Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Data ; 11(1): 378, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609440

ABSTRACT

Physiological signal monitoring and driver behavior analysis have gained increasing attention in both fundamental research and applied research. This study involved the analysis of driving behavior using multimodal physiological data collected from 35 participants. The data included 59-channel EEG, single-channel ECG, 4-channel EMG, single-channel GSR, and eye movement data obtained via a six-degree-of-freedom driving simulator. We categorized driving behavior into five groups: smooth driving, acceleration, deceleration, lane changing, and turning. Through extensive experiments, we confirmed that both physiological and vehicle data met the requirements. Subsequently, we developed classification models, including linear discriminant analysis (LDA), MMPNet, and EEGNet, to demonstrate the correlation between physiological data and driving behaviors. Notably, we propose a multimodal physiological dataset for analyzing driving behavior(MPDB). The MPDB dataset's scale, accuracy, and multimodality provide unprecedented opportunities for researchers in the autonomous driving field and beyond. With this dataset, we will contribute to the field of traffic psychology and behavior.


Subject(s)
Automobile Driving , Eye Movements , Humans
2.
bioRxiv ; 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38260351

ABSTRACT

Single cell lineage tracing, essential for unraveling cellular dynamics in disease evolution is critical for developing targeted therapies. CRISPR-Cas9, known for inducing permanent and cumulative mutations, is a cornerstone in lineage tracing. The novel homing guide RNA (hgRNA) technology enhances this by enabling dynamic retargeting and facilitating ongoing genetic modifications. Charting these mutations, especially through successive hgRNA edits, poses a significant challenge. Our solution, LINEMAP, is a computational framework designed to trace and map these mutations with precision. LINEMAP meticulously discerns mutation alleles at single-cell resolution and maps their complex interrelationships through a mutation evolution network. By utilizing a Markov Process model, we can predict mutation transition probabilities, revealing potential mutational routes and pathways. Our reconstruction algorithm, anchored in the Markov model's attributes, reconstructs cellular lineage pathways, shedding light on the cell's evolutionary journey to the minutiae of single-cell division. Our findings reveal an intricate network of mutation evolution paired with a predictive Markov model, advancing our capability to reconstruct single-cell lineage via hgRNA. This has substantial implications for advancing our understanding of biological mechanisms and propelling medical research forward.

SELECTION OF CITATIONS
SEARCH DETAIL