Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters

Publication year range
1.
BMC Oral Health ; 24(1): 607, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38789946

ABSTRACT

BACKGROUND: This study aimed to evaluate dentin wear and biological performance of desensitizing materials. METHODS: Seventy bovine root dentin blocks were sectioned. Half of the surface of each specimen was untreated (control) and the other half was immersed in EDTA and treated with the following desensitizing materials: placebo varnish (PLA), fluoride varnish (FLU), sodium fluoride (NaF) varnish + sodium trimetaphosphate (TMP), universal adhesive (SBU), S-PRG varnish (SPRG), biosilicate (BIOS), and amelotin solution (AMTN). After application, the specimens were submitted to an erosive-abrasive challenge and the wear analyzed by optical profilometer. Serial dilutions of extracts obtained from the culture medium containing discs impregnated with those desensitizers were applied on fibroblasts and odontoblasts-like cells cultures. Cytotoxicity and production of total protein (TP) by colorimetric assays were determined after 24 h. Data were statistically analyzed using Kruskal-Wallis, Dunn's, One-way ANOVA and Tukey tests (p ≤ 0.05). RESULTS: No dentin wear was observed only for SBU. The lowest dentin wear was observed for AMTN and TMP. Cell viability was significantly reduced after treatment with undiluted extracts of PLA, FLU, TMP and SBU in fibroblasts and TMP and SBU in odontoblast-like cells. SPRG, BIOS and AMTN were cytocompatible at all dilutions tested. Considering TP results, no statistical difference was observed among the groups and high levels for TP were observed after TMP and FLU treatments. CONCLUSIONS: Universal adhesive system may protect dentin with opened tubules from wear after challenge. Extracts of adhesive and fluoride varnishes presented cytotoxic mainly on fibroblasts. The enamel protein may be a future alternative to treat dentin with opened tubules because it may cause low wear under erosive-abrasive challenge with low cytotoxic effects.


Subject(s)
Dentin Desensitizing Agents , Dentin , Sodium Fluoride , Animals , Cattle , Dentin Desensitizing Agents/pharmacology , Sodium Fluoride/pharmacology , Dentin/drug effects , Fluorides, Topical/pharmacology , Fibroblasts/drug effects , Cell Survival/drug effects , Tooth Wear , Materials Testing , Polyphosphates/pharmacology
2.
Oral Dis ; 29(7): 2845-2853, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36458549

ABSTRACT

OBJECTIVES: Current methods for periodontal regeneration do not promote collagen fiber insertions into new bone and cementum. We used a pig wound model to screen different functionalized collagen membranes in promoting periodontal reattachment to root surfaces. METHODS: Treatment groups included (1) control with no membranes, (2) collagen-coated membranes, (3) membranes with insulin-like growth factor-1 (IGF-1), (4) membranes with amelotin, or (5) membranes attached with calcium phosphate cement (CPC), or with CPC combined with IGF-1. Flap procedures were performed on mandibular and maxillary premolars of each pig. RESULTS: Histomorphometric, micro-CT, and clinical measurements obtained at 4 and 12 weeks after surgery showed cementum formation on denuded roots and reformation of alveolar bone, indicating that the pig model can model healing responses in periodontal regeneration. Calcium phosphate cement simplified procedures by eliminating the need for sutures and improved regeneration of alveolar bone (p < 0.05) compared with other treatments. There was a reduction (p < 0.05) of PD only for the IGF group. Large observed variances between treatment groups indicated that a priori power analyses should be conducted to optimize statistical analysis. CONCLUSIONS: Pigs can model discrete elements of periodontal healing using collagen-based, functionalized membranes. Screening indicates that membrane anchorage with calcium phosphate cements improve regeneration of alveolar bone.


Subject(s)
Alveolar Bone Loss , Insulin-Like Growth Factor I , Animals , Swine , Bone Regeneration , Collagen , Dental Cementum , Calcium Phosphates/pharmacology , Guided Tissue Regeneration, Periodontal/methods , Periodontal Ligament , Alveolar Bone Loss/drug therapy
3.
Clin Oral Investig ; 27(3): 1265-1276, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36305964

