Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 323
Filter
Add more filters

Publication year range
1.
Cell ; 181(1): 136-150, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32243786

ABSTRACT

The development of clustered regularly interspaced short-palindromic repeat (CRISPR)-based biotechnologies has revolutionized the life sciences and introduced new therapeutic modalities with the potential to treat a wide range of diseases. Here, we describe CRISPR-based strategies to improve human health, with an emphasis on the delivery of CRISPR therapeutics directly into the human body using adeno-associated virus (AAV) vectors. We also discuss challenges facing broad deployment of CRISPR-based therapeutics and highlight areas where continued discovery and technological development can further advance these revolutionary new treatments.


Subject(s)
CRISPR-Cas Systems , Dependovirus/genetics , Gene Editing/methods , Genetic Therapy/methods , Genetic Vectors/therapeutic use , Animals , Humans
2.
Immunity ; 52(1): 167-182.e7, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31883839

ABSTRACT

Multiple sclerosis (MS) is a demyelinating, autoimmune disease of the central nervous system. While work has focused on myelin and axon loss in MS, less is known about mechanisms underlying synaptic changes. Using postmortem human MS tissue, a preclinical nonhuman primate model of MS, and two rodent models of demyelinating disease, we investigated synapse changes in the visual system. Similar to other neurodegenerative diseases, microglial synaptic engulfment and profound synapse loss were observed. In mice, synapse loss occurred independently of local demyelination and neuronal degeneration but coincided with gliosis and increased complement component C3, but not C1q, at synapses. Viral overexpression of the complement inhibitor Crry at C3-bound synapses decreased microglial engulfment of synapses and protected visual function. These results indicate that microglia eliminate synapses through the alternative complement cascade in demyelinating disease and identify a strategy to prevent synapse loss that may be broadly applicable to other neurodegenerative diseases. VIDEO ABSTRACT.


Subject(s)
Complement C3/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Microglia/pathology , Multiple Sclerosis/pathology , Synapses/pathology , Thalamus/pathology , Aged , Aged, 80 and over , Animals , Callithrix , Cell Line, Tumor , Complement C3/antagonists & inhibitors , Disease Models, Animal , Female , Gliosis/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Receptors, Complement 3b/metabolism
3.
Genes Dev ; 35(1-2): 133-146, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33334822

ABSTRACT

The cJun NH2-terminal kinase (JNK) signaling pathway is activated by metabolic stress and promotes the development of metabolic syndrome, including hyperglycemia, hyperlipidemia, and insulin resistance. This integrated physiological response involves cross-talk between different organs. Here we demonstrate that JNK signaling in adipocytes causes an increased circulating concentration of the hepatokine fibroblast growth factor 21 (FGF21) that regulates systemic metabolism. The mechanism of organ crosstalk is mediated by a feed-forward regulatory loop caused by JNK-regulated FGF21 autocrine signaling in adipocytes that promotes increased expression of the adipokine adiponectin and subsequent hepatic expression of the hormone FGF21. The mechanism of organ cross-talk places circulating adiponectin downstream of autocrine FGF21 expressed by adipocytes and upstream of endocrine FGF21 expressed by hepatocytes. This regulatory loop represents a novel signaling paradigm that connects autocrine and endocrine signaling modes of the same hormone in different tissues.


Subject(s)
Adipose Tissue/physiology , Autocrine Communication/genetics , Fibroblast Growth Factors/genetics , Gene Expression Regulation/genetics , Signal Transduction/genetics , Adipocytes/metabolism , Adiponectin/metabolism , Adipose Tissue/physiopathology , Animals , Endocrine System/metabolism , Energy Metabolism/genetics , Feedback, Physiological/physiology , Fibroblast Growth Factors/blood , Hepatocytes/metabolism , Insulin Resistance/genetics , Liver/metabolism , MAP Kinase Kinase 4/deficiency , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , MAP Kinase Signaling System/physiology , Mice
4.
Immunity ; 50(3): 567-575.e5, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30850342

ABSTRACT

Long-term delivery of anti-HIV monoclonal antibodies (mAbs) using adeno-associated virus (AAV) vectors holds promise for the prevention and treatment of HIV infection. We describe a therapy trial in which four rhesus monkeys were infected with SHIV-AD8 for 86 weeks before receiving the AAV-encoded mAbs 3BNC117, 10-1074, and 10E8. Although anti-drug antibody (ADA) responses restricted mAb delivery, one monkey successfully maintained 50-150 µg/mL of 3BNC117 and 10-1074 for over 2 years. Delivery of these two mAbs to this monkey resulted in an abrupt decline in plasma viremia, which remained undetectable for 38 successive measurements over 3 years. We generated two more examples of virologic suppression using AAV delivery of a cocktail of four mAbs in a 12-monkey study. Our results provide proof of concept for AAV-delivered mAbs to produce a "functional cure." However, they also serve as a warning that ADAs may be a problem for practical application of this approach in humans.


