Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(21): 11328-11336, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32393620

ABSTRACT

Across the Upper Missouri River Basin, the recent drought of 2000 to 2010, known as the "turn-of-the-century drought," was likely more severe than any in the instrumental record including the Dust Bowl drought. However, until now, adequate proxy records needed to better understand this event with regard to long-term variability have been lacking. Here we examine 1,200 y of streamflow from a network of 17 new tree-ring-based reconstructions for gages across the upper Missouri basin and an independent reconstruction of warm-season regional temperature in order to place the recent drought in a long-term climate context. We find that temperature has increasingly influenced the severity of drought events by decreasing runoff efficiency in the basin since the late 20th century (1980s) onward. The occurrence of extreme heat, higher evapotranspiration, and associated low-flow conditions across the basin has increased substantially over the 20th and 21st centuries, and recent warming aligns with increasing drought severities that rival or exceed any estimated over the last 12 centuries. Future warming is anticipated to cause increasingly severe droughts by enhancing water deficits that could prove challenging for water management.

2.
Sci Rep ; 10(1): 19740, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33184415

ABSTRACT

Groundwater is a critical resource in the Grand Canyon region, supplying nearly all water needs for residents and millions of visitors. Additionally, groundwater discharging at hundreds of spring locations in and near Grand Canyon supports important ecosystems in this mostly arid environment. The security of groundwater supplies is of critical importance for both people and ecosystems in the region and the potential for changes to groundwater systems from projected climate change is a cause for concern. In this study, we analyze recent historical and projected precipitation and temperature data for the Grand Canyon region. Projected climate scenarios are then used in Soil Water Balance groundwater infiltration simulations to understand the state-of-the-science on projected changes to groundwater resources in the area. Historical climate data from 1896 through 2019 indicate multi-decadal cyclical patterns in both precipitation and temperature for most of the time period. Since the 1970s, however, a significant rising trend in temperature is observed in the area. All 10-year periods since 1993 are characterized by both below average precipitation and above average temperature. Downscaled and bias-corrected precipitation and temperature output from 97 CMIP5 global climate models for the water-year 2020-2099 time period indicate projected precipitation patterns similar to recent historical (water-year 1951-2015) data. Projected temperature for the Grand Canyon area, however, is expected to rise by as much as 3.4 °C by the end of the century, relative to the recent historical average. Integrating the effects of projected precipitation and temperature changes on groundwater infiltration, simulation results indicate that > 76% of future decades will experience average potential groundwater infiltration less than that of the recent historical period.

3.
Sci Rep ; 9(1): 6303, 2019 04 19.
Article in English | MEDLINE | ID: mdl-31004108

ABSTRACT

Paleohydrologic reconstructions of water-year streamflow for 105 sites across the western United States (West) were used to compute the likelihood (risk) of regime (wet/dry state) shifts given the length of time in a specific regime and for a specified time in the future. The spatial variability of risks was examined and indicates that regime shift risks are variable across the West. The Pacific-Northwest region is associated with low risks of regime shifts, indicating persistence controlled by prevalent low frequency variability in flow (periods above 64 years). Other areas in the West indicate higher risks compared to the Pacific-Northwest due to flow variability in the mid-to-high frequencies (periods of 32 to 16 years). Understanding risks of regime shifts provides critical information for improved management of water supplies, particularly during periods of extended low flows. The method presented here has global applicability as a decision-making framework for risk-based planning and management.

4.
Ground Water ; 55(4): 506-518, 2017 07.
Article in English | MEDLINE | ID: mdl-28208211

ABSTRACT

The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low-flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin-wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin-wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions.


Subject(s)
Climate Change , Groundwater , Colorado , Mexico , Rivers , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL