Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Front Neurol ; 15: 1386654, 2024.
Article in English | MEDLINE | ID: mdl-38817550

ABSTRACT

Calvarial bone marrow has been found to be central in the brain immune response, being connected to the dura through channels which allow leukocyte trafficking. Temporal bone marrow is thought to play important roles in relation to the inner ear, but is still largely uncharacterized, given this bone complex anatomy. We characterized the geometry and connectivity of rat temporal bone marrow using lightsheet imaging of cleared samples and microCT. Bone marrow was identified in cleared tissue by cellular content (and in particular by the presence of megakaryocytes); since air-filled cavities are absent in rodents, marrow clusters could be recognized in microCT scans by their geometry. In cleared petrosal bone, autofluorescence allowed delineation of the otic capsule layers. Within the endochondral layer, bone marrow was observed in association to the cochlear base and vestibule, and to the cochlear apex. Cochlear apex endochondral marrow (CAEM) was a separated cluster from the remaining endochondral marrow, which was therefore defined as "vestibular endochondral marrow" (VEM). A much larger marrow island (petrosal non-endochondral marrow, PNEM) extended outside the otic capsule surrounding semicircular canal arms. PNEM was mainly connected to the dura, through bone channels similar to those of calvarial bone, and only a few channels were directed toward the canal periosteum. On the contrary, endochondral bone marrow was well connected to the labyrinth through vascular loops (directed to the spiral ligament for CAEM and to the bony labyrinth periosteum for VEM), and to dural sinuses. In addition, CAEM was also connected to the tensor tympani fossa of the middle ear and VEM to the endolymphatic sac. Endochondral marrow was made up of small lobules connected to each other and to other structures by channels lined by elongated macrophages, whereas PNEM displayed larger lobules connected by channels with a sparse macrophage population. Our data suggest that the rat inner ear is surrounded by bone marrow at the junctions with middle ear and brain, most likely with "customs" role, restricting pathogen spread; a second marrow network with different structural features is found within the endochondral bone layer of the otic capsule and may play different functional roles.

2.
Commun Biol ; 6(1): 1025, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816868

ABSTRACT

We provide here a procedure enabling light sheet fluorescence microscopy (LSFM) of entire human eyes after iDISCO + -based clearing (ClearEye) and immunolabeling. Demonstrated here in four eyes, post-processing of LSFM stacks enables three-dimensional (3D) navigation and customized display, including en face viewing of the fundus similarly to clinical imaging, with resolution of retinal capillaries. This method overcomes several limitations of traditional histology of the eyes. Tracing of spatially complex structures such as anterior ciliary vessels and Schlemm's canal was achieved. We conclude that LSFM of immunolabeled human eyes after iDISCO + -based clearing is a powerful tool for 3D histology of large human ocular samples, including entire eyes, which will be useful in both anatomopathology and in research.


Subject(s)
Imaging, Three-Dimensional , Humans , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods
3.
Sci Adv ; 8(21): eabm0972, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35613264

ABSTRACT

Gonadal sex determination represents a unique model for studying cell fate decisions. However, a complete understanding of the different cell lineages forming the developing testis and ovary remains elusive. Here, we investigated the origin, specification, and subsequent sex-specific differentiation of a previously uncharacterized population of supporting-like cells (SLCs) in the developing mouse gonads. The SLC lineage is closely related to the coelomic epithelium and specified as early as E10.5, making it the first somatic lineage to be specified in the bipotential gonad. SLC progenitors are localized within the genital ridge at the interface with the mesonephros and initially coexpress Wnt4 and Sox9. SLCs become sexually dimorphic around E12.5, progressively acquire a more Sertoli- or pregranulosa-like identity and contribute to the formation of the rete testis and rete ovarii. Last, we found that WNT4 is a crucial regulator of the SLC lineage and is required for normal development of the rete testis.