Subject(s)
Antibodies, Monoclonal/immunology , Dependovirus/immunology , HIV Infections/immunology , HIV-1/immunology , Animals , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/immunology , Broadly Neutralizing Antibodies , Cell Line , HEK293 Cells , HIV Antibodies/immunology , Humans , Macaca mulatta , Viremia/immunology
5.
Nature ; 604(7905): 343-348, 2022 04.
Article in English | MEDLINE | ID: mdl-35322228

ABSTRACT

Gene therapy is a potentially curative medicine for many currently untreatable diseases, and recombinant adeno-associated virus (rAAV) is the most successful gene delivery vehicle for in vivo applications1-3. However, rAAV-based gene therapy suffers from several limitations, such as constrained DNA cargo size and toxicities caused by non-physiological expression of a transgene4-6. Here we show that rAAV delivery of a suppressor tRNA (rAAV.sup-tRNA) safely and efficiently rescued a genetic disease in a mouse model carrying a nonsense mutation, and effects lasted for more than 6 months after a single treatment. Mechanistically, this was achieved through a synergistic effect of premature stop codon readthrough and inhibition of nonsense-mediated mRNA decay. rAAV.sup-tRNA had a limited effect on global readthrough at normal stop codons and did not perturb endogenous tRNA homeostasis, as determined by ribosome profiling and tRNA sequencing, respectively. By optimizing the AAV capsid and the route of administration, therapeutic efficacy in various target tissues was achieved, including liver, heart, skeletal muscle and brain. This study demonstrates the feasibility of developing a toolbox of AAV-delivered nonsense suppressor tRNAs operating on premature termination codons (AAV-NoSTOP) to rescue pathogenic nonsense mutations and restore gene function under endogenous regulation. As nonsense mutations account for 11% of pathogenic mutations, AAV-NoSTOP can benefit a large number of patients. AAV-NoSTOP obviates the need to deliver a full-length protein-coding gene that may exceed the rAAV packaging limit, elicit adverse immune responses or cause transgene-related toxicities. It therefore represents a valuable addition to gene therapeutics.


Subject(s)
Codon, Nonsense , Dependovirus , Genetic Therapy , Adenoviridae , Animals , Codon, Nonsense/genetics , Codon, Terminator/genetics , Codon, Terminator/metabolism , Dependovirus/genetics , Genetic Diseases, Inborn/therapy , Genetic Vectors , Humans , Mice , Nonsense Mediated mRNA Decay/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism
6.
Nature ; 592(7853): 195-204, 2021 04.
Article in English | MEDLINE | ID: mdl-33828315

ABSTRACT

The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium's plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled-along with validated datasets-into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit-and the knowledge generated by its applications-as a means to accelerate the clinical development of new therapies for a wide range of conditions.


Subject(s)
Cells/metabolism , Gene Editing/methods , Genome, Human/genetics , National Institutes of Health (U.S.)/organization & administration , Animals , Genetic Therapy , Goals , Humans , United States
7.
Nucleic Acids Res ; 52(2): 977-997, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38033325

ABSTRACT

Guide RNAs offer programmability for CRISPR-Cas9 genome editing but also add challenges for delivery. Chemical modification, which has been key to the success of oligonucleotide therapeutics, can enhance the stability, distribution, cellular uptake, and safety of nucleic acids. Previously, we engineered heavily and fully modified SpyCas9 crRNA and tracrRNA, which showed enhanced stability and retained activity when delivered to cultured cells in the form of the ribonucleoprotein complex. In this study, we report that a short, fully stabilized oligonucleotide (a 'protecting oligo'), which can be displaced by tracrRNA annealing, can significantly enhance the potency and stability of a heavily modified crRNA. Furthermore, protecting oligos allow various bioconjugates to be appended, thereby improving cellular uptake and biodistribution of crRNA in vivo. Finally, we achieved in vivo genome editing in adult mouse liver and central nervous system via co-delivery of unformulated, chemically modified crRNAs with protecting oligos and AAV vectors that express tracrRNA and either SpyCas9 or a base editor derivative. Our proof-of-concept establishment of AAV/crRNA co-delivery offers a route towards transient editing activity, target multiplexing, guide redosing, and vector inactivation.