ABSTRACT

OBJECTIVES: This study investigates the dentin permeability (by hydraulic conductance) and tubule occlusion (by confocal and scanning electron microscopies) of in-office desensitizing materials. MATERIALS AND METHODS: Bovine dentin blocks were immersed in EDTA to open dentinal tubules. Placebo varnish (PLA), fluoride varnish (FLU), NaF 5% + 5% nanoparticulate sodium trimetaphosphate varnish (TMP), universal adhesive system (SBU), S-PRG filler varnish (SPRG), Biosilicate (BIOS), and amelotin (AMTN) solution were the materials tested. After application, the specimens underwent an erosive-abrasive challenge. Dentin permeability was evaluated at T0 (initial), T1 (after treatment), and T2 (after challenge). Confocal and scanning electron microscopy (SEM) were used to evaluate, respectively, length and number of dentinal tubule occlusions and opened dentinal tubules, after challenge. Permeability and SEM data were analyzed by two-way repeated measures ANOVA and Tukey's tests. Confocal data were analyzed by one-way ANOVA, Tukey's test, and Kruskal-Wallis and Dunn's tests. Spearman and Pearson's correlation tests were also used. Significance level was set at 5%. RESULTS: At T1, the AMTN group showed the lowest permeability value, following the increasing order at T2: AMTN = SBU < BIOS = SPRG < TMP < FLU < PLA. The SBU group had the highest value of occluded dentinal tubule length. The AMTN group presented more occluded dentinal tubules compared to PLA and FLU. AMTN and SBU had the lowest values of opened dentin tubules. Results showed a negative correlation between the analyses. CONCLUSION: The SBU and AMTN solution were more effective in reducing dentin permeability by occluding dentin tubules. CLINICAL RELEVANCE: All materials reduced permeability after challenge, except fluoride varnish.


Subject(s)
Dentin Desensitizing Agents , Dentin Sensitivity , Animals , Cattle , Dentin , Dentin Desensitizing Agents/therapeutic use , Dentin Permeability , Dentin Sensitivity/drug therapy , Fluorides/pharmacology , Fluorides, Topical/pharmacology , Microscopy, Electron, Scanning , Polyesters
4.
Odontology ; 110(2): 223-230, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34807345

ABSTRACT

Dissolution of hydroxyapatite from the tooth structure at low pH can lead to the irreversible destruction of enamel and dentin, which if left untreated can result in pain and tooth loss. Hydroxyapatite toothpastes contain hydroxyapatite particles in micro- or nanocrystalline form that have been shown to deposit and restore demineralized enamel surfaces. As such, they are currently being explored as a fluoride-free anti-caries agent. This narrative review article aims to summarize the recent findings of the research investigating the remineralization potential of HAP toothpaste in vitro, in situ and in vivo, as well as some other applications in dentistry.


Subject(s)
Dental Caries , Toothpastes , Cariostatic Agents/chemistry , Cariostatic Agents/pharmacology , Dental Caries/prevention & control , Durapatite/chemistry , Fluorides/pharmacology , Humans , Tooth Remineralization , Toothpastes/chemistry
5.
Clin Oral Implants Res ; 32(4): 448-459, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33455002

ABSTRACT

OBJECTIVE: To investigate the early bone formation in beagles with mini-lateral window sinus floor elevation and simultaneous implant placement. MATERIAL AND METHODS: Six beagles were selected for the split-mouth design procedures. In each animal, one maxillary recess received a 5 mm-diameter mini-round lateral osteotomy (test group), and the contralateral maxillary recess received a large rectangular osteotomy (10 mm long and 8 mm wide), (control group). Simultaneous implant installation was executed on bilateral maxillary recesses. Tetracycline and calcein dyes were administered on the 14th, 13th days and the 4th, 3rd days prior to sacrifice, respectively. After 8 weeks of healing, the beagles were euthanized for fluorescent labeling and histomorphometric analyses. RESULTS: In both groups, new bone formation initiated from the circumferential native bone of the maxillary recesses and extended toward the central sub-recess cavities. The maxillary recesses with the mini-window procedures exhibited superior mineral apposition rate, bone formation rate, and the percentage of new bone area to those of the group exposed to large osteotomy procedure (p < .05). While there was no significant difference in the value of bone-to-implant contact, the mini-window group displayed a tendency for an increase in this aspect (p > .05). Bone formation rate and new bone amount were not statistically correlated with bone-to-implant contact (p > .05). CONCLUSION: The hypothesis that mini-lateral window sinus floor elevation with simultaneous implant placement would improve early new bone formation in augmented sinus compared with large lateral window procedure is accepted.


