blocks CDC42 effector interactions without affecting the binding between closely related GTPases and their downstream effectors. Taken together, we identify a class of therapeutic agents that influence tumor growth by modulating CDC42 signaling in both the tumor cell and its microenvironment.


Subject(s)
Endothelial Cells , Neoplasms , Animals , Endothelial Cells/metabolism , Humans , Mice , Neoplasms/drug therapy , Neovascularization, Pathologic , Signal Transduction , Tumor Microenvironment , cdc42 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/metabolism
18.
PLoS Genet ; 4(12): e1000298, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19057677

ABSTRACT

Melanin protects the skin and eyes from the harmful effects of UV irradiation, protects neural cells from toxic insults, and is required for sound conduction in the inner ear. Aberrant regulation of melanogenesis underlies skin disorders (melasma and vitiligo), neurologic disorders (Parkinson's disease), auditory disorders (Waardenburg's syndrome), and opthalmologic disorders (age related macular degeneration). Much of the core synthetic machinery driving melanin production has been identified; however, the spectrum of gene products participating in melanogenesis in different physiological niches is poorly understood. Functional genomics based on RNA-mediated interference (RNAi) provides the opportunity to derive unbiased comprehensive collections of pharmaceutically tractable single gene targets supporting melanin production. In this study, we have combined a high-throughput, cell-based, one-well/one-gene screening platform with a genome-wide arrayed synthetic library of chemically synthesized, small interfering RNAs to identify novel biological pathways that govern melanin biogenesis in human melanocytes. Ninety-two novel genes that support pigment production were identified with a low false discovery rate. Secondary validation and preliminary mechanistic studies identified a large panel of targets that converge on tyrosinase expression and stability. Small molecule inhibition of a family of gene products in this class was sufficient to impair chronic tyrosinase expression in pigmented melanoma cells and UV-induced tyrosinase expression in primary melanocytes. Isolation of molecular machinery known to support autophagosome biosynthesis from this screen, together with in vitro and in vivo validation, exposed a close functional relationship between melanogenesis and autophagy. In summary, these studies illustrate the power of RNAi-based functional genomics to identify novel genes, pathways, and pharmacologic agents that impact a biological phenotype and operate outside of preconceived mechanistic relationships.


Subject(s)
Genomics , Melanocytes/metabolism , RNA, Small Interfering/genetics , Signal Transduction , Skin Diseases/genetics , Skin Pigmentation/genetics , Animals , Cell Line , Genome, Human , Humans , Melanins/genetics , Melanins/metabolism , Mice , Mice, Inbred C57BL , RNA Interference , Skin Diseases/metabolism
19.
J Gastrointest Oncol ; 11(1): 45-54, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32175104

ABSTRACT

BACKGROUND: Genetic analysis of gastrointestinal malignancies shows a great number of mutations. Most mutations found in gastric tumors are also found in colorectal and esophageal tumors. The challenge remains to identify mutations that distinguish gastric from colorectal and esophageal cancers. Using open-access cancer genomics data, we sought to identify mutations that accounted for the unique phenotypic features of gastric tumors. METHODS: Thirteen cancer genomics datasets with demographic, clinical, and genetic variables were analyzed. Pathologic stage and histology were compared between subjects with and without a specific mutated gene using two-sample t-tests, adjusted for multiple gene testing. Sequence convergence and functional impact of genetic mutations were analyzed using permutation test and PolyPhen-2 score. RESULTS: Analysis included 1,915 subjects with valid pathologic stage and histology. Mean age was 68 years (SD =10). About 54% were female. The most common race was Caucasian (37%) while minorities were rare with high rates of missing data (44%). Pathologic stage: 20% stage I, 35% stage II, 31% stage III, and 14% stage IV. Anatomical location: 30% gastric, 59% colorectal, and 11% esophageal. Histology of gastric cancer: 61% intestinal, 23% diffuse, 15% mixed, and 1% missing. Two mutated genes-CDH1, RHOA-distinguished gastric from colorectal and esophageal tumors. These mutations were highly specific to diffuse histology and advanced stages of gastric tumors and recurrent in transcribed regions known to impact protein functions. CONCLUSIONS: CDH1 and RHOA regulate cell-cell adhesion which is vital to cell growth and proliferation. Identification of these potential driver mutations is critical to better define therapeutic vulnerabilities for the rational design of gastric cancer therapies.

20.
Int J Dermatol ; 59(2): 253-256, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31286499

ABSTRACT

BACKGROUND: Clinical trial data for dupilumab, a monoclonal antibody against the interleukin-4 receptor (IL-4Rα), have shown that it is safe and effective for the treatment of moderate to severe atopic dermatitis in patients whose disease is resistant to other therapies. However, little real-world experience with dupilumab use has been reported thus far. The aim of this retrospective study was to assess overall outcomes in adult patients with atopic dermatitis (AD) treated with dupilumab. METHODS: A retrospective review of electronic medical records was conducted for patients treated with dupilumab in the Department of Dermatology at the University of California, Irvine. RESULTS: We analyzed the medical records of 77 AD patients who received dupilumab according to standard dosing and had at least one documented follow-up visit. In 66 patients (86%), dupilumab improved clinical disease severity, with 23 patients (30%) experiencing complete clearance on dupilumab. Dupilumab was generally well-tolerated and caused no serious adverse events. The most common side effects included dry eyes, conjunctivitis, and keratitis. The most common reason for discontinuation of treatment was lack of substantial clinical improvement or progression of disease severity, followed by ophthalmologic side effects. CONCLUSIONS: Overall, dupilumab was well-tolerated and resulted in clinical improvement in our patient population. These results provide additional important information on the safety and utility of dupilumab treatment for moderate to severe atopic dermatitis in the real-world clinical setting.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Dermatitis, Atopic/drug therapy , Dermatologic Agents/therapeutic use , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Antibodies, Monoclonal, Humanized/adverse effects , Boron Compounds/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Calcineurin Inhibitors/therapeutic use , Combined Modality Therapy , Conjunctivitis/chemically induced , Dermatitis, Atopic/radiotherapy , Dermatologic Agents/adverse effects , Disease Progression , Drug Therapy, Combination , Dry Eye Syndromes/chemically induced , Female , Humans , Keratitis/chemically induced , Male , Middle Aged , Retrospective Studies , Severity of Illness Index , Treatment Outcome , Ultraviolet Therapy
SELECTION OF CITATIONS
SEARCH DETAIL