Subject(s)
Gene Editing , RNA, Guide, CRISPR-Cas Systems , Animals , Mice , Tissue Distribution , RNA/genetics , Oligonucleotides
8.
Proc Natl Acad Sci U S A ; 120(19): e2218019120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37141171

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to systemic and articular bone loss by activating bone resorption and suppressing bone formation. Despite current therapeutic agents, inflammation-induced bone loss in RA continues to be a significant clinical problem due to joint deformity and lack of articular and systemic bone repair. Here, we identify the suppressor of bone formation, Schnurri-3 (SHN3), as a potential target to prevent bone loss in RA. SHN3 expression in osteoblast-lineage cells is induced by proinflammatory cytokines. Germline deletion or conditional deletion of Shn3 in osteoblasts limits articular bone erosion and systemic bone loss in mouse models of RA. Similarly, silencing of SHN3 expression in these RA models using systemic delivery of a bone-targeting recombinant adenoassociated virus protects against inflammation-induced bone loss. In osteoblasts, TNF activates SHN3 via ERK MAPK-mediated phosphorylation and, in turn, phosphorylated SHN3 inhibits WNT/ß-catenin signaling and up-regulates RANKL expression. Accordingly, knock-in of a mutation in Shn3 that fails to bind ERK MAPK promotes bone formation in mice overexpressing human TNF due to augmented WNT/ß-catenin signaling. Remarkably, Shn3-deficient osteoblasts are not only resistant to TNF-induced suppression of osteogenesis, but also down-regulate osteoclast development. Collectively, these findings demonstrate SHN3 inhibition as a promising approach to limit bone loss and promote bone repair in RA.


Subject(s)
Arthritis, Rheumatoid , Bone Resorption , Mice , Humans , Animals , beta Catenin/metabolism , DNA-Binding Proteins/metabolism , Bone and Bones/metabolism , Osteoblasts/metabolism , Osteogenesis/genetics , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Bone Resorption/metabolism , Inflammation/metabolism , Osteoclasts/metabolism
9.
Proc Natl Acad Sci U S A ; 120(11): e2219523120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36893269

ABSTRACT

The continuous evolution of SARS-CoV-2 variants complicates efforts to combat the ongoing pandemic, underscoring the need for a dynamic platform for the rapid development of pan-viral variant therapeutics. Oligonucleotide therapeutics are enhancing the treatment of numerous diseases with unprecedented potency, duration of effect, and safety. Through the systematic screening of hundreds of oligonucleotide sequences, we identified fully chemically stabilized siRNAs and ASOs that target regions of the SARS-CoV-2 genome conserved in all variants of concern, including delta and omicron. We successively evaluated candidates in cellular reporter assays, followed by viral inhibition in cell culture, with eventual testing of leads for in vivo antiviral activity in the lung. Previous attempts to deliver therapeutic oligonucleotides to the lung have met with only modest success. Here, we report the development of a platform for identifying and generating potent, chemically modified multimeric siRNAs bioavailable in the lung after local intranasal and intratracheal delivery. The optimized divalent siRNAs showed robust antiviral activity in human cells and mouse models of SARS-CoV-2 infection and represent a new paradigm for antiviral therapeutic development for current and future pandemics.


Subject(s)
COVID-19 , Humans , Animals , Mice , RNA, Small Interfering/genetics , COVID-19/therapy , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Oligonucleotides , Lung
10.
Mol Ther ; 32(9): 3080-3100, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-38937970