4.
Front Cell Dev Biol ; 9: 692617, 2021.
Article in English | MEDLINE | ID: mdl-34395426

ABSTRACT

The choroid plexus (CP) acts as a regulated gate between blood and cerebrospinal fluid (CSF). Despite its simple histology (a monostratified cuboidal epithelium overlying a vascularized stroma), this organ has remarkably complex functions several of which involve local interaction with cells located around ventricle walls. Our knowledge of CP structural organization is mainly derived from resin casts, which capture the overall features but only allow reconstruction of the vascular pattern surface, unrelated to the overlying epithelium and only loosely related to ventricular location. Recently, CP single cell atlases are starting to emerge, providing insight on local heterogeneities and interactions. So far, however, few studies have described CP spatial organization at the mesoscale level, because of its fragile nature and deep location within the brain. Here, using an iDISCO-based clearing approach and light-sheet microscopy, we have reconstructed the normal rat hindbrain CP (hCP) macro- and microstructure, using markers for epithelium, arteries, microvasculature, and macrophages, and noted its association with 4th ventricle-related neurovascular structures. The hCP is organized in domains associated to a main vessel (fronds) which carry a variable number of villi; the latter are enclosed by epithelium and may be flat (leaf-like) or rolled up to variable extent. Arteries feeding the hCP emerge from the cerebellar surface, and branch into straight arterioles terminating as small capillary anastomotic networks, which run within a single villus and terminate attaching multiple times to a large tortuous capillary (LTC) which ends into a vein. Venous outflow mostly follows arterial pathways, except for the lateral horizontal segment (LHS) and the caudal sagittal segment. The structure of fronds and villi is related to the microvascular pattern at the hCP surface: when LTCs predominate, leaflike villi are more evident and bulge from the surface; different, corkscrew-like villi are observed in association to arterioles reaching close to the CP surface with spiraling capillaries surrounding them. Both leaf-like and corkscrew-like villi may reach the 4th ventricle floor, making contact points at their tip, where no gap is seen between CP epithelium and ependyma. Contacts usually involve several adjacent villi and may harbor epiplexus macrophages. At the junction between medial (MHS) and lateral (LHS) horizontal segment, arterial supply is connected to the temporal bone subarcuate fossa, and venous outflow drains to a ventral vein which exits through the cochlear nuclei at the Luschka foramen. These vascular connections stabilize the hCP overall structure within the 4th ventricle but make MHS-LHS joint particularly fragile and very easily damaged when removing the brain from the skull. Even in damaged samples, however, CP fronds (or isolated villi) often remain strongly attached to the dorsal cochlear nucleus (DCN) surface; in these fronds, contacts are still present and connecting "bridges" may be seen, suggesting the presence of real molecular contacts rather than mere appositions.

5.
Arthropod Struct Dev ; 58: 100968, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32640409

ABSTRACT

The dorsal surface of the woodlouse Porcellionides pruinosus is covered with minute spheres, providing its characteristic powdered appearance. Little has been known about their composition and formation. A previously suggested function of these structures was to increase the hydrophobicity of the cuticular surface. We studied the ultrastructure, composition and formation of the spheres as well as tested whether they affect the hydrophobicity of the cuticle. We determined the composition of the spheres with histochemistry and scanning electron microscopy after applying various chemicals. We studied the process of their formation with transmission electron microscopy and assessed the hydrophobicity of the cuticle by measuring contact angles of water droplets with its surface. Our results show that the spheres are largely organic. They contain proteins and glycoproteins or possibly polysaccharides without detectable amounts of lipids. By studying the formation of the spheres we established that they are epicuticular structures. They are deposited early in the premolt stage of the molt cycle around branching extensions of epidermal cells. The sphere-covered cuticle of P. pruinosus is more hydrophobic than the cuticle with experimentally removed spheres as well as the scale-covered cuticle in a related species.


Subject(s)
Animal Shells/ultrastructure , Isopoda/physiology , Isopoda/ultrastructure , Animals , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission
SELECTION OF CITATIONS
SEARCH DETAIL