Subject(s)
Dental Implants , Sinus Floor Augmentation , Animals , Bone Transplantation , Dental Implantation, Endosseous , Dogs , Maxillary Sinus/diagnostic imaging , Maxillary Sinus/surgery , Osteogenesis
6.
Int J Mol Sci ; 22(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34830225

ABSTRACT

Biomineralization is a crucial process whereby organisms produce mineralized tissues such as teeth for mastication, bones for support, and shells for protection. Mineralized tissues are composed of hierarchically organized hydroxyapatite crystals, with a limited capacity to regenerate when demineralized or damaged past a critical size. Thus, the development of protein-based materials that act as artificial scaffolds to guide hydroxyapatite growth is an attractive goal both for the design of ordered nanomaterials and for tissue regeneration. In particular, amelogenin, which is the main protein that scaffolds the hierarchical organization of hydroxyapatite crystals in enamel, amelogenin recombinamers, and amelogenin-derived peptide scaffolds have all been investigated for in vitro mineral growth. Here, we describe uniaxial hydroxyapatite growth on a nanoengineered amelogenin scaffold in combination with amelotin, a mineral promoting protein present during enamel formation. This bio-inspired approach for hydroxyapatite growth may inform the molecular mechanism of hydroxyapatite formation in vitro as well as possible mechanisms at play during mineralized tissue formation.


Subject(s)
Amelogenin/chemistry , Biomimetic Materials/chemistry , Biomineralization/genetics , Dental Enamel Proteins/chemistry , Durapatite/chemistry , Nanostructures/chemistry , Amelogenin/genetics , Biomimetics/methods , Crystallization , Dental Enamel/chemistry , Dental Enamel Proteins/genetics , Humans , Nanotechnology/methods , Protein Engineering/methods , Protein Folding , Recombinant Proteins/chemistry , Tooth/chemistry
7.
Odontology ; 108(4): 532-544, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31955298

ABSTRACT

Follicular dendritic cell-secreted protein (FDC-SP) is secreted protein expressed in follicular dendritic cells, periodontal ligament and junctional epithelium (JE). Its expression could be controlled during inflammatory process of gingiva; however, responsible mechanism for gingival overgrowth and involvement of FDC-SP in clinical condition is still unclear. We hypothesized that JE-specific genes are associated with the initiation of drug-induced gingival enlargement (DIGE) called gingival overgrowth, and investigated the changes of JE-specific gene's expression and their localization in overgrown gingiva from the patients. Immunohistochemical analysis revealed that the FDC-SP localization was spread in overgrown gingival tissues. FDC-SP mRNA levels in GE1 and Ca9-22 cells were increased by time-dependent nifedipine treatments, similar to other JE-specific genes, such as Amelotin (Amtn) and Lamininß3 subunit (Lamß3), whereas type 4 collagen (Col4) mRNA levels were decreased. Immunocytochemical analysis showed that FDC-SP, AMTN, and Lamß3 protein levels were increased in GE1 and Ca9-22 cells. Transient transfection analyses were performed using luciferase constructs including various lengths of human FDC-SP gene promoter, nifedipine increased luciferase activities of -345 and -948FDC-SP constructs. These results raise the possibility that the nifedipine-induced FDC-SP may be related to the mechanism responsible for gingival overgrowth does not occur at edentulous jaw ridges.


Subject(s)
Dendritic Cells, Follicular , Gingival Overgrowth , Epithelial Attachment , Gingiva , Humans , Nifedipine
8.
J Cell Physiol ; 234(7): 11474-11489, 2019 07.
Article in English | MEDLINE | ID: mdl-30488439

ABSTRACT

Junctional epithelium (JE) demonstrates biological responses with the rapid turnover of gingival epithelial cells. The state occurs in inflammation of gingiva and wound healing after periodontal therapy. To understand the underlying mechanisms and to maintain homeostasis of JE, it is important to investigate roles of JE-specific genes. Amelotin (AMTN) is localized at JE and regulated by inflammatory cytokines and apoptotic factors that represent a critical role of AMTN in stabilizing the dentogingival attachment, which is an entrance of oral bacteria. In this study, we demonstrated that the AMTN gene expression was regulated by SNAI2 and transforming growth factor ß1 (TGFß1)-induced epithelial-mesenchymal transition (EMT) that occurs in wound healing and fibrosis during chronic inflammation. SNAI2 downregulated AMTN gene expression via SNAI2 bindings to E-boxes (E2 and E4) in the mouse AMTN gene promoter in EMT of gingival epithelial cells. Meanwhile, TGFß1-induced AMTN gene expression was attenuated by SNAI2 and TGFß1-induced SNAI2, without inhibition of the TGFß1-Smad3 signaling pathway. Moreover, SNAI2 small interfering RNA (siRNA) rescued SNAI2-induced downregulation of AMTN gene expression, and TGFß1-induced AMTN gene expression was potentiated by SNAI2 siRNA. Taken together, these data demonstrated that AMTN gene expression in the promotion of EMT was downregulated by SNAI2. The inhibitory effect of AMTN gene expression was an independent feedback on the TGFß1-Smad3 signaling pathway, suggesting that the mechanism can be engaged in maintaining homeostasis of gingival epithelial cells at JE and the wound healing phase.