ABSTRACT

Alveolar bone loss in elderly populations is highly prevalent and increases the risk of tooth loss, gum disease susceptibility, and facial deformity. Unfortunately, there are very limited treatment options available. Here, we developed a bone-targeted gene therapy that reverses alveolar bone loss in patients with osteoporosis by targeting the adaptor protein Schnurri-3 (SHN3). SHN3 is a promising therapeutic target for alveolar bone regeneration, because SHN3 expression is elevated in the mandible tissues of humans and mice with osteoporosis while deletion of SHN3 in mice greatly increases alveolar bone and tooth dentin mass. We used a bone-targeted recombinant adeno-associated virus (rAAV) carrying an artificial microRNA (miRNA) that silences SHN3 expression to restore alveolar bone loss in mouse models of both postmenopausal and senile osteoporosis by enhancing WNT signaling and osteoblast function. In addition, rAAV-mediated silencing of SHN3 enhanced bone formation and collagen production of human skeletal organoids in xenograft mice. Finally, rAAV expression in the mandible was tightly controlled via liver- and heart-specific miRNA-mediated repression or via a vibration-inducible mechanism. Collectively, our results demonstrate that AAV-based bone anabolic gene therapy is a promising strategy to treat alveolar bone loss in osteoporosis.


Subject(s)
Alveolar Bone Loss , Dependovirus , Disease Models, Animal , Genetic Therapy , Osteoporosis , Animals , Mice , Humans , Genetic Therapy/methods , Osteoporosis/therapy , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoporosis/etiology , Dependovirus/genetics , Alveolar Bone Loss/therapy , Alveolar Bone Loss/etiology , Alveolar Bone Loss/genetics , Alveolar Bone Loss/metabolism , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , MicroRNAs/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Female , Osteoblasts/metabolism , Wnt Signaling Pathway
11.
Proc Natl Acad Sci U S A ; 119(44): e2210434119, 2022 11.
Article in English | MEDLINE | ID: mdl-36282921

ABSTRACT

The cJun NH2-terminal kinase (JNK) signaling pathway in the liver promotes systemic changes in metabolism by regulating peroxisome proliferator-activated receptor α (PPARα)-dependent expression of the hepatokine fibroblast growth factor 21 (FGF21). Hepatocyte-specific gene ablation studies demonstrated that the Mapk9 gene (encoding JNK2) plays a key mechanistic role. Mutually exclusive inclusion of exons 7a and 7b yields expression of the isoforms JNK2α and JNK2ß. Here we demonstrate that Fgf21 gene expression and metabolic regulation are primarily regulated by the JNK2α isoform. To identify relevant substrates of JNK2α, we performed a quantitative phosphoproteomic study of livers isolated from control mice, mice with JNK deficiency in hepatocytes, and mice that express only JNK2α or JNK2ß in hepatocytes. We identified the JNK substrate retinoid X receptor α (RXRα) as a protein that exhibited JNK2α-promoted phosphorylation in vivo. RXRα functions as a heterodimeric partner of PPARα and may therefore mediate the effects of JNK2α signaling on Fgf21 expression. To test this hypothesis, we established mice with hepatocyte-specific expression of wild-type or mutated RXRα proteins. We found that the RXRα phosphorylation site Ser260 was required for suppression of Fgf21 gene expression. Collectively, these data establish a JNK-mediated signaling pathway that regulates hepatic Fgf21 expression.


Subject(s)
Metabolic Syndrome , PPAR alpha , Animals , Mice , Carrier Proteins/metabolism , Fibroblast Growth Factors/metabolism , Hepatocytes/metabolism , Liver/metabolism , Metabolic Syndrome/metabolism , Mice, Knockout , Phosphorylation , PPAR alpha/genetics , PPAR alpha/metabolism , Retinoid X Receptor alpha/genetics , Retinoid X Receptor alpha/metabolism , MAP Kinase Kinase 4/metabolism
12.
Gene Ther ; 31(9-10): 489-498, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39134629

ABSTRACT

Recombinant adeno-associated virus (rAAV) vectors are currently the only proven vehicles for treating ophthalmological diseases through gene therapy. A wide range of gene therapy programs that target ocular diseases are currently being pursued. Nearly 20 years of research have gone into enhancing the efficacy of targeting retinal tissues and improving transgene delivery to specific cell types. The engineered AAV capsid, AAV2.7m8 is currently among the best capsids for transducing the retina following intravitreal (IVT) injection. However, adverse effects, including intraocular inflammation, have been reported following retinal administration of AAV2.7m8 vectors in clinical trials. Furthermore, we have consistently observed that AAV2.7m8 exhibits low packaging titers irrespective of the vector construct design. In this report, we found that AAV2.7m8 packages vector genomes with a higher degree of heterogeneity than AAV2. We also found that genome-loaded AAV2.7m8 stimulated the infiltration of microglia in mouse retinas following IVT administration, while the response to genome-loaded AAV2 and empty AAV2.7m8 capsids produced much milder responses. This finding suggests that IVT administration of AAV2.7m8 vectors may stimulate retinal immune responses in part because of its penchant to package and deliver non-unit length genomes.


Subject(s)
Capsid , Dependovirus , Genetic Therapy , Genetic Vectors , Retina , Dependovirus/genetics , Animals , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Mice , Retina/metabolism , Capsid/metabolism , Genetic Therapy/methods , Genome, Viral , Humans , Mice, Inbred C57BL , Transduction, Genetic/methods , Microglia/metabolism
13.
Exp Eye Res ; 239: 109753, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142764

ABSTRACT

PURPOSE: The detrimental effects of pathological angiogenesis on the visual function are indisputable. Within a prominent role in chromosome segregation and tumor progression, aurora kinase B (AURKB) assumes a prominent role. However, its role in pathological retinal angiogenesis remains unclear. This study explores this latent mechanism. METHODS: To inhibit AURKB expression, we designed specific small interfering RNAs targeting AURKB and transfected them into vascular endothelial cells. Barasertib was selected as the AURKB inhibitor. The anti-angiogenic effects of both AURKB siRNA and barasertib were assessed in vitro by cell proliferation, transwell migration, and tube formation. To evaluate the angiogentic effects of AURKB in vivo, neonatal mice were exposed to 75% oxygen followed by normoxic repositioning to establish an oxygen-induced retinopathy (OIR) model. Subsequently, phosphate-buffered saline and barasertib were administered into OIR mice via intravitreal injection. The effects of AURKB on cell cycle proteins were determined by western blot analysis. RESULTS: We found that AURKB was overexpressed during pathological angiogenesis. AURKB siRNA and barasertib significantly inhibited endothelial cell proliferation, migration, and tube formation in vitro. Furthermore, AURKB inhibition attenuated retinal angiogenesis in the OIR model. A possible mechanism is the disruption of cell cycle by AURKB inhibition. CONCLUSION: In conclusion, AURKB significantly influenced pathological retinal angiogenesis, thereby presenting a promising therapeutic target in ocular neovascular diseases.


Subject(s)
Organophosphates , Quinazolines , Retinal Diseases , Retinal Neovascularization , Animals , Mice , Angiogenesis , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/metabolism , Cell Division , Cell Proliferation , Endothelial Cells/metabolism , Mice, Inbred C57BL , Neovascularization, Pathologic , Oxygen , Retinal Neovascularization/metabolism , RNA, Small Interfering/therapeutic use
14.
J Inherit Metab Dis ; 47(3): 476-493, 2024 05.
Article in English | MEDLINE | ID: mdl-38581234

ABSTRACT

Neurodevelopment is a highly organized and complex process involving lasting and often irreversible changes in the central nervous system. Inherited disorders of neurotransmission (IDNT) are a group of genetic disorders where neurotransmission is primarily affected, resulting in abnormal brain development from early life, manifest as neurodevelopmental disorders and other chronic conditions. In principle, IDNT (particularly those of monogenic causes) are amenable to gene replacement therapy via precise genetic correction. However, practical challenges for gene replacement therapy remain major hurdles for its translation from bench to bedside. We discuss key considerations for the development of gene replacement therapies for IDNT. As an example, we describe our ongoing work on gene replacement therapy for succinic semialdehyde dehydrogenase deficiency, a GABA catabolic disorder.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Genetic Therapy , Succinate-Semialdehyde Dehydrogenase , Synaptic Transmission , Humans , Succinate-Semialdehyde Dehydrogenase/deficiency , Succinate-Semialdehyde Dehydrogenase/genetics , Genetic Therapy/methods , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/genetics , Synaptic Transmission/genetics , Animals
15.
Mol Ther ; 31(2): 435-453, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36184851

ABSTRACT

Treating osteoporosis and associated bone fractures remains challenging for drug development in part due to potential off-target side effects and the requirement for long-term treatment. Here, we identify recombinant adeno-associated virus (rAAV)-mediated gene therapy as a complementary approach to existing osteoporosis therapies, offering long-lasting targeting of multiple targets and/or previously undruggable intracellular non-enzymatic targets. Treatment with a bone-targeted rAAV carrying artificial microRNAs (miRNAs) silenced the expression of WNT antagonists, schnurri-3 (SHN3), and sclerostin (SOST), and enhanced WNT/ß-catenin signaling, osteoblast function, and bone formation. A single systemic administration of rAAVs effectively reversed bone loss in both postmenopausal and senile osteoporosis. Moreover, the healing of bone fracture and critical-sized bone defects was also markedly improved by systemic injection or transplantation of AAV-bound allograft bone to the osteotomy sites. Collectively, our data demonstrate the clinical potential of bone-specific gene silencers to treat skeletal disorders of low bone mass and impaired fracture repair.