Subject(s)
Dental Enamel Proteins/metabolism , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/physiology , Snail Family Transcription Factors/metabolism , Transforming Growth Factor beta1/pharmacology , Animals , Cell Line , Dental Enamel Proteins/genetics , Down-Regulation , Gene Expression Regulation/drug effects , Gingiva/cytology , Mice , Snail Family Transcription Factors/genetics , Transfection
9.
Cells Tissues Organs ; 205(2): 63-71, 2018.
Article in English | MEDLINE | ID: mdl-29550820

ABSTRACT

The aim of this study was to evaluate the role of epithelial signal transducer and activator of transcription 3 (STAT3) in mouse incisor amelogenesis. Since Stat3 is expressed in the epithelial component of developing and adult mouse teeth, we generated and analyzed Krt14Cre/+;Stat3fl/fl mutant mice in which Stat3 was inactivated in epithelia including ameloblast progenitors and ameloblasts, the cells responsible for enamel formation. Histological analysis showed little enamel matrix in mutant incisors compared to controls. Delayed incisor enamel mineralization was demonstrated using micro-computed X-ray tomography analysis and was supported by an increase in the pre-expression distance of enamel-enriched proteins such as amelogenin, ameloblastin, and kallikrein-4. Lastly, scanning electron microscopy analysis showed little enamel mineralization in mutant incisors underneath the mesial root of the 1st molar; however, the micro-architecture of enamel mineralization was similar in the erupted portion of control and mutant incisors. Taken together, our findings demonstrate for the first time that the absence of epithelial Stat3 in mice leads to delayed incisor amelogenesis.


Subject(s)
Amelogenesis , Epithelial Cells/metabolism , Incisor/metabolism , STAT3 Transcription Factor/metabolism , Amelogenin/metabolism , Animals , Dental Enamel/metabolism , Dental Enamel/ultrastructure , Incisor/ultrastructure , Mandible/metabolism , Mice, Transgenic , Minerals/metabolism , Molar/metabolism , Mutation/genetics
10.
Connect Tissue Res ; 59(sup1): 62-66, 2018 12.
Article in English | MEDLINE | ID: mdl-29745811

ABSTRACT

Purpose/aim of the study: Odontogenic ameloblast-associated protein (ODAM) is predominantly expressed during the maturation stage of enamel formation and interacts strongly with amelotin (AMTN). AMTN is involved in enamel mineralization, but the effect of ODAM on mineralization has not been investigated. This study determined whether ODAM was able to induce hydroxyapatite (HA) mineralization in modified simulated body fluid (SBF) and in a collagen matrix in vitro. MATERIALS AND METHODS: To monitor the kinetics of calcium phosphate mineralization, recombinant human (rh) ODAM protein in SBF buffer was incubated at 37°C and a light-scattering assay was conducted at intervals. To investigate the nucleation of ODAM in collagen matrix, the ODAM-impregnated collagen hydrogel was incubated in SBF buffer for 24 hours. Bovine serum albumin (BSA) was used as negative control. Mineral deposits were visualized using electron microscopy. RESULTS: The presence of rh-ODAM protein in SBF resulted in higher light-scattering values after 18-24 hours. Calcium phosphate precipitates were observed on the surface of the ODAM-treated, but not BSA-treated collagen hydrogel after 24 hours in SBF. TEM and SAED analyses showed that these crystals consisted of needle-like HA. CONCLUSION: Similar to AMTN, ODAM is able to promote HA nucleation in a dose-dependent manner in SBF, and even outside of its biological context in vitro.


Subject(s)
Calcinosis , Carrier Proteins/chemistry , Collagen/chemistry , Dental Enamel Proteins/chemistry , Extracellular Matrix/chemistry , Amyloid , Carrier Proteins/metabolism , Collagen/metabolism , Dental Enamel Proteins/metabolism , Extracellular Matrix/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Neoplasm Proteins , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
11.
J Cell Biochem ; 118(10): 3328-3340, 2017 10.
Article in English | MEDLINE | ID: mdl-28295540

ABSTRACT

Vacuolar H+ -ATPases (V-ATPases) are ubiquitous multisubunit proton pumps responsible for organellar pH maintenance. Mutations in the a3 subunit of V-ATPases cause autosomal recessive osteopetrosis, a rare disease due to impaired bone resorption. Patients with osteopetrosis also display dental anomalies, such as enamel defects; however, it is not clear whether these enamel abnormalities are a direct consequence of the a3 mutations. We investigated enamel mineralization, spatiotemporal expression of enamel matrix proteins and the a3 protein during tooth development using an osteopetrotic mouse model with a R740S point mutation in the V-ATPase a3 subunit. Histology revealed aberrations in both crown and root development, whereas SEM analysis demonstrated delayed enamel mineralization in homozygous animals. Enamel thickness and mineralization were significantly decreased in homozygous mice as determined by µCT analysis. The expression patterns of the enamel matrix proteins amelogenin, amelotin, and odontogenic ameloblast-associated protein (ODAM) suggested a delay in transition to the maturation stage in homozygous animals. Protein expression of the a3 subunit was detected in ameloblasts in all three genotypes, suggesting that a3-containing V-ATPases play a direct role in amelogenesis, and mutations in a3 delay transition from the secretory to the maturation stage, resulting in hypomineralized and hypoplastic enamel. J. Cell. Biochem. 118: 3328-3340, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Calcification, Physiologic/physiology , Dental Enamel/enzymology , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Dental Enamel/growth & development , Mice , Mice, Mutant Strains , Osteopetrosis/enzymology , Osteopetrosis/genetics , Point Mutation , Vacuolar Proton-Translocating ATPases/genetics
12.
Odontology ; 105(1): 1-12, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27613193

ABSTRACT

Certain cell populations within periodontal tissues possess the ability to induce regeneration, provided they have the opportunity to populate the wound or defect. Guided regeneration techniques have been investigated for regenerating periodontal tissues and such therapies usually utilize barrier membranes. Various natural and synthetic barrier membranes have been fabricated and tested to prevent epithelial and connective tissue cells from invading while allowing periodontal cells to selectively migrate into the defect. This paper focuses on the literature relevant to the use and potential of resorbable collagen membranes in GBR procedures, sites of periodontal and intrabony defects, in cases of socket and alveolar ridge preservation and at implant sites. The results of their use in GBR procedures has shown them to be effective and comparable with non-resorbable membranes with regards to clinical attachment gain, probing depth reduction and defect bone filling. They have also shown to prevent epithelial ingrowth into the defect space during the initial wound healing phase postsurgically. Collagen membranes have also been used for root coverage and GBR procedures and have shown good success rates comparable to subepithelial connective tissue grafts and expanded-polytetrafluoroethylene (e-PTFE) membranes. The future for periodontal tissue engineering is very exciting with the use of barrier membranes expected to continue playing a critical role. However, long-term clinical trials are required to further evaluate and confirm the efficacy of the available collagen barrier membranes for periodontal and bone regeneration use.


Subject(s)
Absorbable Implants , Biocompatible Materials , Collagen/therapeutic use , Guided Tissue Regeneration, Periodontal/methods , Membranes, Artificial , Bone Regeneration , Humans , Polytetrafluoroethylene
13.
Odontology ; 105(3): 329-337, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27807653

ABSTRACT

The purpose of this study is to elucidate the localization of amelotin (AMTN), odontogenic ameloblast-associated protein (ODAM) and follicular dendritic cell-secreted protein (FDC-SP) at the junctional epithelium (JE) in Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans infected mice and inflamed and non-inflamed human gingiva. We performed immunostaining to determine the localization and expression pattern of AMTN, ODAM and FDC-SP. AMTN, ODAM and FDC-SP in A. actinomycetemcomitans infected mice did not change dramatically compared with non-infected mice. AMTN and FDC-SP expressions were observed stronger in P. gingivalis infected mice at early stage. However, at the following stage, the coronal part of the AMTN expression disappeared from the JE, and FDC-SP expression decreased due to severe inflammation by P. gingivalis. ODAM expressed internal and external basal lamina, and the expression increased not only at early stage but also at the following stage in the inflammatory JE induced by P. gingivalis. In the human gingival tissues, AMTN was detected at the surface of the sulcular epithelium and JE in the non-inflamed and inflamed gingiva, and the localization did not change the process of inflammation. ODAM and FDC-SP were more widely detected at the sulcular epithelium and JE in the non-inflamed gingiva. In the inflamed gingiva, localization of ODAM and FDC-SP was spread into the gingival epithelium, compared to AMTN. These studies demonstrated that the expression pattern of AMTN, ODAM and FDC-SP at the JE were changed during inflammation process and these three proteins might play an important role in the resistance to inflammation.


Subject(s)
Bacteroidaceae Infections/metabolism , Dental Enamel Proteins/metabolism , Epithelial Attachment/metabolism , Gingiva/metabolism , Pasteurellaceae Infections/metabolism , Periodontitis/metabolism , Proteins/metabolism , Aggregatibacter actinomycetemcomitans , Animals , Disease Models, Animal , Humans , Immunohistochemistry , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins , Mice , Porphyromonas gingivalis
14.
Hum Mol Genet ; 23(3): 682-92, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24057668

ABSTRACT

RASopathies are syndromes caused by gain-of-function mutations in the Ras signaling pathway. One of these conditions, Costello syndrome (CS), is typically caused by an activating de novo germline mutation in HRAS and is characterized by a wide range of cardiac, musculoskeletal, dermatological and developmental abnormalities. We report that a majority of individuals with CS have hypo-mineralization of enamel, the outer covering of teeth, and that similar defects are present in a CS mouse model. Comprehensive analysis of the mouse model revealed that ameloblasts, the cells that generate enamel, lacked polarity, and the ameloblast progenitor cells were hyperproliferative. Ras signals through two main effector cascades, the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) pathways. To determine through which pathway Ras affects enamel formation, inhibitors targeting either PI3K or MEK 1 and 2 (MEK 1/2), kinases in the MAPK pathway, were utilized. MEK1/2 inhibition rescued the hypo-mineralized enamel, normalized the ameloblast polarity defect and restored normal progenitor cell proliferation. In contrast, PI3K inhibition only corrected the progenitor cell proliferation phenotype. We demonstrate for the first time the central role of Ras signaling in enamel formation in CS individuals and present the mouse incisor as a model system to dissect the roles of the Ras effector pathways in vivo.


Subject(s)
Costello Syndrome/metabolism , Dental Enamel/pathology , Proto-Oncogene Proteins p21(ras)/metabolism , Adolescent , Adult , Ameloblasts/metabolism , Ameloblasts/pathology , Animals , Case-Control Studies , Cell Polarity , Child , Child, Preschool , Cohort Studies , Costello Syndrome/genetics , Dental Enamel/drug effects , Dental Enamel/metabolism , Dental Enamel/ultrastructure , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Female , Humans , Infant , MAP Kinase Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase Kinase 1/metabolism , Male , Mice , Mice, Mutant Strains , Microscopy, Electron, Scanning , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction/genetics , Young Adult
15.
Apoptosis ; 21(10): 1057-70, 2016 10.
Article in English | MEDLINE | ID: mdl-27502207

ABSTRACT

Amelotin (AMTN) is expressed and secreted by ameloblasts in the maturation stage of amelogenesis and persist with low levels in the junctional epithelium (JE) of erupted teeth. The purpose of this study is to investigate the transcriptional regulation of the AMTN gene by transforming growth factor beta1 (TGFß1) in gingival epithelial (GE1) cells in the apoptosis phase. Apoptosis was evaluated by the fragmentation of chromosomal DNA and TUNEL staining. A real-time PCR was carried out to examine the AMTN mRNA levels induced by TGFß1 and Smad3 overexpression. Transient transfection analyses were completed using the various lengths of mouse AMTN gene promoter constructs with or without TGFß1. Chromatin immunoprecipitation (ChIP) assays were performed to investigate the Smad3 bindings to the AMTN gene promoter by TGFß1. TGFß1-induced apoptosis in GE1 cells were detected at 24 and 48 h by DNA fragmentation and TUNEL staining. AMTN mRNA levels increased at 6 h and reached maximum at 24 h in GE1 cells. Luciferase activities of the mouse AMTN gene promoter constructs were induced by TGFß1. The results of the ChIP assays showed that there was an increase in Smad3 binding to Smad-binding element (SBE)#1 and SBE#2 after stimulation by TGFß1. Immunohistochemical localization of AMTN was detected in the JE, and the AMTN protein levels in Smad3-deficient mice were decreased compared with wild-type mice. AMTN mRNA levels were induced at the initiation of apoptosis by TGFß1, which mediated through the Smad3 bindings to SBEs in the mouse AMTN gene promoter.


Subject(s)
Apoptosis , Dental Enamel Proteins/genetics , Epithelial Cells/metabolism , Gingiva/cytology , Transforming Growth Factor beta1/genetics , Animals , Dental Enamel Proteins/metabolism , Epithelial Cells/cytology , Gingiva/metabolism , Mice , Promoter Regions, Genetic , Smad3 Protein/genetics , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism , Up-Regulation
16.
Connect Tissue Res ; 55 Suppl 1: 18-20, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25158173

ABSTRACT

Amelotin (AMTN) is a secreted protein expressed during the late stages of enamel formation and in the junctional epithelium. Among many differentially expressed genes, we found significantly increased AMTN mRNA level in inflamed gingiva by DNA microarray. The inductions of AMTN mRNA expressions in inflamed gingiva and human gingival fibroblasts (HGF) were confirmed by real-time polymerase chain reaction. To determine the molecular basis of the expression of AMTN and its regulation by proinflammatory cytokines, we have isolated and characterized the promoter region of mouse AMTN gene. Transient transfection assays were performed using luciferase constructs including mouse AMTN gene promoter. Interleukin-1ß, Interleukin-6 and tumor necrosis factor-α induced AMTN mRNA levels in HGF. These cytokines increased the luciferase activities of the AMTN promoter constructs in HGF. The results suggest that proinflammatory cytokines induce AMTN gene transcription and a role for AMTN in gingival inflammation.


Subject(s)
Cytokines/metabolism , Dental Enamel Proteins/genetics , Fibroblasts/metabolism , Gene Expression Regulation , Gingiva/metabolism , Animals , Cells, Cultured , Cytokines/genetics , Gene Expression Profiling , Gene Expression Regulation/physiology , Humans , Inflammation/genetics , Mice , Transcription, Genetic
17.
ACS Appl Mater Interfaces ; 16(7): 9190-9200, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38349042

ABSTRACT

Achieving superior mechanical properties of composite materials in artificially engineered materials is a great challenge due to technical bottlenecks in the size and morphological modulation of inorganic nanominerals. Hence, a "bioprocess-inspired fabrication" is proposed to create multilayered organic-inorganic columnar structures. The sequential assembly of halloysite nanotubes (HNTs), polyelectrolytes (PAAs), and calcium phosphates (CaPs) results in organic-inorganic structures. PAA plays a crucial role in controlling the formation of CaP, guiding it into amorphous particles with smaller nanosizes. The introduction of HNT induces the assembly and maturation of CaP-PAA, leading to the formation of a highly crystalline hydroxyapatite. Poly(vinyl alcohol) was then woven into HNT-encapsulated hydroxyapatite nanorods, resulting in composite materials with basic hierarchical structures across multiple scales. The fabricated composite exhibits exceptional hardness (4.27 ± 0.33 GPa) and flexural strength (101.25 ± 1.72 MPa), surpassing those of most previously developed biological hard tissue materials. Additionally, the composite demonstrates effective antibacterial properties and corrosion resistance, attributed to the dense crystalline phase of CaP. This innovative approach showcases the potential of clay minerals, particularly HNT, in the advancement of biomaterial design. The outstanding mechanical and antimicrobial properties of clay-based composites make them a promising candidate for applications in hard tissue repair, offering versatility in biomedicine and engineering.


Subject(s)
Biocompatible Materials , Nanotubes , Clay/chemistry , Biocompatible Materials/chemistry , Nanotubes/chemistry , Anti-Bacterial Agents/pharmacology , Durapatite/chemistry
18.
Front Oral Health ; 4: 1260442, 2023.
Article in English | MEDLINE | ID: mdl-37899941

ABSTRACT

Background: The dental pellicle is a thin layer of up to several hundred nm in thickness, covering the tooth surface. It is known to protect the teeth from acid attacks through its selective permeability and it is involved in the remineralization process of the teeth. It functions also as binding site and source of nutrients for bacteria and conditioning biofilm (foundation) for dental plaque formation. Methods: For this updated literature review, the PubMed database was searched for the dental pellicle and its composition. Results: The dental pellicle has been analyzed in the past years with various state-of-the art analytic techniques such as high-resolution microscopic techniques (e.g., scanning electron microscopy, atomic force microscopy), spectrophotometry, mass spectrometry, affinity chromatography, enzyme-linked immunosorbent assays (ELISA), and blotting-techniques (e.g., western blot). It consists of several different amino acids, proteins, and proteolytic protein fragments. Some studies also investigated other compounds of the pellicle, mainly fatty acids, and carbohydrates. Conclusions: The dental pellicle is composed mainly of different proteins, but also fatty acids, and carbohydrates. Analysis with state-of-the-art analytical techniques have uncovered mainly acidic proline-rich proteins, amylase, cystatin, immunoglobulins, lysozyme, and mucins as main proteins of the dental pellicle. The pellicle has protective properties for the teeth. Further research is necessary to gain more knowledge about the role of the pellicle in the tooth remineralization process.

19.
Cells Tissues Organs ; 195(6): 535-49, 2012.
Article in English | MEDLINE | ID: mdl-21912076

ABSTRACT

Tooth enamel is formed in a typical biomineralization process under the guidance of specific organic components. Amelotin (AMTN) is a recently identified, secreted protein that is transcribed predominantly during the maturation stage of enamel formation, but its protein expression profile throughout amelogenesis has not been described in detail. The main objective of this study was to define the spatiotemporal expression profile of AMTN during tooth development in comparison with other known enamel proteins. A peptide antibody against AMTN was raised in rabbits, affinity purified and used for immunohistochemical analyses on sagittal and transverse paraffin sections of decalcified mouse hemimandibles. The localization of AMTN was compared to that of known enamel proteins amelogenin, ameloblastin, enamelin, odontogenic ameloblast-associated/amyloid in Pindborg tumors and kallikrein 4. Three-dimensional images of AMTN localization in molars at selected ages were reconstructed from serial stained sections, and transmission electron microscopy was used for ultrastructural localization of AMTN. AMTN was detected in ameloblasts of molars in a transient fashion, declining at the time of tooth eruption. Prominent expression in maturation stage ameloblasts of the continuously erupting incisor persisted into adulthood. In contrast, amelogenin, ameloblastin and enamelin were predominantly found during the early secretory stage, while odontogenic ameloblast-associated/amyloid in Pindborg tumors and kallikrein 4 expression in maturation stage ameloblasts paralleled that of AMTN. Secreted AMTN was detected at the interface between ameloblasts and the mineralized enamel. Recombinant AMTN protein did not mediate cell attachment in vitro. These results suggest a primary role for AMTN in the late stages of enamel mineralization.


Subject(s)
Amelogenesis , Dental Enamel Proteins/metabolism , Animals , Biological Assay , Blotting, Western , Cell Adhesion , Dental Enamel Proteins/ultrastructure , Gene Expression Profiling , Humans , Imaging, Three-Dimensional , Immune Sera/immunology , Immunohistochemistry , Incisor/cytology , Incisor/metabolism , Incisor/ultrastructure , Mandible/cytology , Mandible/metabolism , Maxilla/cytology , Mice , Mice, Inbred C57BL , Molar/cytology , Molar/metabolism , Protein Transport , Time Factors
20.
Cell Mol Bioeng ; 15(3): 245-254, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35611164

ABSTRACT

Introduction: Periodontitis is characterized by the destruction of tooth-supporting tissues including the alveolar bone. Barrier membranes are used in dentistry for tissue regenerative therapy. Nevertheless, conventional membranes have issues related to membrane stability and direct induction of bone mineralization. Amelotin (AMTN), an enamel matrix protein, regulates hydroxyapatite crystal nucleation and growth. To apply an AMTN membrane in clinical practice, we investigated the mineralizing and adhesive effects of recombinant human (rh) AMTN in vitro using a collagen-based system. Methods: Collagen hydrogel incorporated with rhAMTN (AMTN gel) and rhAMTN-coated dentin slices were prepared. AMTN gel was then applied on a commercial membrane (AMTN membrane). Samples were incubated for up to 24 h in mineralization buffer, and the structures were observed. The peak adhesive tensile strength between the dentin and AMTN membrane was measured. Using an enzyme-linked immunosorbent assay, the release kinetics of rhAMTN from the membrane were investigated. Results: The AMTN gel resulted in the formation of hydroxyapatite deposits both onto and within the collagen matrix. Furthermore, coating the dentin surface with rhAMTN promoted the precipitation of mineral deposits on the surface. Interestingly, site-specific mineralization was observed in the AMTN membrane. Only 1% of rhAMTN was released from the membrane. Hence, the AMTN membrane adhered to the dentin surface with more than twofold greater tensile strength than that detected for a rhAMTN-free barrier membrane. Conclusions: RhAMTN can accelerate mineralization and adhesion in collagen-based systems. Furthermore, the AMTN membrane could inform the optimal design of calcified tissue regenerative materials. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-022-00722-2.

SELECTION OF CITATIONS
SEARCH DETAIL