Subject(s)
Fractures, Bone , Osteoporosis , Humans , Adaptor Proteins, Signal Transducing/genetics , Osteoporosis/genetics , Osteoporosis/therapy , Fractures, Bone/genetics , Fractures, Bone/therapy , Bone and Bones , Genetic Therapy
16.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33980714

ABSTRACT

Müllerian inhibiting substance (MIS/AMH), produced by granulosa cells of growing follicles, is an important regulator of folliculogenesis and follicle development. Treatment with exogenous MIS in mice suppresses follicle development and prevents ovulation. To investigate the mechanisms by which MIS inhibits follicle development, we performed single-cell RNA sequencing of whole neonatal ovaries treated with MIS at birth and analyzed at postnatal day 6, coinciding with the first wave of follicle growth. We identified distinct transcriptional signatures associated with MIS responses in the ovarian cell types. MIS treatment inhibited proliferation in granulosa, surface epithelial, and stromal cell types of the ovary and elicited a unique signature of quiescence in granulosa cells. In addition to decreasing the number of growing preantral follicles, we found that MIS treatment uncoupled the maturation of germ cells and granulosa cells. In conclusion, MIS suppressed neonatal follicle development by inhibiting proliferation, imposing a quiescent cell state, and preventing granulosa cell differentiation.


Subject(s)
Anti-Mullerian Hormone/pharmacology , Ovary/drug effects , Animals , Animals, Newborn , Cell Differentiation/drug effects , Female , Inhibins/analysis , Mice , Mice, Inbred C57BL , Ovarian Follicle/drug effects , Ovarian Follicle/physiology , Ovary/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Peptide/analysis , Receptors, Transforming Growth Factor beta/analysis , Sequence Analysis, RNA , Single-Cell Analysis , Transcription, Genetic/drug effects
17.
J Biol Chem ; 298(10): 102401, 2022 10.
Article in English | MEDLINE | ID: mdl-35988648

ABSTRACT

Hepatic steatosis associated with high-fat diet, obesity, and type 2 diabetes is thought to be the major driver of severe liver inflammation, fibrosis, and cirrhosis. Cytosolic acetyl CoA (AcCoA), a central metabolite and substrate for de novo lipogenesis (DNL), is produced from citrate by ATP-citrate lyase (ACLY) and from acetate through AcCoA synthase short chain family member 2 (ACSS2). However, the relative contributions of these two enzymes to hepatic AcCoA pools and DNL rates in response to high-fat feeding are unknown. We report here that hepatocyte-selective depletion of either ACSS2 or ACLY caused similar 50% decreases in liver AcCoA levels in obese mice, showing that both pathways contribute to the generation of this DNL substrate. Unexpectedly however, the hepatocyte ACLY depletion in obese mice paradoxically increased total DNL flux measured by D2O incorporation into palmitate, whereas in contrast, ACSS2 depletion had no effect. The increase in liver DNL upon ACLY depletion was associated with increased expression of nuclear sterol regulatory element-binding protein 1c and of its target DNL enzymes. This upregulated DNL enzyme expression explains the increased rate of palmitate synthesis in ACLY-depleted livers. Furthermore, this increased flux through DNL may also contribute to the observed depletion of AcCoA levels because of its increased conversion to malonyl CoA and palmitate. Together, these data indicate that in fat diet-fed obese mice, hepatic DNL is not limited by its immediate substrates AcCoA or malonyl CoA but rather by activities of DNL enzymes.


Subject(s)
Diabetes Mellitus, Type 2 , Lipogenesis , Liver , Sterol Regulatory Element Binding Protein 1 , Animals , Mice , Acetyl Coenzyme A/metabolism , Adenosine Triphosphate/metabolism , ATP Citrate (pro-S)-Lyase/genetics , ATP Citrate (pro-S)-Lyase/metabolism , Diabetes Mellitus, Type 2/metabolism , Hepatocytes/metabolism , Liver/metabolism , Malonyl Coenzyme A/metabolism , Mice, Obese , Palmitates/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
18.
Neurobiol Dis ; 184: 106197, 2023 08.
Article in English | MEDLINE | ID: mdl-37328037

ABSTRACT

Poly(PR) is a dipeptide repeat protein comprising proline and arginine residues. It is one of the translational product of expanded G4C2 repeats in the C9orf72 gene, and its accumulation is contributing to the neuropathogenesis of C9orf72-associated amyotrophic lateral sclerosis and/or frontotemporal dementia (C9-ALS/FTD). In this study, we demonstrate that poly(PR) protein alone is sufficient to induce neurodegeneration related to ALS/FTD in cynomolgus monkeys. By delivering poly(PR) via AAV, we observed that the PR proteins were located within the nucleus of infected cells. The expression of (PR)50 protein, consisting of 50 PR repeats, led to increased loss of cortical neurons, cytoplasmic lipofuscin, and gliosis in the brain, as well as demyelination and loss of ChAT positive neurons in the spinal cord of monkeys. While, these pathologies were not observed in monkeys expressing (PR)5, a protein comprising only 5 PR repeats. Furthermore, the (PR)50-expressing monkeys exhibited progressive motor deficits, cognitive impairment, muscle atrophy, and abnormal electromyography (EMG) potentials, which closely resemble clinical symptoms seen in C9-ALS/FTD patients. By longitudinally tracking these monkeys, we found that changes in cystatin C and chitinase-1 (CHIT1) levels in the cerebrospinal fluid (CSF) corresponded to the phenotypic progression of (PR)50-induced disease. Proteomic analysis revealed that the major clusters of dysregulated proteins were nuclear-localized, and downregulation of the MECP2 protein was implicated in the toxic process of poly(PR). This research indicates that poly(PR) expression alone induces neurodegeneration and core phenotypes associated with C9-ALS/FTD in monkeys, which may provide insights into the mechanisms of disease pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Animals , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Amyotrophic Lateral Sclerosis/metabolism , Macaca fascicularis/genetics , Macaca fascicularis/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Proteomics , Proteins/genetics , DNA Repeat Expansion , Dipeptides/genetics
19.
Mol Ther ; 30(4): 1364-1380, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35283274

ABSTRACT

Recombinant adeno-associated virus (rAAV) gene therapy has the potential to transform the lives of patients with certain genetic disorders by increasing or restoring function to affected tissues. Following the initial establishment of transgene expression, it is unknown how long the therapeutic effect will last, although animal and emerging human data show that expression can be maintained for more than 10 years. The durability of therapeutic response is key to long-term treatment success, especially since immune responses to rAAV vectors may prevent re-dosing with the same therapy. This review explores the non-immunological and immunological processes that may limit or improve durability and the strategies that can be used to increase the duration of the therapeutic effect.


Subject(s)
Dependovirus , Genetic Vectors , Animals , Dependovirus/genetics , Gene Transfer Techniques , Genetic Therapy , Genetic Vectors/genetics , Humans , Transgenes
20.
Mol Ther ; 30(1): 238-243, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34695545

ABSTRACT

Genome editing in the lung has the potential to provide long-term expression of therapeutic protein to treat lung genetic diseases. Yet efficient delivery of CRISPR to the lung remains a challenge. The NIH Somatic Cell Genome Editing (SCGE) Consortium is developing safe and effective methods for genome editing in disease tissues. Methods developed by consortium members are independently validated by the SCGE small animal testing center to establish rigor and reproducibility. We have developed and validated a dual adeno-associated virus (AAV) CRISPR platform that supports effective editing of a lox-stop-lox-Tomato reporter in mouse lung airway. After intratracheal injection of the AAV serotype 5 (AAV5)-packaged S. pyogenes Cas9 (SpCas9) and single guide RNAs (sgRNAs), we observed ∼19%-26% Tomato-positive cells in both large and small airways, including club and ciliated epithelial cell types. This highly effective AAV delivery platform will facilitate the study of therapeutic genome editing in the lung and other tissue types.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , Gene Editing/methods , Lung , Mice , RNA, Guide, Kinetoplastida/genetics , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL